
OS Fundamentals
Topic 1

Hartmut Kaiser

https://teaching.hkaiser.org/fall2025/csc7103/



Computer System Structure

• Computer system can be divided into four components:

 Hardware – provides basic computing resources (CSC 3501)

 CPU, memory, I/O devices, graphics card, storage

 Operating system

 Controls and coordinates use of hardware among various applications and users

 Application programs – define how the system resources are used to 
solve the computing problems of the users

 Database, web server, mail server

 Web browsers (Chrome), office apps

 Video games, iTunes

 Users

 People, machines, other computers

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

2



Four Components of a Computer 
System 9

/1
6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

3



What is an Operating System?

• A program that acts as an intermediary between a user of a 
computer and the computer hardware

• Operating system goals:

 Execute user programs and make solving user problems easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

User Programs

Operating Systems

Hardware

4



What Operating Systems Do
• Depends on the point of view (requirements)

• Users want convenience, ease of use and good performance

 Don't care about resource utilization

• Shared computer such as mainframe or minicomputer must keep 
all users happy – fairness, utilization

• Users of dedicate systems such as workstations have dedicated 
resources but frequently use shared resources from servers

• Handheld computers are resource poor, optimized for usability and 
battery life – User experience (UX)

• Some computers have little or no user interface, such as embedded 
computers in electronic devices and automobiles

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

PDP 11 (1970)

ENIAC (1946)

Apple II (1977)

iPhone (2007)

5



Operating System Definition

• OS is a resource allocator (Referee)

 Manages all resources

 Decides between conflicting requests for efficient and fair

 resource use – it is all about tradeoff

• OS is a control program (Illusionist)

 Controls execution of programs to prevent errors (reliability) and 
improper use (security) of the computer

• Operating system is just like a “government” (Glue)

 It does not produce anything but provides an environment

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

6



Operating Systems Evolve 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

OSC 1st edition

UNIX

7



Mainframe Systems: OS Structures

• Used to tackle scientific and commercial applications Batched, 
Multi-Programmed, Time-Shared Systems

• ENIAC (1945), IBM 7094 (1965), Circa (1976), Supermike (2004)

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

8



U

Batched versus Multiprogrammed 
Systems

• Reduce setup time by batching 
similar jobs

• Automatic job sequencing

• When job completes control transfers 
back to monitor

• Several jobs kept in the memory at 
the same time, and the CPU always 
has one job to execute

• Main memory management

• Job and CPU scheduling

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

9



Time-Sharing Systems

• Interactive computing

• CPU executes multiple jobs from different users as time evolves

 The users have concurrency transparency because they are not aware of 
the fact that the others are sharing the same system

 CPU scheduling and multiprogramming are important

• A job swapped in and out of the main memory to the disk -
swapping

• On-line communication between the user and the system is 
provided

 Guarantee some acceptable (short) response time to each user

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

10



Single-Processor Systems: Desktops

• Most systems use a single CPU – Not So true nowadays

• Personal computer– computer system dedicated to a single user.

• I/O devices – keyboards, mice, display screens, printers, networks

 Device-specific processors or controllers

• User convenience and responsiveness

 No priority on resource utilization.

• May run several different types of operating systems (Windows, 
Mac OS, UNIX, Linux)

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

11



Multiprocessor Systems

• Multiprocessor systems grow in use and importance

 Also known as parallel systems or tightly coupled systems

• More than one CPU or processor in close communication

 Share the clock, memory, computer bus, and peripheral devices

 Multicore chips – more than one computing core on a single processor

• Advantages of parallel system:

 Increased throughput – Work can be done in parallel

 Economy of scale – cost less than multiple single-processor systems

 Increased reliability – jobs can fail over to the survived processors

• Fault tolerance and graceful degradation is a hot research topic

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

12
1.13



• Symmetric multiprocessing (SMP)

 Each processor runs an identical copy of the operating system

• Asymmetric multiprocessing

 Each processor is assigned a specific task; master processor schedules and 
allocates work to slave processors.

