
Interprocess
Communication
(IPC) and
Coordination
Topic 3

Hartmut Kaiser

https://teaching.hkaiser.org/fall2025/csc7103/

Causality

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

2

Causality
• The lack of a global system state – fundamental property of a distributed

system

 Most of the time distributed systems are asynchronous

• Distributed systems are causal – the cause precedes the effect

 The sending of a message precedes the receipt of a message

 The distributed system is composed of the set of processors and there are multiple
sets of events that occur on these processors

 Events include message send, message receipt, user input receipt, signal raising, output
creation, etc.

 How to define the ordering among different events:

 We write e1 < e2 if we know that event e1 occurred before event e2

• In distributed systems, it is difficult to deduce which event came first

 Need to combine information from different sources to determine the ordering. If
information source I tells us that e1 occurred before e2, we write e1 <I e2

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

3

Causality Definitions
• Event e1 causally happened before event e2 (that is, e1 <H e2):

• Transitive closure of the processor orderings and the message orderings

 Processor ordering: e1 occurred before e2 in the same process/processor p

e1 <P e2

 Events that occur on the same processor are totally ordered

 Message ordering: A message (m) sent by the process pi after e1 occurred is
received by the process pj before e2 occurred

e1 <m e2

 Simply, e1 is the sending of message m and e2 is the receipt of message m

 Transitive closure property: if e1 causally happened before e2 and e2 causally
happened before e3, then

e1 <C e3

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

4

Happens-Before DAG 1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

Causally ordered events:

Concurrent (disjoint) events

e1 and e6

DAG (directed acyclic graph)

5

Example: Causality Violation 1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

6

Causality Communication

• Ensuring that processor never experiences a causal violation

• Protocol for causal communication:

 A processor cannot choose the order in which messages arrive but it can
change the order in which messages are delivered to the applications that
consume them

 Revise delivery order by holding back messages that arrived “too soon”

 The source attaches timestamps on messages (to order messages), and
the destination delays the delivery of out-of-order messages

• Protocol for FIFO message delivery (TCP communication)

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

7

IPC and
Synchronization

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

8

Language Mechanisms for
Synchronization
• A concurrent programming language supports:

 Specification of concurrent processing

 Synchronization of processes

 Interprocess communication

 Non-deterministic execution of processes

• How the normal OS approaches can be extended to the distributed OS

• Various synchronization mechanisms

 Shared-variable approaches: Semaphore, monitor, conditional critical region,
serializer, path expression

 Message passing approaches: Communicating sequential processes, remote
procedure call, rendezvous

• Classic synchronization example: Concurrent readers/exclusive writer
problem

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

9

Critical Section Problem
• Multiple processes are competing to use some shared

data

• Each process has a code segment, called critical section,
in which the shared data is accessed

• Problem – ensure that when one process is executing in
its critical section, no other processes are executing in
their critical sections

 Mutual exclusion should be enforced

• Entry section implements a process’ request to enter its
critical section which is followed by an exit section

 Processes may share some common variables to synchronize
their actions (to have orderly execution of cooperating
processes)

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

10

Semaphores
• Semaphore is a synchronization tool

 Works like mutex locks to enforce mutual exclusion

• Semaphore S – protected integer variable which can only be accessed via
two operations

• These operations are indivisible (atomic), that is, only one process can
modify the semaphore value at a time

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

11

Interprocess Communication Models

• Message passing – Useful for exchanging smaller amounts of data;
easier to implement through system calls but slower

• Shared memory – Allows maximum speed and convenience of
communication; faster accesses to shared memory

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

12

Message-Passing Synchronization
• A mechanism for cooperating processes to communicate and to synchronize

their actions without sharing the same address space

 The only means of communication in distributed systems without shared memory

• Message-passing facility provides two operations:

send(message) – message size fixed or variable

receive(message)

• Two processes wishing to communicate need to establish a communication
link between them and exchange messages via

send/receive

 Implementation of communication link physical (e.g., shared memory, hardware
bus or network) or logical

• Message can be asynchronous or synchronous

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

13

Asynchronous Message Passing

• Assumes non-blocking send and blocking receive – uses the channel with an
unbounded buffer as a semaphore (message content is not important)

• Can be useful as semaphore if communication channel can be specified

 Blocking receive – (acquiring the lock), Non-blocking send – (releasing the lock)

• Mutual exclusion solution using asynchronous message passing:

