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Causality
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Causality
• The lack of a global system state – fundamental property of a distributed 

system

 Most of the time distributed systems are asynchronous

• Distributed systems are causal – the cause precedes the effect

 The sending of a message precedes the receipt of a message

 The distributed system is composed of the set of processors and there are multiple 
sets of events that occur on these processors

 Events include message send, message receipt, user input receipt, signal raising, output 
creation, etc.

 How to define the ordering among different events:

 We write e1 < e2 if we know that event e1 occurred before event e2

• In distributed systems, it is difficult to deduce which event came first

 Need to combine information from different sources to determine the ordering. If 
information source I tells us that e1 occurred before e2, we write e1 <I e2
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Causality Definitions
• Event e1 causally happened before event e2 (that is, e1 <H e2):

• Transitive closure of the processor orderings and the message orderings

 Processor ordering: e1 occurred before e2 in the same process/processor p

e1 <P e2

 Events that occur on the same processor are totally ordered

 Message ordering: A message (m) sent by the process pi after e1 occurred is 
received by the process pj before e2 occurred

e1 <m e2

 Simply, e1 is the sending of message m and e2 is the receipt of message m

 Transitive closure property: if e1 causally happened before e2 and e2 causally 
happened before e3, then

e1 <C e3
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Happens-Before DAG 1
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e1 and e6

DAG (directed acyclic graph)
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Example: Causality Violation 1
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Causality Communication

• Ensuring that processor never experiences a causal violation

• Protocol for causal communication:

 A processor cannot choose the order in which messages arrive but it can 
change the order in which messages are delivered to the applications that 
consume them

 Revise delivery order by holding back messages that arrived “too soon”

 The source attaches timestamps on messages (to order messages), and 
the destination delays the delivery of out-of-order messages

• Protocol for FIFO message delivery (TCP communication)
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IPC and 
Synchronization

1
0
/7

/2
0

2
5
, 

T
o
p

ic
 3

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

C
o
n

cu
rr

e
n

t 
P

ro
ce

ss
e
s 

a
n

d
 

P
ro

g
ra

m
m

in
g

8



Language Mechanisms for 
Synchronization
• A concurrent programming language supports:

 Specification of concurrent processing

 Synchronization of processes

 Interprocess communication

 Non-deterministic execution of processes

• How the normal OS approaches can be extended to the distributed OS

• Various synchronization mechanisms

 Shared-variable approaches: Semaphore, monitor, conditional critical region, 
serializer, path expression

 Message passing approaches: Communicating sequential processes, remote 
procedure call, rendezvous

• Classic synchronization example: Concurrent readers/exclusive writer 
problem
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Critical Section Problem
• Multiple processes are competing to use some shared 

data

• Each process has a code segment, called critical section, 
in which the shared data is accessed

• Problem – ensure that when one process is executing in 
its critical section, no other processes are executing in 
their critical sections

 Mutual exclusion should be enforced

• Entry section implements a process’ request to enter its 
critical section which is followed by an exit section

 Processes may share some common variables to synchronize 
their actions (to have orderly execution of cooperating 
processes)
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Semaphores
• Semaphore is a synchronization tool

 Works like mutex locks to enforce mutual exclusion

• Semaphore S – protected integer variable which can only be accessed via 
two operations

• These operations are indivisible (atomic), that is, only one process can 
modify the semaphore value at a time
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Interprocess Communication Models

• Message passing – Useful for exchanging smaller amounts of data; 
easier to implement through system calls but slower

• Shared memory – Allows maximum speed and convenience of 
communication; faster accesses to shared memory  
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Message-Passing Synchronization
• A mechanism for cooperating processes to communicate and to synchronize 

their actions without sharing the same address space

 The only means of communication in distributed systems without shared memory

• Message-passing facility provides two operations:

send(message) – message size fixed or variable 

receive(message)

• Two processes wishing to communicate need to establish a communication 
link between them and exchange messages via

send/receive

 Implementation of communication link physical (e.g., shared memory, hardware 
bus or network) or logical

• Message can be asynchronous or synchronous
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Asynchronous Message Passing

• Assumes non-blocking send and blocking receive – uses the channel with an 
unbounded buffer as a semaphore (message content is not important)

• Can be useful as semaphore if communication channel can be specified

 Blocking receive – (acquiring the lock), Non-blocking send – (releasing the lock)

• Mutual exclusion solution using asynchronous message passing:
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Synchronous Message Passing

