
Refreshing C
Hartmut Kaiser

https://teaching.hkaiser.org/fall2025/csc7103

C History
• Developed in the 1970s – in conjunction with development of UNIX

operating system

 When writing an OS kernel, efficiency is crucial

 This requires low-level access to the underlying hardware:

 e.g. programmer can leverage knowledge of how data is laid out in memory, to
enable faster data access

 UNIX originally written in low-level assembly language – but there were
problems:

 No structured programming (e.g. encapsulating routines as “functions”,
“methods”, etc.) – code hard to maintain

 Code worked only for particular hardware – not portable

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

2

C Characteristics
• C takes a middle path between low-level assembly language…

 Direct access to memory layout through pointer manipulation

 Concise syntax, small set of keywords

• … and a high-level programming language like Java:

 Block structure

 Some encapsulation of code, via functions

 Type checking (pretty weak)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

3

C Dangers
• C is not object oriented!

 Can’t “hide” data as “private” or “protected” fields

 You can follow standards to write C code that looks object-oriented, but you
have to be disciplined – will the other people working on your code also be
disciplined?

• C has portability issues

 Low-level “tricks” may make your C code run well on one platform – but
the tricks might not work elsewhere

• The compiler and runtime system will rarely stop your C program
from doing stupid/bad things

 Compile-time type checking is weak

 No run-time checks for array bounds errors, etc. like in Java

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

4

Compiling your C program
 gcc intro.c -o intro

 and run the program using

 ./intro arg1!

• If we just run ./intro

 We may get a segfault!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

5

Compiling your C program
• All C programs begin with a main function

 The first argument argc denotes the number of elements in argv

 The second argument argv is a list of string arguments passed from the
command line to the program

 The return value of a function indicates the exit code where 0 means
successful

• At the top of the file we have an #include statement to include
stdio.h, a library that makes available functions such as printf.

• We can use printf to print formatted strings. In this case %s treats
the input as a string.

 printf is your friend for debugging!

 printf doesn't emit a newline, so you'll have to add a \n if you want a
newline

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

6

C Syntax
• At the top of the file we have an include

statement to include stdio.h, a library
that contains functions such as printf.

• Next is an array declaration using the
int {name}[{size}] syntax.

• This array is declared on the stack. The
distinction between declaration on the
stack and heap is important to keep in
mind!

• We can initialize the values by using the
{elem1, elem2, ...} initializer syntax.

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

7

The printf() function
• printf("Original input: %s\n", input);

• printf() is a library function declared in <stdio.h>

• Syntax: printf(FormatString, Expr...)

 FormatString: String of text to print

 Expr...: Values to print

 FormatString has placeholders to show where to put the values (note:
#placeholders should match #Exprs)

 Placeholders: %s (print as string), %c (print as char),

%d (print as integer),

%f (print as floating-point)

 \n indicates a newline character

Make sure you pick

the right one!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

8

Separate compilation
• A C program consists of source code in one or more files

• Each source file is run through the preprocessor and compiler,
resulting in a file containing object code

• Object files are tied together by the linker to form a single executable
program

Source code

file1.c
Preprocessor/

Compiler

Object code
file1.o

Source code

file2.c
Preprocessor/

Compiler

Object code
file2.o

Linker
Libraries

Executable code
a.out

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

9

The Preprocessor
• The preprocessor takes your source code and – following certain

directives that you give it – tweaks it in various ways before
compilation.

• A directive is given as a line of source code starting with the # symbol

• The preprocessor works in a very crude, “word-processor” way,
simply cutting and pasting –

 it doesn’t really know anything about C!

Your

source

code

Preprocessor

Enhanced and

obfuscated

source code

Compiler

Object

code

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

10

Preprocessor Directives
#define MAX_COLS 20

#define MAX_INPUT 1000

• The #define directives perform

 “global replacements”:

 every instance of MAX_COLS is replaced with 20, and every instance of
MAX_INPUT is replaced with 1000.

• Other directives:

#include <> / #include ""

#ifdef / #else / #endif

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

11

Preprocessor directives
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

• The #include directives “paste” the contents of the files stdio.h,
stdlib.h and string.h into your source code, at the very place

where the directives appear.

• These files contain information about some library functions used in
the program:

 stdio stands for “standard I/O”, stdlib stands for “standard library”, and
string.h includes useful string manipulation functions.