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

14

Synchronous Message Passing

• Assumes blocking send and blocking receive – symmetrical waiting

• Rendezvous between send and receive

 Allows two processes to join and exchange data at a synchronization point
and continue their separate execution thereafter

• Mutual exclusion solution using synchronous message passing:

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

15

Communication and
Coordination

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

16

Communication and Coordination
• Cooperating processes must interact with each other using some forms of

communication model to coordinate their execution

• Interprocess communication (IPC): Two approaches are message passing
and shared memory
 Message passing - only method of exchanging data/information between processes

in distributed systems

 All higher level models must be built on the top of message passing

• Request/reply – based on the client/server concept

• Transactions – sequences of request/reply communications that require
communication atomicity
 Only logically shared memory (data objects) simulated by message passing is

possible in distributed systems

• Name service model: Locating the communication entities (objects)

• Distributed process coordination:
 Classical problems: Distributed mutual exclusion and leader selection

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

17

Different Levels of Communication

• Five levels of communication abstraction

 Top three levels deal with the transfer of messages among distributed
processes

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

18

Message Passing Communication

• Communicating processes pass composed messages to the system
transport service, which provides connectivity for message transfer
in the network

 Basic communication primitives

 Message synchronization and buffering

 Pipe and socket APIs

 Group communication and multicast

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

19

Basic Message Passing Primitives

• Two generic message passing primitives

 Send (destination, message)

 Receive (source, message)

• The communication entities, source and destination, can be
addressed in four different ways

 Process name

 Link

 Mailbox

 Ports

• Message size can be fixed or variable

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

20

Source/Destination Identification

• Process names or unique global process identifiers are required

 May be obtained by adding machine address to process id

 Symmetric/asymmetric addressing options

 Symmetric – sender and receiver need to explicitly name each other

 Asymetric – only sender needs to indicate the receiver

• Allows one logical communication path/link between a pair of
sending and receiving processes

• Process identifiers need to be known at coding time

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

21symmetric process name asymmetric process name

Links

• Identifying/specifying each path in the communication primitives as
connection or link (similar to virtual circuit concept)

 Allows multiple data paths between processes

 Different links, each pointing to an actual communication path can be
used

• Direct communication between peer processes can be provided by
using process names and link numbers

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

22
Two links using two different link numbers

Mailboxes

• Mailboxes are global data structures shared by some sender and
some receiver processes

 Messages are sent to and received from mailboxes

• Allow indirect communication between sender and receiver
processes

• Allow multipoint and multipath communication

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

23
multipoint communication multipath communication

Ports

• Port is an abstraction of a finite-size FIFO queue maintained by the
kernel

 A special example of mailbox

 Messages can be appended to or removed from the queue by send and
receive operations

 Ports are bidirectional and buffered, and support indirect communication

• Created by user processes using system calls

 Referenced by port numbers

 User ports are mapped to transport ports and vice versa

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

24

Message Synchronization

• Message passing communication depends on synchronization at
several points

 Between user process and system kernel

 Between kernel and kernel

 Between source and destination processes

• Send/receive primitives may be blocking or non-blocking

 Blocking primitive means that the calling process needs to be blocked for
the message delivery or receipt

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

25

Buffering
• Common default: a non-blocking send and a blocking receive

 Non-blocking send also referred to as an asynchronous send

• Blocking send may be of different types:
 Ordinary blocking send

 Reliable blocking send

 Explicit blocking send

 Request and reply – called client/server communication

• Blocking receive implies that the process can not continue till the message
is received

• Buffering is crucial in the synchronization:
 The sender puts messages in the buffer while the receiver removes the message

from the buffer

 Sharable buffer spaces smooth out the asynchronous processing of messages

 One big buffer by combining the buffers in the sender kernel, the receiver kernel
and the communication network

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

26

Application Program Interface

• User processes communicate using an API, independent of the
underlying communication platform

 Shared communication channels are (logically) shared objects

 Internal details and implementation managed by the kernel are
transparent to the users

• Used in both Windows and Unix environments

• Pipes and socket APIs

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

27

Pipes

• Pipes are implemented with a finite-size, FIFO-byte stream buffer
maintained by the kernel

 A pipe serves as an unidirectional communication link

 A pipe system call returns two pipe descriptors, one for reading and the
other for writing: fd(0): read-end, fd(1): write end