• Assumes blocking send and blocking receive – symmetrical waiting

• Rendezvous between send and receive 

 Allows two processes to join and exchange data at a synchronization point 
and continue their separate execution thereafter

• Mutual exclusion solution using synchronous message passing:
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Communication and 
Coordination
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Communication and Coordination
• Cooperating processes must interact with each other using some forms of 

communication model to coordinate their execution

• Interprocess communication (IPC): Two approaches are message passing 
and shared memory
 Message passing - only method of exchanging data/information between processes 

in distributed systems

 All higher level models must be built on the top of message passing

• Request/reply – based on the client/server concept

• Transactions – sequences of request/reply communications that require 
communication atomicity
 Only logically shared memory (data objects) simulated by message passing is 

possible in distributed systems

• Name service model: Locating the communication entities (objects)

• Distributed process coordination:
 Classical problems: Distributed mutual exclusion and leader selection
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Different Levels of Communication

• Five levels of communication abstraction

 Top three levels deal with the transfer of messages among distributed 
processes
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Message Passing Communication

• Communicating processes pass composed messages to the system 
transport service, which provides connectivity for message transfer 
in the network

 Basic communication primitives

 Message synchronization and buffering

 Pipe and socket APIs

 Group communication and multicast
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Basic Message Passing Primitives

• Two generic message passing primitives

 Send (destination, message)

 Receive (source, message)

• The communication entities, source and destination, can be 
addressed in four different ways

 Process name

 Link

 Mailbox

 Ports

• Message size can be fixed or variable
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Source/Destination Identification

• Process names or unique global process identifiers are required

 May be obtained by adding machine address to process id

 Symmetric/asymmetric addressing options

 Symmetric – sender and receiver need to explicitly name each other

 Asymetric – only sender needs to indicate the receiver

• Allows one logical communication path/link between a pair of 
sending and receiving processes

• Process identifiers need to be known at coding time

1
0
/7

/2
0

2
5
, 

T
o
p

ic
 3

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

C
o
n

cu
rr

e
n

t 
P

ro
ce

ss
e
s 

a
n

d
 

P
ro

g
ra

m
m

in
g

21symmetric process name asymmetric process name



Links

• Identifying/specifying each path in the communication primitives as 
connection or link (similar to virtual circuit concept)

 Allows multiple data paths between processes

 Different links, each pointing to an actual communication path can be 
used

• Direct communication between peer processes can be provided by 
using process names and link numbers
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Mailboxes

• Mailboxes are global data structures shared by some sender and 
some receiver processes

 Messages are sent to and received from mailboxes

• Allow indirect communication between sender and receiver 
processes

• Allow multipoint and multipath communication
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Ports

• Port is an abstraction of a finite-size FIFO queue maintained by the 
kernel

 A special example of mailbox

 Messages can be appended to or removed from the queue by send and 
receive operations

 Ports are bidirectional and buffered, and support indirect communication

• Created by user processes using system calls

 Referenced by port numbers

 User ports are mapped to transport ports and vice versa
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Message Synchronization

• Message passing communication depends on synchronization at 
several points

 Between user process and system kernel

 Between kernel and kernel

 Between source and destination processes

• Send/receive primitives may be blocking or non-blocking

 Blocking primitive means that the calling process needs to be blocked for 
the message delivery or receipt
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Buffering
• Common default: a non-blocking send and a blocking receive

 Non-blocking send also referred to as an asynchronous send

• Blocking send may be of different types:
 Ordinary blocking send

 Reliable blocking send

 Explicit blocking send

 Request and reply – called client/server communication

• Blocking receive implies that the process can not continue till the message 
is received

• Buffering is crucial in the synchronization:
 The sender puts messages in the buffer while the receiver removes the message 

from the buffer

 Sharable buffer spaces smooth out the asynchronous processing of messages

 One big buffer by combining the buffers in the sender kernel, the receiver kernel 
and the communication network
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Application Program Interface

• User processes communicate using an API, independent of the 
underlying communication platform

 Shared communication channels are (logically) shared objects

 Internal details and implementation managed by the kernel are 
transparent to the users

• Used in both Windows and Unix environments

• Pipes and socket APIs
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Pipes

• Pipes are implemented with a finite-size, FIFO-byte stream buffer 
maintained by the kernel

 A pipe serves as an unidirectional communication link

 A pipe system call returns two pipe descriptors, one for reading and the 
other for writing: fd(0): read-end, fd(1): write end