• Want to see the files? Look in /usr/include (or similar)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

12

Pointers, Arrays, Strings
• The notions of string, array, and pointer are somewhat

interchangeable:

 An array of characters could be declared, for purposes of holding the input
string:

char input[MAX_INPUT];

 Yet when it’s passed in as an argument to a function, input has morphed
into a pointer to a character (char *):

void some_function(char const *input, ...)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

13

Pointers, Arrays, Strings
• In C, the three concepts are indeed closely related:

 A pointer is simply a memory address. The type char* (i.e. “pointer to
character”) signifies that the data at the address the pointer is holding is
to be interpreted as a character.

 An array is simply a pointer – of a special kind:

 The array ‘name’ refers to the first of a sequence of data items stored sequentially
in memory

 How do you get to the other array elements? By incrementing the pointer value

 A string is simply an array of characters – unlike Java, which has a
predefined String class.

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

14

String Layout and Access

p
(char)

o
(char)

i
(char)

n
(char)

t
(char)

e
(char)

r
(char)

NUL
(char)

(char *)

input

What is input?

It’s a string!

It’s a pointer to char!

It’s an array of char!

How do we get to the “n”?

Follow the input pointer,

then hop 3 to the right
*(input + 3)

- or -
input[3]

NUL ('\0') is a special value

indicating end-of-string

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

15

Data Types in C

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

16

Four basic data types
• Integers: char, short int, int, long int, enum

• Floating-point types: float, double, long double

• Pointers

• Aggregates: struct, union

• Integer and floating-point types stand for themselves, but pointers
and aggregate types combine with other types, to form a virtually
limitless variety of types

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

17

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

Characters are of integer Type
• From a C perspective, a character is indistinguishable from its

numeric ASCII value –

 the only difference is in how it’s displayed

• Ex: converting a character digit to its numeric value

 The value of '2' is not 2 – it’s 50 (hexadecimal 0x32)

 To convert, subtract the ASCII value of '0' (which is 48, or 0x30)

char digit, digit_num_value;

...

digit_num_value = digit - '0';

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

18

Behaviorally,

this is identical to

digit - 48
Why is

digit - '0'
preferable?

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

Integer Values play the Role of
“Booleans”
• There is no “Boolean” type

 Relational operators (==, <, etc.) return either 0 or 1

 Boolean operators (&&, ||, etc.) return either 0 or 1,

 and take any int values as operands

• How to interpret an arbitrary int as a Boolean value:

 0 → false

 Any other value → true

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

19

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

The infamous = Blunder
• Easy to confuse equality with assignment

 In C, the test expression of an if statement can be any int expression —
including an assignment expression

if (y = 0)

printf("Sorry, can't divide by zero.\n");

else

result = x / y;

• The compiler will not catch this bug!

 Some compilers will issue a warning

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

20

Assignment performed;

y set to 0 (oops)

Expression returns

result of assignment:

0, or "false"

else clause executed:

divide by 0!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

The less infamous “relational chain”
Blunder
• Using relational operators in a “chain” doesn't work

• Ex: “age is between 5 and 13”

5 <= age <= 13

• A correct solution: 5 <= age && age <= 13

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

21

evaluate 5 <= age
result is either 0 or 1

Next, evaluate either

0 <= 13
or

1 <= 13

result is always 1

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

Ranges of Integer Types
Type Min value Max value

char 0 UCHAR_MAX (≥ 127)

signed char SCHAR_MIN (≤ -127) SCHAR_MAX (≥ 127)

unsigned char 0 UCHAR_MAX (≥ 255)

short int SHRT_MIN (≤ -32767) SHRT_MAX (≥ 32767)

unsigned short int 0 USHRT_MAX (≥ 65535)

int INT_MIN (≤ -32767) INT_MAX (≥ 32767)

unsigned int 0 INT_MAX (≥ 65535)

long int LONG_MIN
(≤ -2147483647)

LONG_MAX
(≥ 2147483647)

unsigned long int 0 ULONG_MAX
(≥ 4294967295) C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

22

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

Ranges of Integer Types
• Ranges for a given platform can be found at /usr/include/limits.h

• char can be used for very small integer values

• Plain char may be implemented as signed or unsigned on a given

platform – safest to “assume nothing” and just use the range 0...127

• short int “supposed” to be smaller than int ―

 but it depends on the underlying platform

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

23

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

Ranges of Floating-Point Types

Type Min value Max value

float FLT_MIN (≤ -1037) FLT_MAX (≤ -1037)

double DBL_MIN (≤ -FLT_MIN) DBL_MAX(≥ FLT_MAX)

long double LDBL_MIN (≤ -DBL_MIN) LDBL_MAX (≥ DBL_MAX)

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

24

Floating-point literals must contain a decimal point, an exponent, or both.