• Ordinary pipes: used only for related processes (pipe descriptors are
shared by parent process and children)

• Named pipes: FIFO files shared by unrelated (disjoint) processes
across different machines with a common file system - limited to a
single domain

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

28

Communication Between Processes

• Data written by A is held in memory until B reads it

• Queue has a fixed capacity
 Writing to the queue blocks if the queue if full

 Reading from the queue blocks if the queue is empty

• POSIX provides this abstraction in the form of pipes

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

29

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process

A

Process

B

Intermediate

Storage

Pipes

• int pipe(int fileds[2]);

 Allocates two new file descriptors in the process

 Writes to fileds[1] read from fileds[0]

 Implemented as a fixed-size queue

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

30

Single-Process Pipe Example
#include <unistd.h>

int main(int argc, char *argv[]) {

char *msg = "Message in a pipe.\n";

char buf[BUFSIZE] = { '\0' };

int pipe_fd[2];

if (pipe(pipe_fd) == -1) {

fprintf (stderr, "Pipe creation failed.\n"); return EXIT_FAILURE;

}

ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);

printf("Sent: %s [%ld, %ld]\n", msg, strlen(msg)+1, writelen);

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);

printf("Rcvd: %s [%ld]\n", buf, readlen);

close(pipe_fd[1]); close(pipe_fd[0]);

}

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

31

Inter-Process Communication (IPC)
pid_t pid = fork();

if (pid < 0) {

fprintf (stderr, "Fork failed.\n");

return EXIT_FAILURE;

}

if (pid != 0) {

ssize_t writelen = write(pipe_fd[1], msg, msglen);

printf("Parent: %s [%ld, %ld]\n", msg, msglen, writelen);

close(pipe_fd[0]);

close(pipe_fd[1]);

} else {

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);

printf("Child Rcvd: %s [%ld]\n", msg, readlen);

close(pipe_fd[0]);

close(pipe_fd[1]);

}

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

32

Named Pipes

#include <unistd.h>

// create named pipe

if (mkfifo("/tmp/my_fifo", S_IRUSR|S_IWUSR) == -1) {

perror("mkfifo"); return 1;

}

// delete the named pipe

if (unlink("/tmp/my_fifo") == -1) {

perror("unlink"); return 1;

}

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

33

Named Pipes

// write to named pipe

int fd = open("/tmp/my_fifo", O_WRONLY);

if (fd == -1) {

perror("open"); return 1;

}

char *message = "Hello, Named Pipe!";

if (write(fd, message, strlen(message) + 1) == -1) {

perror("write"); return 1;

}

close(fd);

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

34

Named Pipes
// read from a named pipe
int fd = open("/tmp/my_fifo", O_RDONLY);
if (fd == -1) {

perror("open"); return 1;
}

char buffer[100];
ssize_t bytes_read = read(fd, buffer, sizeof(buffer));
if (bytes_read == -1) {

perror("read"); return 1;
}

buffer[bytes_read] = '\0';
printf("Received message: %s\n", buffer);

close(fd);

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

35

Sockets
• Sockets provide two-way communication links shared by processes

across heterogeneous domains

• A socket is an endpoint for a communication link managed by the
transport service

 A pair of processes communicating over a network employs a pair of
sockets – one for each process

 Socket system call returns a socket descriptor (logical communication
endpoint (local to a process), which must be associated with a physical
communication endpoint – bind system call

• A physical communication endpoint is specified
by a network host address and transport port pair

 Each socket is made up of an IP address
concatenated with a port number:

 The socket 146.86.5.20:1625 refers to port 1625
on host 146.86.5.20

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

36

Sockets in Schematic 1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

37

Client

Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()

Connection SocketConnection Socket

read request

Client Protocol
char* host_name = "www.lsu.edu";

char* port = "80";

// Create a socket

struct addrinfo *server = lookup_host(host_name, port);

int sock_fd = socket(server->ai_family, server->ai_socktype,

server->ai_protocol);

// Connect to specified host and port

connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol

run_client(sock_fd);

// Clean up on termination

close(sock_fd);

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

38

Server Protocol
// Create socket to listen for client connections

char *port = "80";

struct addrinfo *server = setup_address(port);

int server_socket = socket(server->ai_family, server->ai_socktype, server->ai_protocol);

// Bind socket to specific port

bind(server_socket, server->ai_addr, server->ai_addrlen);