• Ordinary pipes: used only for related processes (pipe descriptors are 
shared by parent process and children)

• Named pipes: FIFO files shared by unrelated (disjoint) processes 
across different machines with a common file system - limited to a 
single domain
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Communication Between Processes

• Data written by A is held in memory until B reads it

• Queue has a fixed capacity
 Writing to the queue blocks if the queue if full

 Reading from the queue blocks if the queue is empty

• POSIX provides this abstraction in the form of pipes
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write(wfd, wbuf, wlen); 

n = read(rfd, rbuf, rmax); 

Process 
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Process 
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Pipes

• int pipe(int fileds[2]);

 Allocates two new file descriptors in the process

 Writes to fileds[1] read from fileds[0]

 Implemented as a fixed-size queue
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Single-Process Pipe Example
#include <unistd.h>

int main(int argc, char *argv[]) {

char *msg = "Message in a pipe.\n";

char buf[BUFSIZE] = { '\0' };

int pipe_fd[2];

if (pipe(pipe_fd) == -1) {

fprintf (stderr, "Pipe creation failed.\n"); return EXIT_FAILURE;

}

ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);

printf("Sent: %s [%ld, %ld]\n", msg, strlen(msg)+1, writelen);

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);

printf("Rcvd: %s [%ld]\n", buf, readlen);

close(pipe_fd[1]); close(pipe_fd[0]);

}

1
0
/7

/2
0

2
5
, 

T
o
p

ic
 3

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

C
o
n

cu
rr

e
n

t 
P

ro
ce

ss
e
s 

a
n

d
 

P
ro

g
ra

m
m

in
g

31



Inter-Process Communication (IPC)
pid_t pid = fork();

if (pid < 0) {

fprintf (stderr, "Fork failed.\n");

return EXIT_FAILURE;

}

if (pid != 0) {

ssize_t writelen = write(pipe_fd[1], msg, msglen);

printf("Parent: %s [%ld, %ld]\n", msg, msglen, writelen);

close(pipe_fd[0]);

close(pipe_fd[1]);

} else {

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);

printf("Child Rcvd: %s [%ld]\n", msg, readlen);

close(pipe_fd[0]);

close(pipe_fd[1]);

}
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Named Pipes

#include <unistd.h>

// create named pipe

if (mkfifo("/tmp/my_fifo", S_IRUSR|S_IWUSR) == -1) {

perror("mkfifo"); return 1;

}

// delete the named pipe

if (unlink("/tmp/my_fifo") == -1) {

perror("unlink"); return 1;

}
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Named Pipes

// write to named pipe

int fd = open("/tmp/my_fifo", O_WRONLY);

if (fd == -1) {

perror("open"); return 1;

}

char *message = "Hello, Named Pipe!";

if (write(fd, message, strlen(message) + 1) == -1) {

perror("write"); return 1;

}

close(fd);
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Named Pipes
// read from a named pipe
int fd = open("/tmp/my_fifo", O_RDONLY);
if (fd == -1) {

perror("open"); return 1;
}

char buffer[100];
ssize_t bytes_read = read(fd, buffer, sizeof(buffer));
if (bytes_read == -1) {

perror("read"); return 1;
}

buffer[bytes_read] = '\0';
printf("Received message: %s\n", buffer);

close(fd);
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Sockets
• Sockets provide  two-way communication links shared by processes 

across heterogeneous domains

• A socket is an endpoint for a communication link managed by the 
transport service

 A pair of processes communicating over a network employs a pair of 
sockets – one for each process

 Socket system call returns a socket descriptor (logical communication 
endpoint (local to a process), which must be associated with a physical 
communication endpoint – bind system call

• A physical communication endpoint is specified 
by a network host address and transport port pair

 Each socket is made up of an IP address 
concatenated with a port number: 

 The socket 146.86.5.20:1625 refers to port 1625 
on host 146.86.5.20
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Sockets in Schematic 1
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Client

Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address 

(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()

Connection SocketConnection Socket

read request



Client Protocol
char* host_name = "www.lsu.edu";

char* port = "80";

// Create a socket

struct addrinfo *server = lookup_host(host_name, port);

int sock_fd = socket(server->ai_family, server->ai_socktype,

server->ai_protocol);

// Connect to specified host and port

connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol

run_client(sock_fd);

// Clean up on termination

close(sock_fd);
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Server Protocol
// Create socket to listen for client connections

char *port = "80";

struct addrinfo *server = setup_address(port);

int server_socket = socket(server->ai_family, server->ai_socktype, server->ai_protocol);