3.14159 25. 6.023e23

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

Danger: Precision of Floating-Point
Values
• Testing for equality between two floating-point values: almost always

a bad idea

 One idea: instead of simply using ==, call an “equality routine” to check
whether the two values are within some margin of error.

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

25

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

Casting: Converting one Type to
Another
• The compiler will do a certain amount of type conversion for you

(silently):

int a = 'A'; /* char literal converted to int */

• In some circumstances, you need to explicitly cast an expression as a
different type – by putting the desired type name in parentheses
before the expression

 e.g. (int)3.14159 will return the int value 3

C
S

C
7

1
0

3
,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

26

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5

Pointers

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

27

Review of Pointers
• A pointer is just a memory location (an address).

• A memory location is simply an integer value, that we interpret as an
address in memory.

• The contents at a particular memory location is just a collection of
bits - there’s nothing special about them that makes them ints,
chars, etc.

 How you want to interpret the bits is up to you (that’s what types are for).

 Is this... an int value?

 ... a pointer to a memory address?

 ... a series of char values?

0xfe4a10c5

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

28

Review of pointer variables
• A pointer variable is just a variable, that contains a value that we

interpret as a memory address.

• Just like an uninitialized int variable holds some arbitrary
“garbage” value,

 an uninitialized pointer variable points to some arbitrary “garbage
address”

char* m;

(char *)

m

???

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

29

Following a “garbage” pointer
• What will happen? Depends on what the arbitrary memory address

is:

 If it’s an address to memory that the OS has not allocated to our program,
we get a segmentation fault

 If it’s a nonexistent address, we get a bus error

 Some systems require multibyte data items, like ints, to be aligned: for
instance, an int may have to start at an even-numbered address, or an
address that’s a multiple of 4. If our access violates a restriction like this,
we get a bus error

 If we’re really unlucky, we’ll access memory that is allocated for our
program –

 We can then proceed to destroy our own data!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

30

How can you Test whether a Pointer
points to Something Meaningful?
• There is a special pointer value NULL, that signifies “pointing to

nothing”. You can also use the value 0.

char* m = NULL;

...

if (m) { ... safe to follow the pointer ... }

• Here, m is used as a boolean value

 If m is “false”, aka 0, aka NULL, it is not pointing to anything

 Otherwise, it is (presumably) pointing to something good

 Note: It is up to the programmer to assign NULL values when necessary

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

31

Indirection operator *
• Moves from address to contents

char* m = "dog";

char result = *m;

• m is an address of a char
 *m instructs us to take the contents of that address

 result gets the value ′d′

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

d
(char)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

32

Address operator &
• Instead of contents, returns the address

char* m = "dog";

char** pm = &m;

• pm needs a value of type char **
 Can we assign to it *m? No – type is char

 Can we assign to it m? No – type is char *

 &m gives it the right value – the address of a char * value

(char *)

(char **)

m

pm

d
(char)

o
(char)

g
(char)

NUL
(char)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

33

Pointer Arithmetic
• C allows pointer values to be incremented by integer values

char* m = "dog";

char result = *(m + 1);

• m is an address of a char
 (m + 1) is the address of the next char

 *(m + 1) instructs us to take the contents of that address

 result gets the value ′o′

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

o
(char)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

34

Pointer Arithmetic
• A slightly more complex example:

char* m = "dog";

char result = *++m;

• m is an address of a char

• ++m changes m, to the address one byte higher,

 and returns the new address

• *++m instructs us to take the contents of that location

• result gets the value 'o'

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

o
(char)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

35

Pointer Arithmetic
• How about multibyte values?

 Q: Each char value occupies exactly one byte, so obviously incrementing
the pointer by one takes you to a new char value...

 But what about types like int that span more than one byte?