// Start listening for new client connections

listen(server_socket, MAX_QUEUE);

while (1) { // Accept a new client connection, obtaining a new socket

int conn_socket = accept(server_socket, NULL, NULL);

serve_client(conn_socket);

close(conn_socket);

}

close(server_socket);

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

39

Client: Getting the Server Address
struct addrinfo *lookup_host(char *host_name, char *port) {

struct addrinfo *server;

struct addrinfo hints;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

// hints.ai_flags = AI_PASSIVE;

int rv = getaddrinfo(host_name, port, &hints, &server);

if (rv != 0) {

printf("getaddrinfo failed: %s\n", gai_strerror(rv));

return NULL;

}

return server;

}

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

40

Server Address: Itself
struct addrinfo *setup_address(char *port) {

struct addrinfo *server;

struct addrinfo hints;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE;

getaddrinfo(NULL, port, &hints, &server);

return server;

}

• Accepts any connections on the specified port

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

41

SSL
• Sockets are widely used and need communication security.

• Secure socket layer (SSL) provides – Privacy, Integrity, Authenticity

• Privacy and integrity are maintained by handshake protocol and
cryptography

 Handshake protocol establishes communication session (write) keys and message
authentication check, and validates the authenticity of clients and servers

 The server is verified with a certificate assuring client is talking to correct server

 Asymmetric cryptography used to establish a secure session key (for symmetric encryption
later) for bulk of communication during session

 Communication between each computer then uses symmetric key cryptography

 Record layer protocol handles fragmentation, compression/ decompression,
encryption/decryption of messages records

• Authentication is done by third-party certification authority

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

42

Request/Reply Communication
• Service-oriented request/reply communication is above basic message

passing – next level of communication
 The sender is blocked (or the message is considered not delivered) until it receives

a reply

• RPC – remote procedure call
 Is a language-level abstraction to support request/reply communication mechanism

based on message passing

 Represents a pair of synchronization request (calling a remote procedure) and reply
(waiting for results) communications

 Abstracts procedure calls between processes on networked systems, providing
access transparency to remote operations

• RPC is implemented by stub procedures at both the client end and the
server end
 Client-side stub locates the server and marshals the parameters

 Server-side stub receives this message, unpacks the marshaled parameters, and
performs the procedure on the server

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

43

RPC Flow 1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

1.44

RPC Implementation
• Parameter passing and data conversion – parameter marshaling

 Parameters are passed by call-by-value and call-by-copy/restore

 Data typing, data representation, data transfer syntax problems can be
solved using an universal language or canonical data representation

• Binding between the client and the server – match maker

 Port mapper to provide the port number of the requested server to the
client

 Directory server to locate the server machine if it is unknown

• RPC Compilation - three major components:

 Interface specification file, RPC generator, run-time library

• RPC exception and failure handling

• Secure RPC

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

45

RPC Implementation (Cont’d)

• Data representation handled via External Data Representation (XDL) format
to cope with different architectures

 Big-endian (most significant byte first) and little-endian (least significant byte first)

• Remote communication has more failure scenarios than local

 Messages can be delivered exactly once rather than at most once

• OS typically provides a rendezvous (or matchmaker) service to connect client
and server

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

46

RPC Exception and Failures
Handling
• Exception handling

 Overflow/underflow or protection violation in procedure execution

 In-band or out-band signaling for the exchange of status and control information

• Failure handling

 Not locating the server, link failure, delayed or lost messages

 Idempotent services – a request can be repeatedly executed

 Detecting a duplicate or out-of-sequence request message – the client attaches a
sequence number to each request

 Reliable transport layer (TCP connection)

• Server crash and client crash

 Generally difficult to deal with

 Using a time-out or waiting for the failed server/client to come back

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

47

RPC Implementation

• Interface description language (IDL), here XDR language

program KVSTORE {

version KVSTORE_V1 {

int EXAMPLE(int) = 1;

} = 1;

} = 0x20000001;

• Use this to generate stubs:

rpcgen kv_store.x

• Generates client and server files

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

48

RPC Implementation

/* Generated client RPC stub. */

int *

example_1(int *argp, CLIENT *clnt)

{

static int clnt_res;

memset((char *)&clnt_res, 0, sizeof(clnt_res));

if (clnt_call (clnt, EXAMPLE,

(xdrproc_t) xdr_int, (caddr_t) argp,

(xdrproc_t) xdr_int, (caddr_t) &clnt_res,

TIMEOUT) != RPC_SUCCESS) {

return (NULL);