Multiprocessor Systems (Cont.) 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

13



A Multi-Core Design 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

Fujistu Multi-core processor

Intel Sandy Bridget 14



Clustered Systems

• Like multiprocessor systems, but multiple systems (nodes) working together

 Usually sharing storage via a storage-area network (SAN)

 Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode

 Symmetric clustering has multiple nodes running applications, monitoring each other

 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

15



Distributed Systems
• A distributed system is a collection of physically separate, possibly 

heterogeneous computer systems that are networked to provide the users 
with access to the various resources that the system maintains
 Loosely coupled system – each processor has its own local memory and clock

 Processors communicate with one another through communication lines

• Distributed systems require networking for their functionality:
 TCP/IP - the most common network protocol

 OS requires an interface device – a network adaptor

 Local-area network (LAN) or wide-area network (WAN)

 Notion of network operating system (file sharing, communication)

• Advantages of distributed systems: resources sharing, computation speed 
up (load sharing), data availability, etc.

• Distributed operating systems communicate closely enough to provide the 
illusion that only a single operating system controls the network

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

16



Real-Time Systems

• Often used as a control device in a dedicated application:

 Embedded systems

• Well-defined fixed-time constraints (e.g. flight control system)

• Differ from time-sharing or batch systems which have flexibility 
with time

• Variation in real-time systems:

 Hard real-time: guarantees that critical tasks be completed on time

 Soft real-time: critical task gets priority over other tasks, and retains 
that priority until it completes

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

17



Multimedia Systems

• Incorporation of multimedia data into computer systems

 Audio, video and conventional files

• Increasing number of applications:

 MP3 audio, DVD movies, video conferencing, video clips, live webcasts, 
live webcams

 Desktops and smaller devices

 Live or real-time streaming: Compress multimedia data and maintain 
frame rate

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

18



Handheld Systems

• Examples:

 Personal Digital Assistants (PDAs)

 Cellular telephones

• Issues:

 Limited memory

 Slow processors

 Small I/O devices

• Network connectivity:

 Wireless access to e-mail, web browsing and different types of 
information sharing

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

19



Virtual Machines

• A virtual machine:

 Abstract the hardware of a single 
computer )the CPU, memory, disk drives, 
network interface cards, etc.)into several 
execution environments

 Application programs view everything 
under them as though the latter were a 
part of the machine itself

• A virtual machine provides an 
interface identical to the underlying 
bare hardware

• OS creates the illusion of multiple 
processes, each executing on their own 
private computers

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

20

Non-virtual Machine Virtual Machine



Centralized OS vs Distributed OS
• Normal centralized operating systems run on single or multiprocessor 

architectures
 Tightly coupled systems in that all resources are shared internally and the 

interprocess/interprocessor communication is achieved through either memory 
sharing or direct process interrupts

 Represent full-blown multiuser/multitasking systems

• Distributed operating systems run on networked multiple-CPU systems 
which do not share the memory and clock
 Loosely coupled systems via LAN and WAN; high ratio of inter-processor 

communication time to intra-processor communication time

• Distributed operating systems represent a centralized logical view of the 
software system that runs under a loosely coupled multiple computer 
system
 Transparency is a key property and goal of a distributed OS

 The users have a single-computer view of a multiple computer system. The 
existence of the underlying network and details of the implementation of the 
system are transparent to the user

 Concurrence transparency, location and access transparency, and performance 
transparency all are relevant in a distributed OS

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

21



Computer 
Organization

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

22



Modern Computer Organization

• One or more CPUs, device controllers connect through common bus 
providing access to shared memory

• Concurrent execution of CPUs and devices competing for memory 
cycles

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

23



Computer System Organization 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

Logical organization A computer motherboard 24



Computer Hardware Support

• The hardware must provide appropriate mechanisms to ensure 
correct operation of the computer system and to prevent user 
programs from interfering with OS

• Computer system operation

 System startup

 Interrupt-driven

• Related hardware components and mechanisms

 I/O structure

 Storage structure and hierarchy

 Hardware protection

 Network structure

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

25



Computer Startup

• The Bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known as firmware

 Firmware – Software stored in chip, could be updated

 Initializes all aspects of the system from hardware to software

 Loads operating system kernel and starts execution

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

26



Computer System Operation

• I/O devices and the CPU can execute concurrently

• Each device controller is in charge of a particular device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from local buffers