// Bind socket to specific port

bind(server_socket, server->ai_addr, server->ai_addrlen);

// Start listening for new client connections

listen(server_socket, MAX_QUEUE);

while (1) {   // Accept a new client connection, obtaining a new socket

int conn_socket = accept(server_socket, NULL, NULL);

serve_client(conn_socket);

close(conn_socket);

}

close(server_socket);
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Client: Getting the Server Address
struct addrinfo *lookup_host(char *host_name, char *port) {

struct addrinfo *server;

struct addrinfo hints;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

// hints.ai_flags = AI_PASSIVE;

int rv = getaddrinfo(host_name, port, &hints, &server);

if (rv != 0) {

printf("getaddrinfo failed: %s\n", gai_strerror(rv));

return NULL;

}

return server;

}
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Server Address: Itself
struct addrinfo *setup_address(char *port) {

struct addrinfo *server;

struct addrinfo hints;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE;

getaddrinfo(NULL, port, &hints, &server);

return server;

}

• Accepts any connections on the specified port
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SSL
• Sockets are widely used and need communication security.

• Secure socket layer (SSL) provides – Privacy, Integrity, Authenticity

• Privacy and integrity are maintained by handshake protocol and 
cryptography

 Handshake protocol establishes communication session (write) keys and message 
authentication check, and validates the authenticity of clients and servers

 The server is verified with a certificate assuring client is talking to correct server

 Asymmetric cryptography used to establish a secure session key (for symmetric encryption 
later) for bulk of communication during session

 Communication between each computer then uses symmetric key cryptography

 Record layer protocol handles fragmentation, compression/ decompression, 
encryption/decryption of messages records

• Authentication is done by third-party certification authority
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Request/Reply Communication
• Service-oriented request/reply communication is above basic message 

passing – next level of communication
 The sender is blocked (or the message is considered not delivered) until it receives 

a reply

• RPC – remote procedure call
 Is a language-level abstraction to support request/reply communication mechanism 

based on message passing

 Represents a pair of synchronization request (calling a remote procedure) and reply 
(waiting for results) communications

 Abstracts procedure calls between processes on networked systems, providing 
access transparency to remote operations

• RPC is implemented by stub procedures at both the client end and the 
server end
 Client-side stub locates the server and marshals the parameters

 Server-side stub receives this message, unpacks the marshaled parameters, and 
performs the procedure on the server
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RPC Flow 1
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RPC Implementation
• Parameter passing and data conversion – parameter marshaling

 Parameters are passed by call-by-value and call-by-copy/restore

 Data typing, data representation, data transfer syntax problems can be 
solved using an universal language or canonical data representation

• Binding between the client and the server – match maker

 Port mapper to provide the port number of the requested server to the 
client

 Directory server to locate the server machine if it is unknown

• RPC Compilation - three major components:

 Interface specification file, RPC generator, run-time library

• RPC exception and failure handling

• Secure RPC
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RPC Implementation (Cont’d)

• Data representation handled via External Data Representation (XDL) format 
to cope with different architectures

 Big-endian (most significant byte first) and little-endian (least significant byte first)

• Remote communication has more failure scenarios than local

 Messages can be delivered exactly once rather than at most once

• OS typically provides a rendezvous (or matchmaker) service to connect client 
and server
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RPC Exception and Failures 
Handling
• Exception handling

 Overflow/underflow or protection violation in procedure execution

 In-band or out-band signaling for the exchange of status and control information

• Failure handling

 Not locating the server, link failure, delayed or lost messages

 Idempotent services – a request can be repeatedly executed

 Detecting a duplicate or out-of-sequence request message – the client attaches a 
sequence number to each request

 Reliable transport layer (TCP connection)

• Server crash and client crash

 Generally difficult to deal with

 Using a time-out or waiting for the failed server/client to come back

1
0
/7

/2
0

2
5
, 

T
o
p

ic
 3

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

C
o
n

cu
rr

e
n

t 
P

ro
ce

ss
e
s 

a
n

d
 

P
ro

g
ra

m
m

in
g

47



RPC Implementation

• Interface description language (IDL), here XDR language

program KVSTORE {

version KVSTORE_V1 {

int EXAMPLE(int) = 1;

} = 1;

} = 0x20000001;

• Use this to generate stubs:

rpcgen kv_store.x

• Generates client and server files
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RPC Implementation