}

return (&clnt_res);

}

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

49

/* User supplied client RPC stub. */

int example(int input) {

CLIENT *clnt = clnt_connect(HOST);

int ret; int *result;

result = example_1(&input, clnt);

if (result == (int *)NULL) {

clnt_perror(clnt, "call failed");

exit(1);

}

ret = *result;

xdr_free((xdrproc_t)xdr_int, (char *)result);

clnt_destroy(clnt);

return ret;

}

RPC Implementation

/* Example server-side RPC stub. */

int *example_1_svc(int *argp, struct svc_req *rqstp) {

static int result;

result = *argp + 1;

return &result;

}

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

50

Secure RPC
• Security is important for RPC

 RPC opens doors for attacks from unfriendly remote users

 RPC supports all types of client/server computations

• The primary security issues are

 Authentication of client and server processes

 Authenticity and confidentiality of messages

 Access control authorization from client to server

• Authentication protocol for RPC must establish:

 Mutual authentication for messages and communicating processes

 Message integrity, confidentiality, and originality

• Designing secure authentication protocol is complex matter

 Example: Sun’s Secure RPC

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

51

Transaction Communication
• Transactions in communication are a set of asynchronous request/reply

communications generally involving the multicast of the same message to
replicated servers and different requests to partitioned servers

 Similar to fundamental unit of interaction between client and server processes in a
database system

• Transaction is collection of instructions or operations that performs single
logical function

 A series of read and write operations

• Example: Consider two data items A and B, and consider
two transactions T0 and T1

 Execute T0, T1 atomically

 Execution sequence called schedule

 Atomically executed transaction order
called serial schedule

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

52

ACID Properties
• Transaction communications must satisfy the ACID properties:

 Atomicity: all or nothing

 Consistency/serializability: interleaving results in serial execution in
some order

 Isolation: partial results are not visible outside

 Durability: after committing, the results will be made permanent

• Ensuring ACID properties requires that the participating
processors coordinate their execution of a transaction

 Challenging in a distributed system because several sites may be
participating; any site or link failure may result in erroneous
computations

 Each site has its local transaction coordinator and maintains a log for
recovery

 Name the processor which initiates the transaction the coordinator and
name the remaining processors the participants

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

53

Two-Phase Commit Protocol
• The two-phase commit (2PC) protocol is analogous to a real-life unanimous

voting scheme
 One coordinator and multiple participants for a distributed transaction T

 Each of them have access to some stable storage to maintain its activity log

 T is committed only if all participants agree and ready to commit

• Coordinator (initiator site):
 Prepare to commit the transaction T by writing every update in activity log

 Write a precommit record in activity log, and multicast a vote request to all
participants asking whether they are ready to commit

 If all participants vote YES within a time-out period, multicast a commit message.
Otherwise, multicast an abort message

• Participant (other participating sites):
 Upon receiving the vote request, prepare to commit the transaction T by writing

every update in activity log

 Write a precommit into the log and sends a YES reply to the coordinator.
Otherwise, abort T and send a NO reply to the coordinator

 Wait for a commit message from the coordinator. If received, commit T. If abort
message is received, abort T

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

54

2PC Algorithm for Coordinator 1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

55

2PC Algorithm for Participant 1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

56

2PC Protocol - Example 1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

Find the stable
property that

every processor

voted Yes

First phase:

Obtain the votes

from all
participants

Second phase:

Distribute the

agreement to

commit

57

2PC Protocol - Recovery
• When used with an activity log in stable storage, 2PC protocol is

highly resilient to processor failures

 The activity log can be replayed upon the recovery of a failure

 Note that every participant is required to vote, and once a processor votes
it is not allowed to change its vote

• Three types of failure and recovery actions:

 Failures before a precommit

 A processor (coordinator or participant) can simply abort the transition

 Failures after a precommit but before a commit

 Coordinator can abort the transaction or attempt to commit the transaction by
re-multicasting (retake the vote)

 Participant recovery is complicated: needs to check with the coordinator or
other participant about the transaction status

 Failures after a commit

 Coordinator resends the commit message to finish the transaction Participant
simply makes the transaction’s updates permanent

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

58

Group and Multicast
Communication

• Besides point-to-point communication, multipoint group
communication is naturally expected in distributed systems