• I/O is from the device to local buffer of controller

• Device controller informs CPU that it has finished its operation by 
causing an interrupt

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

27



Interrupts
• An operating system is interrupt driven

• Interrupt transfers control to the interrupt service routine generally, 
through the interrupt vector, which contains the addresses of all the 
service routines

• Interrupt architecture must save the address of the interrupted 
instruction (for returning back to the original position)

• Incoming interrupts are disabled while another interrupt is being 
processed to prevent a lost interrupt

• A trap or exception is a software-generated interrupt caused either by an 
error or a user request

int 0x80 – generate an interrupt with ID 0x80

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

28



Interrupts

• An operating system is Interrupt Driven

 OS executes the first process (such as init) and waits for some event to 
occur.

 Occurrence of an event is signaled by an interrupt from either hardware 
(e.g., DVD drive) or software (e.g., trap).

• Interrupt handling

 The operating system preserves the state of the CPU by storing registers 
and the program counter (PC)

 Interrupt transfers control to the interrupt service routine through the 
interrupt vector

 Interrupt architecture must save the address (PC) of the interrupted 
instruction.

 After servicing the interrupt, the state and return address are restored

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

29



Interrupt Timeline 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

When the CPU is interrupted, it stops what it is doing and immediately transfers 
execution to the fixed location of the service routine.

Work is done!

30



I/O Structure

• Device controller informs CPU (through device driver) that it has 
finished its operation by causing an interrupt.

• Synchronous I/O: Control returns to user program (or other OS 
code) only upon I/O completion.

 Wait instruction idles the CPU until the next interrupt.

• Asynchronous I/O: Control returns to user program without waiting 
for I/O completion.

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

31



Direct Memory Access Structure

• Too many interrupts slows down the entire system

• DMA is used for high-speed I/O devices able to transmit information 
at close to memory speeds

• Device controller transfers blocks of data from buffer storage 
directly to main memory without CPU intervention

• Only one interrupt is generated per block, rather 
than the one interrupt per byte

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

32



How a Modern Computer Works 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

33



Storage Structure

• Main memory – only large storage media that the CPU can access 
directly – random access, volatile, byte-addressable, fast, small

• Secondary storage – extension of main memory that provides large 
storage capacity – block access, nonvolatile, slow, big

 Hard disks – rigid metal or glass platters covered with magnetic 
recording material

 Disk surface is logically divided into tracks, which are subdivided into sectors

 The disk controller determines the logical interaction between the device and 
the computer

 Solid-state disks – faster than hard disks, nonvolatile

 Various technologies

 Becoming more popular

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

34Flash Memory Hard disk



Storage Hierarchy

• Storage systems organized in 
hierarchy

 Speed

 Cost

 Volatility

• Caching – copying information into 
faster storage system; main 
memory can be viewed as a last 
cache for secondary storage

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

35



Network Structure
• Two types of networks based on how 

they are geographically distributed:

• Local Area Networks (LAN)

 Processors distributed over small 
geographical areas (such as single 
building or a number of adjacent 
buildings).

• Wide Area Networks (WAN)

 Processors distributed over a large 
geographical area (such as the US).

• Variations in speed and reliability 
communications

 LAN has a higher speed, lower error 
rate and more expensive connections

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

36



Operating System 
Structure

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

37



Operating System Structure
• Multiprogramming needed for efficiency – Improvement over sequential 

execution
 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has one to 
execute

 A subset of total jobs in system is kept in memory – buffering

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU switches jobs 
so frequently that users can interact with each job while it is running, 
creating interactive computing
 Response time should be < 1 second

 Each user has at least one program executing in memory c:process

 If several jobs ready to run at the same time c: CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to run

 Virtual memory allows execution of processes not completely in memory

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

38



Hardware Protection
• Errors can come from any malfunctioning program.