 A: C “does the right thing”: increments the pointer by the size of one int
value

int a[2] = {17, 42};

int* m = a;

int result = *++m;
(int *)

m

(char)

result

42
(int)

17
(int)

42
(int)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

36

Example: Initializing an Array
#define N_VALUES 5

float values[N_VALUES];

float* vp;

for (vp = &values[0]; vp < &values[N_VALUES]; /**/)

*vp++ = 0;

(float *)

vp

(float) (float) (float) (float) (float)

&values[0]
&values
[N_VALUES]

values

(float [])
0

(float)

0
(float)

0
(float)

0
(float)

0
(float) (done!)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

37

Example: strcpy “string copy”

char* strcpy(char* dest, const char* src)

• (assume that) src points to a sequence of char values that we wish
to copy, terminated by '\0'

• (assume that) dest points to an accessible portion of memory large
enough to hold the copied chars

• strcpy copies the char values of src to the memory pointed to by
dest

• strcpy also gives dest as a return value

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

40

Example: strcpy “string copy”
char* strcpy(char* dest, const char* src) {

const char* p;

char* q;

for(p = src, q = dest; *p != '\0'; ++p, ++q)

*q = *p;

*q = '\0';

return dest;

}

d
(char)

o
(char)

g
(char)

NUL
(char)

(char) (char) (char) (char)

(char *)

src

(char *)

dest

(char *) (char *)p q

d
(char)

o
(char)

g
(char)

NUL
(char)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

41

Pointer Subtraction and relational
Operations
• Only meaningful in special context: where you have two pointers

referencing different elements of the same array

 q – p gives the difference (in number of array elements, not number of
bytes between p and q (in this example, 2)

 p < q returns 1 if p has a lower address than q; else 0

 (in this example, it returns 1)

(float) (float) (float) (float) (float)(float) (float) (float) (float) (float)

(float *)

p

(float *)

q

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

42

Arrays

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

43

Arrays
• C arrays can be tricky since we can

represent them using the [] syntax or as
pointers using the * syntax.

• In the case of the [] syntax

 We can access elements by using the familiar
arr1[index] syntax

• In the case of the pointer * syntax

 malloc returns a pointer to the start of a buffer
that is the same size as the argument that is
passed in

 The value of int* arr2 in this case is a pointer
to the start of a buffer of size 12

 Each int is 4 bytes and there are 3 of them

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

44

Review of arrays
• There are no array variables in C – only array names

 Each name refers to a constant pointer (address of first element of array)

 Space for array elements is allocated at declaration time

• Can’t change where the array name refers to…

 but you can change the array elements,

 via pointer arithmetic

int m[4];

(int [])

m
???
(int)

???
(int)

???
(int)

???
(int)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

45

Subscripts and pointer arithmetic
• array[subscript] equivalent to *(array + (subscript))

• Strange but true: Given earlier declaration of m, the expression 2[m]
is legal!

 Not only that: it’s equivalent to:

2[m]

*(2+m)

*(m+2)

m[2]

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

46

Array names and Pointer Variables,
playing together

int m[3];

int* mid = m + 1;

int* right = &mid[1];

int* left = &mid[-1];

int* beyond = &mid[2];

(int [])

beyond

???
(int)

???
(int)

???
(int)

int*

int*

int*

(int [])

mid

right

left

msubscript OK

with pointer

variable

compiler may not catch this –

runtime environment certainly won’t

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

47

Array names as function arguments
• In C, arguments are passed “by value”

 A temporary copy of each argument is created, solely for use within the
function call:

void f(int x, int* y) { … }

void g(...) {

int a = 17, b = 42;

f(a, &b);

…

}

• Pass-by-value is “safe” in that the function plays only in its
“sandbox” of temporary variables –
 can’t alter the values of variables in the callee (except via the return value)

17
(int)

42
(int)

g

b

17
(int)

x y

(int [])

f

a

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

48

Array Names as Function Arguments
• But, functions that take arrays as arguments can exhibit what looks

like “pass-by-reference” behavior, where the array passed in by the
callee does get changed

 Remember the special status of arrays in C

 They are basically just pointers.

 So arrays are indeed passed by value

 but only the pointer is copied, not the array elements!