 Notion of a group is essential for cooperative software

 Managing group of processes or objects needs multicast communication

• Issues/complications of multicast communication implementation

 Reliability: Best effort vs. reliable

 Failures

 Delivery order

 Overlapping groups

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

59

Multicast Issues

• Reliable delivery issue in multicast

 Two multicast application scenarios: Soliciting a service from any server
or requesting a service from all servers in the group

 Best effort multicast – delivery to only reachable servers

 Reliable multicast – ensure the message delivered to all servers

• Failures in the middle of an atomic multicast

 Failures of the recipient processes or the communication links:

 The message originator uses a time-out or acknowledgements, and also decides
to abort the multicast or continue by excluding the failed members from the
group

 Failure of the originator:

 One of recipients chosen as the new originator to decide whether to abort or
complete the partially completed multicast

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

60

Message Delivery Ordering
• Multiple messages multicast to the same group may arrive at different

members (sites) of the group in different orders – need ordered delivery to
the application processes

• Multicast orderings in increasing order of strictness:

 FIFO, causal and total orders

• FIFO order – Multicast messages from a single source are delivered in the
order they were sent

 Assign message sequence numbers

 Communication handler can delay messages or reject duplicates

• Causal order – Causally related messages from multiple sources are
delivered in their causal order

• Total order – All messages multicast to a group are delivered
to all members of the group in the same order

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

61

Delivery in Causal Order
• Causal ordering of messages - two messages are causally related to each

other if one message is generated after the receipt of the other

 This message order needs to be preserved at all sites

• Birman-Schiper-Stephenson Protocol - similar to vector logical clock

 Each message is time-stamped by a sequence vector S where each entry is the
number of messages received by the sender from that group member:
S = (S1, S2, …, Sn)

 Accept a message m from process i with vector T = (T1, T2, ….., Tn) if the member j
has received all previous messages from i (that is, Ti = Si + 1), and the member j
has received all messages also seen by i, (that is, Tk ≤ Sk for all k ≠ i)

 Delay accepting the message m, otherwise: if Ti > Si + 1 (another message from i is
on the fly) or there exists a k ≠ i: Tk > Sk (this message is from the future)

 Reject any message if Ti ≤ Si (duplicate message)

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

62

Two-Phase Total-Order Multicast
• A reliable and total order multicast is called an atomic multicast

• Two-phase total-order multicast protocol
 Combining the atomic and total order broadcasts

 First phase – originator broadcasts messages and collects acks with logical timestamps
from all group member

 Second phase – after all acks received, the originator sends commitment message with the
highest timestamp. Receiver decides if buffer or deliver msg.

• Message originator
 Broadcasts messages, collect acknowledgments (ack) with logical timestamps from all

group members

 Then sends a commitment message with the highest logical ack timestamp (taken as
commitment timestamp)

• Recipient
 Sends ack with the logical clock value as timestamp (local ack stamp)

 Do not deliver a message with commit timestamp t until the commit message for all
messages with local ack stamp < t has been committed – commit messages in the
commitment order

 Deliver messages in the order of the commit timestamp

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

63

Two-Phase Total-Order Multicast
Example

• Two messages m1 and m2 broadcast between two sources (s1, s2) and
two of the group members (g1, g2), with the initial logical clock times
in circles

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

64

Multicast

Message

Ack

Time

Commit

Time

m 0 2 delivered

m 1 6 9

m 2 8 8

m 3 10 pending

Buffer management in the

communication handler of g1
Multicast – solid lines

Acknowledgment – dashed lines

Overlapping Groups

• Multicast to overlapped groups

 A process may belong to more than one group

• Coordination among groups to maintain consistent ordering of messages:

 Impose some agreed upon structures (a spanning tree) for the groups and multicast
messages using the structures

 A multicast message m is first sent to the group leader (root of a tree) and then to all
group members by routing

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

65

Group 1

(A,B,C,D,E)

Group 2

(C,D,F,G)

Overlap set (C,D) appears
as a common subtreeTwo overlapped groups

1
0
/7

/2
0

2
5
,

T
o
p

ic
 3

C
S

C
7
1
0
3
,

F
a
ll

 2
0
2
5
,

C
o
n

cu
rr

e
n

t
P

ro
ce

ss
e
s

a
n

d

P
ro

g
ra

m
m

in
g

66