• Protection of the OS against errors using hardware support:
 Hardware can detect the errors and it will trap to the OS thereby transferring 

control to the OS by interrupt.

• Dual-Mode Operation
 User mode vs. Kernel mode; hardware support

• I/O Protection
 OS must ensure user apps never gain control of hardware

 Using syscall interface; I/O operations are privileged operations

• Memory Protection
 Users are not allowed to access OS or other programs’ memory

• CPU Protection
 Prevent a user program stuck in an infinite loop; Timer interrupt

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

39



Operating-System Operations (cont.)

• Dual-mode allows OS to protect itself and other system components

 User mode and kernel mode

 Mode bit provided by hardware

 Enables to distinguish when system is running user or kernel code

 Some instructions are privileged, only executable in kernel mode

 System call changes mode to kernel, return from call resets it to user

• Increasingly CPUs support multi-mode operations

 i.e. virtual machine manager (VMM) mode for guest VMs

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

40



Process Management
• A process is a program in execution. It is a unit of work within the system. 

Program is a passive entity, process is an active entity.

• Process needs resources to accomplish its task
 CPU, memory, I/O, files

 Initialization data (e.g., opening a file needs a file name)

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying location of next 
instruction to execute
 Process executes instructions sequentially, one at a time, until completion

• Multi-threaded process has one program counter per thread

• Typically system has many processes, some user, some operating system 
running concurrently on one or more CPUs
 Concurrency by multiplexing the CPUs among the processes / threads

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

41



Memory Management

• To execute a program all (or part) of the instructions must be in 
memory

• All (or part) of the data that is needed by the program must be in 
memory.

• Memory management determines what is in memory and when

 Optimizing CPU utilization and computer response to users

• Memory management activities

 Track which parts of memory are currently being used and by whom

 Deciding which processes (or parts thereof) and data to move into and out 
of memory

 Allocating and deallocating memory space as needed

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

42



File-System Management
• Computers can store information in different physical media (e.g., disks, 

tapes)

• OS provides a logical (an abstract) view of information storage, i.e., define a 
logical storage unit called the file

 OS maps files into physical media, and accesses these files via the storage devices 
such as disk drive

• A file is a collection of related information (program or data) defined by its 
creator

• OS is responsible for all file management activities:

 file creation and deletion

 directory creation and deletion

 support of primitives for manipulating files and directories

 mapping files onto secondary storage

 file backup on stable (nonvolatile) storage media

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

43



Storage Management
• OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit - file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-transfer rate, access 
method (sequential or random)

• File-System management

 Files usually organized into directories

 Access control on most systems to determine who can access what

 OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and directories

 Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

44



Mass-Storage Management
• Usually disks used to store data that does not fit in main memory or data 

that must be kept for a “long” period of time – large & persistent

 Proper management is of central importance

• Entire speed of computer operation hinges on disk subsystem and its 
algorithms – very slow (milliseconds)

• OS activities

 Free-space management

 Storage allocation

 Disk scheduling

• Some storage need not be fast

 Tertiary storage includes optical storage, magnetic tape

 Still must be managed – by OS or applications

 Varies between WORM (write-once, read-many-times) and RW (read-write)

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

45



Performance of Various Levels of 
Storage

• Movement between levels of storage hierarchy can be explicit or 
implicit

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

46Cheaper, bigger

Faster, Smaller



Caching

• Caching – Holding critical data in fast, expensive storage

 Important principle, performed at many levels in a computer (in 
hardware, operating system, software)

 Information in use copied from slower to faster storage temporarily

• Faster storage (cache) checked first to determine if information is 
there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

• Cache smaller than storage being cached

 Cache management is an important design problem

 Cache size and replacement policy is crucial

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

47



Migration of Data From Disk to 
Register

• Cache consistency

 Data simultaneously stored in more than one level to be consistent.

 The copy of A appears in several places: on the magnetic disk, in main 
memory, in the cache and in an internal registers.

• Cache coherency

 Update of a copy of A need to be in all caches where A resides (in a 
multiprocessor system with all CPUs having a local cache).