/* Generated client RPC stub. */

int *

example_1(int *argp, CLIENT *clnt)

{

static int clnt_res;

memset((char *)&clnt_res, 0, sizeof(clnt_res));

if (clnt_call (clnt, EXAMPLE,

(xdrproc_t) xdr_int, (caddr_t) argp,

(xdrproc_t) xdr_int, (caddr_t) &clnt_res,

TIMEOUT) != RPC_SUCCESS) {

return (NULL);

}

return (&clnt_res);

}
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/* User supplied client RPC stub. */

int example(int input) {

CLIENT *clnt = clnt_connect(HOST);

int ret; int *result;

result = example_1(&input, clnt);

if (result == (int *)NULL) {

clnt_perror(clnt, "call failed");

exit(1);

}

ret = *result;

xdr_free((xdrproc_t)xdr_int, (char *)result);

clnt_destroy(clnt);

return ret;

}



RPC Implementation

/* Example server-side RPC stub. */

int *example_1_svc(int *argp, struct svc_req *rqstp) {

static int result;

result = *argp + 1;

return &result;

}
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Secure RPC
• Security is important for RPC

 RPC opens doors for attacks from unfriendly remote users

 RPC supports all types of client/server computations

• The primary security issues are

 Authentication of client and server processes

 Authenticity and confidentiality of messages

 Access control authorization from client to server

• Authentication protocol for RPC must establish:

 Mutual authentication for messages and communicating processes

 Message integrity, confidentiality, and originality

• Designing secure authentication protocol is complex matter

 Example: Sun’s Secure RPC
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Transaction Communication
• Transactions in communication are a set of asynchronous request/reply 

communications generally involving the multicast of the same message to 
replicated servers and different requests to partitioned servers

 Similar to fundamental unit of interaction between client and server processes in a 
database system

• Transaction is collection of instructions or operations that performs single 
logical function

 A series of read and write operations

• Example: Consider two data items A and B, and consider 
two transactions T0 and T1

 Execute T0, T1 atomically

 Execution sequence called schedule

 Atomically executed transaction order 
called serial schedule
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ACID Properties
• Transaction communications must satisfy the ACID properties:

 Atomicity: all or nothing

 Consistency/serializability: interleaving results in serial execution in 
some order

 Isolation: partial results are not visible outside

 Durability: after committing, the results will be made permanent

• Ensuring ACID properties requires that the participating 
processors coordinate their execution of a transaction

 Challenging in a distributed system because several sites may be 
participating; any site or link failure may result in erroneous 
computations

 Each site has its local transaction coordinator and maintains a log for 
recovery

 Name the processor which initiates the transaction the coordinator and 
name the remaining processors the participants
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Two-Phase Commit Protocol
• The two-phase commit (2PC) protocol is analogous to a real-life unanimous 

voting scheme
 One coordinator and multiple participants for a distributed transaction T

 Each of them have access to some stable storage to maintain its activity log

 T is committed only if all participants agree and ready to commit

• Coordinator (initiator site):
 Prepare to commit the transaction T by writing every update in activity log

 Write a precommit record in activity log, and multicast a vote request to all 
participants asking whether they are ready to commit

 If all participants vote YES within a time-out period, multicast a commit message. 
Otherwise, multicast an abort message

• Participant (other participating sites):
 Upon receiving the vote request, prepare to commit the transaction T by writing

every update in activity log

 Write a precommit into the log and sends a YES reply to the coordinator. 
Otherwise, abort T and send a NO reply to the coordinator

 Wait for a commit message from the coordinator. If received, commit T. If abort 
message is received, abort T
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2PC Algorithm for Coordinator 1
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2PC Algorithm for Participant 1
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2PC Protocol - Example 1
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2PC Protocol - Recovery
• When used with an activity log in stable storage, 2PC protocol is 

highly resilient to processor failures

 The activity log can be replayed upon the recovery of a failure

 Note that every participant is required to vote, and once a processor votes 
it is not allowed to change its vote

• Three types of failure and recovery actions:

 Failures before a precommit

 A processor (coordinator or participant) can simply abort the transition

 Failures after a precommit but before a commit

 Coordinator can abort the transaction or attempt to commit the transaction by 
re-multicasting (retake the vote)

 Participant recovery is complicated: needs to check with the coordinator or 
other participant about the transaction status