 Note the advantage in efficiency (avoids a lot of copying)

 But - the pointer copy points to the same elements as the callee’s array

 These elements can easily be modified via pointer manipulation

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

49

Array names as function arguments
• The strcpy “string copy” function puts this “pseudo” call-by-reference

behavior to good use:

void strcpy(char* buffer, char const* string);

void f(...) {

char original[4] = "dog";

char copy[4];

strcpy(copy, original);

}

(char [])

original

d
(char)

o
(char)

g
(char)

NUL
(char)

(char [])

copy

???
(char)

???
(char)

???
(char)

???
(char)

f

(char const*)

string

(char*)

buffer

strcpy

d
(char)

o
(char)

g
(char)

NUL
(char)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

50

When can array size be omitted?
• There are a couple of contexts in which an array declaration need not have a

size specified:

 Parameter declaration:

int strlen(char string[]); // same as: int strlen(char* string);

 As we’ve seen, the elements of the array argument are not copied, so the function doesn’t need
to know how many elements there are.

 Array initialization:

int vector[] = {1, 2, 3, 4, 5};

 In this case, just enough space is allocated to fit all (five) elements of the initializer list

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

51

Multidimensional arrays
• How to interpret a declaration like:

int d[2][4];

• This is an array with two elements:

 Each element is an array of four int values

• The elements are laid out sequentially in memory, just like a one-
dimensional array

 Row-major order: the elements of the rightmost subscript are stored
contiguously

(int) (int) (int) (int) (int) (int) (int) (int)

d[0][0] d[0][1] d[0][2] d[0][3] d[1][0] d[1][1] d[1][2] d[1][3]

d[0] d[1]

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

52

Subscripting in a multidimensional
array
int d[2][4];

d[1][2]

(int) (int) (int) (int) (int) (int) (int) (int)

d[0][0] d[0][1] d[0][2] d[0][3] d[1][0] d[1][1] d[1][2] d[1][3]

d[0] d[1]

(d+1)(*(d+1)+2)

Increment by the size of

1 array of 4 ints

Then increment by the

size of 2 ints

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

53

Why do we care about Storage Order?
• If you stay within the “paradigm” of the multidimensional array, the

order doesn’t matter…

• But if you use tricks with pointer arithmetic,

 it matters a lot

• It also matters for initialization

 To initialize d like this:

 use this:

int d[2][4] = {0, 1, 2, 3, 4, 5, 6, 7};

 rather than this

int d[2][4] = {0, 4, 1, 5, 2, 6, 3, 7};

0 1 2 3

4 5 6 7

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

54

Multidimensional Arrays as
Parameters
• Only the first subscript may be left unspecified:

void f(int matrix[][10]); /* OK */

void g(int (*matrix)[10]); /* OK */

void h(int matrix[][]); /* not OK */

• Why?

 Because the other sizes are needed for scaling when evaluating subscript
expressions (see previous slides)

 This points out an important drawback to C:

 Arrays do not carry information about their own sizes!

 If array size is needed, you must supply it somehow

 (e.g., when passing an array argument, you often have to pass an additional
“array size” argument) – bummer

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

55

Malloc

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

56

Using malloc
• malloc returns a pointer to the start of a region of

memory on the heap. It takes in the number of
bytes to allocate.

• Knowing the differences between malloc-ing data
on the heap and declaring data on the stack is
important for CSC4103.

• Consider the commented out code
char copied[length + 1]
 If we were to use this line of code instead of the line

with malloc, what would happen?

 It's possible we get a segfault or the returned string is
garbage!

 This happens because we declared our string on the
stack inside the str_copier function frame and
returned a pointer to the string located in the function
frame

 But when we return from str_copier, the stack frame
is deallocated so now we have a dangling pointer to a
location in the deallocated function frame!

 So never declare things on the stack and then return
them!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

57

Overview of Memory Management
• Stack-allocated memory

 When a function is called, memory is allocated for all of its parameters and
local variables.