 Distributed environment situation is even more complex.

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

48



I/O Subsystem

• One purpose of OS is to hide peculiarities of hardware devices from 
the user – only driver needs to know specific device details

• I/O subsystem responsible for multiple things

 Memory management of I/O

 Buffering (storing data temporarily while it is being transferred)

 Caching (storing parts of data in faster storage for performance)

 Spooling (the overlapping of output of one job with input of other jobs)

 A general device-driver interface

 Drivers for specific hardware devices

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

49



Protection and Security
• Protection – any mechanism for controlling access of processes or users to 

resources defined by the OS

• Security – defense of the system against internal and external attacks

 Huge range, including denial-of-service, worms, viruses, identity theft, theft of 
service

• Systems generally first distinguish among users, to determine who can do 
what

 User identities (user IDs, security IDs) include name and associated number, one 
per user

 User ID then associated with all files, processes of that user to determine access 
control

 Group identifier (group ID) allows set of users to be defined and controls managed, 
then also associated with each process, file

 Privilege escalation allows user to change to effective ID with more rights

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

50



OS Services
• Provide certain services to programs and to the users of those programs:

• User interface: command-line, batch interface, and GUI

• Program execution: capability to load a program into memory and to run it

• I/O operations: A running program may require I/O for file or device

• File-system manipulation: capability to read, write, create, and delete files

• Communications: exchange of information between processes via shared 
memory or message passing

• Error detection: ensure correct operation by detecting errors in CPU and 
memory hardware, in I/O devices, or in user programs

• Additional functions exist for ensuring efficient system operation:

 Resource allocation, accounting, and protection

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

51



System Calls

• System calls provide an interface 
between a process and the OS

• Even simple programs make 
heavy use of OS but users never 
see this level of detail

• System call sequence to copy the 
contents of one file to another file

• Mostly accessed via a high- level 
application program interface 
rather than direct system call

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

52



API - System Call - OS Relationship 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

53



Five Categories of System Calls

• Process control: create_process, terminate_process, load, 
execute, end, abort

• File management: create_file, delete_file, open, close, read, 
write

• Device management: request_device, release_device, read, 
write, attach_or_detach_device

• Information maintenance: get_time_or_date, set_time_or_date, 
get_system_data, set_system_data, get_process_attributes, 
set_process, attributes

• Communication: create_or_delete_connection, 
send_or_receive_message, transfer_status_information

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

54



System Programs
• System programs provide convenient environment for program 

development and execution:

 File management: Manipulate files and directories

 Status information: Date, disk space, number of users

 File modification: Text editors

 Programming language support: Compilers, assemblers, debuggers, etc.

 Program loading and execution: Loaders, linkage editors

 Communications: Connection, messages, remote login, data transfer

• Most users' view of the operating system is defined by system programs, 
not the actual system calls

 System programs are actually user interfaces to system calls

• Application programs or system utilities

 Web browsers, word processors, text formatters, spreadsheets, compilers, plotting, 
games

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

55



Operating System 
Design

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

56



Operating Systems Design

• Organization of OS components to specify the privilege with which 
each component executes.

• Four structures

 Monolithic – All components contained in the kernel

 Layered – Top-down approach to separate the functionality and features 
into components.

 Microkernel – Only essential components included in the kernel

 Modules – Object-oriented structure

• Virtual Machines Run on the top of any OS

 VMware and the Java Virtual machine

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

57



MS-DOS: Simple Structure

• MS-DOS – written to provide the most 
functionality in the least space

 Not divided into modules

 Although MS-DOS has some structure, its 
interfaces and levels of functionality are not 
well separated

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

58



UNIX: Non-simple Structure

• UNIX – limited by hardware 
functionality, the original UNIX 
operating system had limited 
structuring.

• The UNIX OS has two separable parts

 Systems programs

 The UNIX kernel

 Everything between the system-call 
interface and the hardware

 Provides the file system, CPU scheduling, 
memory management, and other operating-
system functions; a large number of 
functions for one level

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

59
UNIX: Beyond simple 
but not fully layered



Layered Approach

• The operating system is divided into a number of layers (levels), 
each built on top of lower layers. The bottom layer (layer 0), is the 
hardware; the highest (layer N) is the user interface.