 Failures after a commit

 Coordinator resends the commit message to finish the transaction Participant 
simply makes the transaction’s updates permanent
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Group and Multicast 
Communication

• Besides point-to-point communication, multipoint group 
communication is naturally expected in distributed systems

 Notion of a group is essential for cooperative software

 Managing group of processes or objects needs multicast communication

• Issues/complications of multicast communication implementation

 Reliability: Best effort vs. reliable

 Failures

 Delivery order

 Overlapping groups
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Multicast Issues

• Reliable delivery issue in multicast

 Two multicast application scenarios: Soliciting a service from any server 
or requesting a service from all servers in the group

 Best effort multicast – delivery to only reachable servers

 Reliable multicast – ensure the message delivered to all servers

• Failures in the middle of an atomic multicast

 Failures of the recipient processes or the communication links:

 The message originator uses a time-out or acknowledgements, and also decides 
to abort the multicast or continue by excluding the failed members from the 
group

 Failure of the originator:

 One of recipients chosen as the new originator to decide whether to abort or 
complete the partially completed multicast

1
0
/7

/2
0

2
5
, 

T
o
p

ic
 3

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

C
o
n

cu
rr

e
n

t 
P

ro
ce

ss
e
s 

a
n

d
 

P
ro

g
ra

m
m

in
g

60



Message Delivery Ordering
• Multiple messages multicast to the same group may arrive at different 

members (sites) of the group in different orders – need ordered delivery to 
the application processes

• Multicast orderings in increasing order of strictness:

 FIFO, causal and total orders

• FIFO order – Multicast messages from a single source are delivered in the 
order they were sent

 Assign message sequence numbers

 Communication handler can delay messages or reject duplicates

• Causal order – Causally related messages from multiple sources are 
delivered in their causal order

• Total order – All messages multicast to a group are delivered
to all members of the group in the same order
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Delivery in Causal Order
• Causal ordering of messages - two messages are causally related to each 

other if one message is generated after the receipt of the other

 This message order needs to be preserved at all sites

• Birman-Schiper-Stephenson Protocol - similar to vector logical clock

 Each message is time-stamped by a sequence vector S where each entry is the 
number of messages received by the sender from that group member: 
S = (S1, S2, …, Sn)

 Accept a message m from process i with vector T = (T1, T2, ….., Tn) if the member j
has received all previous messages from i (that is, Ti = Si + 1), and the member j
has received all messages also seen by i, (that is, Tk ≤ Sk for all k ≠ i)

 Delay accepting the message m, otherwise: if Ti > Si + 1 (another message from i is 
on the fly) or there exists a k ≠ i: Tk > Sk (this message is from the future)

 Reject any message if Ti ≤ Si (duplicate message)
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Two-Phase Total-Order Multicast
• A reliable and total order multicast is called an atomic multicast

• Two-phase total-order multicast protocol
 Combining the atomic and total order broadcasts

 First phase – originator broadcasts messages and collects acks with logical timestamps 
from all group member

 Second phase – after all acks received, the originator sends commitment message with the 
highest timestamp. Receiver decides if buffer or deliver msg.

• Message originator
 Broadcasts messages, collect acknowledgments (ack) with logical timestamps from all 

group members

 Then sends a commitment message with the highest logical ack timestamp (taken as 
commitment timestamp)

• Recipient
 Sends ack with the logical clock value as timestamp (local ack stamp)

 Do not deliver a message with commit timestamp t until the commit message for all 
messages with local ack stamp < t has been committed – commit messages in the 
commitment order

 Deliver messages in the order of the commit timestamp
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Two-Phase Total-Order Multicast 
Example

• Two messages m1 and m2 broadcast between two sources (s1, s2) and 
two of the group members (g1, g2), with the initial logical clock times 
in circles
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Multicast

Message

Ack

Time

Commit

Time

m 0 2 delivered

m 1 6 9

m 2 8 8

m 3 10 pending

Buffer management in the 

communication handler of g1
Multicast – solid lines 

Acknowledgment – dashed lines



Overlapping Groups

• Multicast to overlapped groups

 A process may belong to more than one group

• Coordination among groups to maintain consistent ordering of messages:

 Impose some agreed upon structures (a spanning tree) for the groups and multicast 
messages using the structures

 A multicast message m is first sent to the group leader (root of a tree) and then to all 
group members by routing
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Group 1 

(A,B,C,D,E)

Group 2

(C,D,F,G)

Overlap set (C,D) appears 
as a common subtreeTwo overlapped groups
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