 Each active function call has memory on the stack (with the current
function call on top)

 When a function call terminates,

 the memory is deallocated (“freed up”)

Ex: main() calls f(),

f() calls g()

g() recursively calls g()

main()

f()

g()

g()

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

58

Overview of Memory Management
• Heap-allocated memory

 This is used for persistent data, that must survive beyond the lifetime of a
function call

 global variables

 dynamically allocated memory – C statements can create new heap data (similar
to new in Java/C++)

 Heap memory is allocated in a more complex way than stack memory

 Like stack-allocated memory, the underlying system determines where to
get more memory – the programmer doesn’t have to search for free
memory space!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

59

Allocating new Heap Memory
void* malloc(size_t size);

• Allocate a block of size bytes,

 return a pointer to the block

 (NULL if unable to allocate block)

void* calloc(size_t num_elements, size_t element_size);

• Allocate a block of num_elements * element_size bytes,

 initialize every byte to zero,

 return pointer to the block

 (NULL if unable to allocate block)

Note: void * denotes a generic pointer type

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

60

Allocating new Heap Memory
void* realloc(void* ptr, size_t new_size);

• Given a previously allocated block starting at ptr,

 change the block size to new_size,

 return pointer to resized block

 If block size is increased, contents of old block may be copied to a completely
different region

 In this case, the pointer returned will be different from the ptr argument, and ptr
will no longer point to a valid memory region

• If ptr is NULL, realloc is identical to malloc

• Note: may need to cast return value of malloc/calloc/realloc:

char* p = (char*) malloc(BUFFER_SIZE);

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

61

Deallocating Heap Memory
void free(void* pointer);

• Given a pointer to previously allocated memory,

 put the region back in the heap of unallocated memory

• Note: easy to forget to free memory when no longer needed...

 especially if you’re used to a language with “garbage collection” like Java

 This is the source of the notorious “memory leak” problem

 Difficult to trace – the program will run fine for some time, until suddenly
there is no more memory!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

62

Checking for successful Allocation
• Call to malloc might fail to allocate memory, if there’s not enough

available

• Easy to forget this check, annoying to have to do it every time malloc
is called...

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

63

Memory errors
• Using memory that you have not initialized

• Using memory that you do not own

• Using more memory than you have allocated

• Using faulty heap memory management

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

64

Structs

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

65

Structs
• Structs organize and group variables in a

container so that they're easily accessible by
a single pointer.

• As in other languages, creating objects is
extremely helpful in keeping your
abstractions clean!

• Let's analyze the code
 We can declare a struct type by using the
struct name {fields}; syntax.

 To access fields of a struct value, we can use the
. (dot) syntax.

 To access fields of a struct pointer, we have two
choices

 We can dereference the pointer to get a struct
value and then use the . (dot) notation

 Or we can use the arrow notation -> to quickly do
the first option

 The arrow notation is probably the cleaner and
quicker method

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

66

Structs
• When we pass struct values into functions

(such as modify1), they are copied

 This means any changes we make to that
struct are not reflected in the original
struct

• When we pass struct pointers into
functions (such as modify2), the original
struct may be modified

 Since we have a pointer, we can go to the
location of the struct and modify that struct

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

67

C structures: aggregate, yet scalar
• aggregate in that they hold multiple data items at one time

 named members hold data items of various types

 like the notion of class/field in C++

 but without the data hiding features

• scalar in that C treats each structure as a unit

 as opposed to the “array” approach: a pointer to a collection of members in
memory

 entire structures (not just pointers to structures) may be passed as
function arguments, assigned to variables, etc.

 Interestingly, they cannot be compared using ==

 (rationale: too inefficient)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

68

Structure Declarations
• Combined variable and type declaration

struct tag {member-list} variable-list;

• Any one of the three portions can be omitted

struct { int a, b; char* p; } x, y; /* omit tag (type name) */

 variables x, y declared with members as described:

 int members a, b and char pointer p.

 x and y have same type, but differ from all others –

 even if there is another declaration:

 struct { int a, b; char *p; } z;

 /* z has different type from x, y */

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

69

Structure Declarations
struct S { int a, b; char* p; }; /* omit variables */

• No variables are declared, but there is now a type struct S that can be referred to
later

struct S z; /* omit members */
 Given an earlier declaration of struct S, this declares a variable of that type

typedef struct { int a, b; char* p; } S;
/* omit both tag and variables */

 This creates a simple type name S

 (more convenient than struct S)

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

70

Recursively defined Structures
• Obviously, you can’t have a structure that contains an instance of

itself as a member – such a data item would be infinitely large

• But within a structure you can refer to structures of the same type,
via pointers

struct TREENODE {

char *label;

struct TREENODE *leftchild, *rightchild;