• With modularity, layers are selected such that each uses functions 
(operations) and services of only lower-level layers

• Design and implementation of OS get simplified in the layered 
approach.

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

60



OS/2 – Layer Structure

• A descendant of MS DOS with multitasking and dual-mode 
operation.

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

61



Microkernel System Structure
• Moves as much from the kernel into user space

 Kernel maintains the minimum generic OS functions

• Mach example of microkernel

 Mac OS X kernel (Darwin) partly based on Mach

• Communication takes place between user modules using message passing

• Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

• Detriments:

 Performance overhead of user space to kernel space communication

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

62



Microkernel System Structure 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

Application 

Program

File 

System
Device 

Driver

Interprocess 

Communication

memory 

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user 

mode

kernel 

mode

63



Microkernel vs. Monolithic Model

• Tanenbaum-Torvalds Debate

 1992, Usernet discussion group comp.os.minix

 Andrew S. Tanenbaum – Minix

 Microkernel is better for portability

 Linux is too closely tied to expensive Intel 386

 x86 processors will be superseded

 Linux, as a monolithic kernel, is “a giant step back into 1970s”

 Linus Torvalds – Linux

 Linux API is more portable and simpler

 Choosing x86 is explicit design goal, rather than a design flaw

 Building for cheap hardware will have portability problems

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

64

http://oreilly.com/catalog/opensources/book/appa.html

http://oreilly.com/catalog/opensources/book/appa.html


Modules

• Many modern operating systems implement loadable kernel 
modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

• Overall, similar to layers but with more
flexibility

 Linux, Solaris, etc.

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

65Solaris Module Approach



Hybrid Systems

• Most modern operating systems are actually not one pure model

 Hybrid combines multiple approaches to address performance, security, 
usability needs

• Linux and Solaris kernels in kernel address space, so monolithic, 
plus modular for dynamic loading of functionality

• Windows mostly monolithic, plus microkernel for different 
subsystem

• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming 
environment

 Below is kernel consisting of Mach microkernel and BSD Unix parts, plus 
I/O kit and dynamically loadable modules (called kernel extensions)

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

66



Mac OS X Structure 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

kernel environment

Mach

BSD

I/O kit kernel

extensions

graphical user interface
Aqua

application environments and services

Java Cocoa Quicktime BSD

67



Virtual Machines 9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

■ A virtual machine takes the layered approach to its logical conclusion. It 

treats hardware and OS kernel as all hardware.

■ A VM provides an interface to the underlying bare hardware.

■ The operating system host creates the illusion that a process has its own 

processor and (virtual memory).

■ Each guest provided with a (virtual) copy of underlying computer.

(a) Non-virtualized machine

(b) Virtualized machine

VMM or Hypervisor

68



VMware

• VM Architecture: Abstracts Intel 80X86 hardware into isolated 
virtual machines to run several guest operating systems as 
independently.

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

69



Para-virtualization

• Presents guest with system similar but not identical to hardware

• Guest OS must be modified to run on para-virtualized hardware

• Guest can be an OS, or in the case of Solaris 10 applications 
running in containers

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

70



Open-Source Operating Systems

• Operating systems made available in source-code format rather 
than just binary closed-source

• Counter to the copy protection and Digital Rights Management 
(DRM) movement

• Started by Free Software Foundation (FSF), which has “copyleft”

 GNU Public License (GPL)

• Examples include GNU/Linux and BSD UNIX (including core of 
Mac OS X), and many more

9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

71



Open-Source Operating Systems 
(Cont’d) 9

/1
6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

Ken Thompson & Dennis Ritchie 
UNIX (1971)

Richard Stallman GNU/GPL (1983)

Andrew Tanenbaum Minix (1987)

Linus Torvalds Linux (1991)

72



9
/1

6
/2

0
2

5
, 

T
o
p

ic
 1

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

O
S

 F
u

n
d

a
m

e
n

ta
ls

73