}

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

71

Recursively defined Structures
• When two structures refer to each other, one must be declared in

incomplete (prototype) fashion

struct HUMAN;

struct PET {

char name[NAME_LIMIT];

char species[NAME_LIMIT];

struct HUMAN* owner;

} fido = {"Fido", "Canis lupus familiaris", NULL};

struct HUMAN {

char name[NAME_LIMIT];

struct PET pets[PET_LIMIT];

} sam = {"Sam", {fido}};

We can’t initialize the owner
member at this point,

since it hasn’t been declared yet

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

72

Member Access
• Direct access operator s.m

 subscript and dot operators have same precedence and associate left-to-
right, so we don’t need parentheses for sam.pets[0].species

• Indirect access s->m: equivalent to (*s).m

 Dereference a pointer to a structure, then return a member of that
structure

 Dot operator has higher precedence than indirection operator , so
parentheses are needed in (*s).m

 (*fido.owner).name or fido.owner->name

. evaluated first: access owner member

* evaluated next: dereference pointer to HUMAN
. and -> have equal precedence and

associate left-to-right

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

73

Memory Layout
struct COST { int amount;

char currency_type[2]; };

struct PART { char id[2];

struct COST cost;

int num_avail; };

• layout of struct PART:

• Here, the system uses 4-byte alignment of integers,
 so amount and num_avail must be aligned

• Four bytes wasted for each structure!

id amount num_avail

cost

currency_type

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

74

Memory layout
• A better alternative (from a space perspective):

struct COST { int amount;

char currency_type[2]; };

struct PART { struct COST cost;

char id[2];

int num_avail; };

idamount num_avail

cost

currency_type

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

75

Structures as Function Arguments
• Structures are scalars, so they can be returned and passed as

arguments – just like ints, chars

struct BIG changestruct(struct BIG s);

 Call by value: temporary copy of structure is created

 Caution: passing large structures is inefficient

 – involves a lot of copying

• avoid by passing a pointer to the structure instead:

void changestruct(struct BIG* s);

• What if the struct argument is read-only?

 Safe approach: use const

void changestruct(struct BIG const* s);

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

76

OOP with C
struct cost { int amount; char currency_type; };

struct cost* cost_init() { return malloc(sizeof(cost)); }

void cost_free(struct cost* c) { free(c); }

void cost_set(struct cost* c, int amount, char type)
{ c->amount = amount; c->currency_type = type; }

struct cost* c = cost_init();

if (c == NULL) { … error … }

cost_set(c, 42, '$');

cost_free(c);

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

77

Unions
• Like structures, but every member occupies the same region of

memory!

 Structures: members are placed consecutively in memory

 Unions: members are place in the same spot in memory

union VALUE {

float f;

int i;

char *s;

};

/* either a float or an int or a char* */

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

78

Unions
• Up to programmer to determine how to interpret a union (i.e. which

member to access)

• Often used in conjunction with a “type” variable that indicates how
to interpret the union value

 Called ‘discriminated union’

enum TYPE { INT, FLOAT, STRING };

struct VARIABLE {

enum TYPE type;

union VALUE value;

};

Access type to determine

how to interpret value

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

79

Strings

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

80

Strings
• A string is an array of characters ending with

a null terminator \0.

• So, we can represent strings as a char * type
(an array of chars).

• Let's analyze the code
 We can declare a string as an array using either

syntax, in this case we chose the pointer syntax.

 In print_chars, we can iterate through the
string by using the same array dereferencing
and pointer arithmetic method.

 In str_copier, notice that strlen returns the
length of the string excluding the null
terminator.

 If we didn't have the + 1 in our malloc call, then
we wouldn't have enough space to fit both help
and the \0

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

81

Review of strings
• Sequence of zero or more characters, terminated by NUL (literally, the

integer value '\0')

• NUL terminates a string, but isn’t part of it

 important for strlen() – length doesn’t include the NUL

• Strings are accessed through pointers/array names

• string.h contains prototypes of many useful functions

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

82

String literals
• Evaluating ″dog″ results in memory allocated for three characters

′d ′, ′ o ′, ′ g ′, plus terminating NUL

char* m = "dog";

• Note: If m is an array name, subtle difference:

char m[10] = "dog";

10 bytes are allocated for this

array

This is not a string literal;

It’s an array initializer in

disguise!

Equivalent to
{′d′,′o′,′g′,′\0′}

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

83

String manipulation functions
• Read some “source” string(s), possibly write to some “destination”

location

char* strcpy(char* dst, char const* src);

char* strcat(char* dst, char const* src);

• Programmer’s responsibility to ensure that:

 destination region large enough to hold result

 source, destination regions don’t overlap

 “undefined” behavior in this case

 according to C spec, anything could happen!

char m[10] = "dog";

strcpy(m+1, m);

Assuming that the implementation of

strcpy starts copying left-to-right

without checking for the presence of a

terminating NUL first, what will happen?

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

84

strlen() and size_t
size_t strlen(char const* string);
/* returns length of string */

• size_t is an unsigned integer type, used to define sizes of strings and
(other) memory blocks
 Reasonable to think of “size” as unsigned”...

 But beware! Expressions involving strlen() may be unsigned (perhaps
unexpectedly)

if (strlen(x) – strlen(y) >= 0) ...

• avoid by casting:

((int) (strlen(x) – strlen(y)) >= 0)

 Problem: what if x or y is a very large string?

• a better alternative: (strlen(x) >= strlen(y))

always true!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

85

strcmp() “string comparison”
int strcmp(char const* s1, char const* s2);

 returns a value less than zero if s1 precedes s2 in lexicographical order;

 returns zero if s1 and s2 are equal;

 returns a value greater than zero if s1 follows s2.

• Source of a common mistake:

 seems reasonable to assume that strcmp returns “true” (nonzero) if s1 and
s2 are equal; “false” (zero) otherwise

 In fact, exactly the opposite is the case!

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

86

Restricted vs. unrestricted string
functions
• Restricted versions: require an extra integer argument that bounds

the operation

char* strncpy(char* dst, char const* src, size_t len);

char* strncat(char* dst, char const* src, size_t len);

int strncmp(char const* s1, char const* s2, size_t len);

 “safer” in that they avoid problems with missing NUL terminators

 safety concern with strncpy:

 If bound isn’t large enough, terminating NUL won’t be written

 Safe alternative:

strncpy(buffer, name, BSIZE);

buffer[BSIZE-1] = ′\0′;

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

87

String searching
char* strpbrk(char const* str, char const* group);

/* return a pointer to the first character in str

that matches *any* character in group;

return NULL if there is no match */

size_t* strspn(char const* str, char const* group);

/* return number of characters at beginning of str

that match *any* character in group */

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

88

strtok “string tokenizer”
char* strtok(char* s, char const* delim);

/* delim contains all possible ″tokens″:

characters that separate ″tokens″.

if delim non-NULL:

return ptr to beginning of first token in s,

and terminate token with NUL.

if delim is NULL:

use remainder of untokenized string from the

last call to strtok */

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

89

strtok in action
for (token = strtok(line, whitespace);

token != NULL;

token = strtok(NULL, whitespace))

printf("Next token is %s\n", token);

line

d o g c a t NUL

token

NUL NUL

NUL

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

90

An implementation of strtok
char* strtok(char* s, const char* delim) {

static char *old = NULL;

char *token;

if (! s) { s = old; if (! s) return NULL; }

if (s) {

s += strspn(s, delim);

if (*s == 0) { old = NULL; return NULL; }

}

token = s;

s = strpbrk(s, delim);

if (s == NULL) old = NULL;

else { *s = 0; old = s + 1; }

return token;

}

old contains the remains

of an earlier s value

(note use of static)

NULL has been passed in for s,

so consult old

strspn returns number of delimiters

at beginning of s – skip past these

characters

strpbrk gives the position of the next delimiter.
s is updated to this position, but token still

points to the token to return.

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

91

Memory operations
• Like string operations, work on sequences of bytes

 but do not terminate when NUL encountered

void* memcpy(void* dst, void const* src, size_t length);

void* memcmp(void const* a, void const* b, size_t length);

• Note: memmove works like memcpy, but allows overlapping source,
destination regions

• Remember, these operations work on bytes

 If you want to copy N items of type T, get the length right:

memcpy(to, from, N * sizeof(T))

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

92

8
/2

8
/2

0
2

5
,
9

/2
/2

0
2

5
C

S
C

7
1

0
3

,
F

a
ll

 2
0

2
5

,
R

e
fr

e
sh

in
g
 C

93

