
Distributed Process 
Scheduling
Topic 4

Hartmut Kaiser

https://teaching.hkaiser.org/fall2025/csc7103/



Scheduling Basics
• Before execution/running, processes must be scheduled for CPUs and 

allocated with resources

• Objectives of scheduling

 Enhance overall system performance metrics such as process completion 
(turnaround) time and processor (resource) utilization

 Achieve location and performance transparency

• Several challenges:

 Multiple processing nodes are geographically distributed

 Dynamical behaviors of the system – underlying architecture

 Local and global scheduling

 Distributed processes execute on remote nodes and may migrate from node to node:

 Remote execution, process/task migration, data migration

 Non-negligible communication overhead

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

2



Process/CPU Scheduling
• Scheduler selects from among the processes in ready queue, and allocates 

the available processor/CPU to one of them

• Scheduling decision may take place

 When a process switches state (e.g., running to waiting)

 When a new process enters the system

 Whenever a scheduling condition is met

 When a process terminates

• Preemptive vs. non-preemptive

 Scheduling can be non-preemptive (static) – once CPU is allocated to a process, the 
process keeps CPU until its execution finishes

 Scheduling can be preemptive – process is interrupted (suspended) for other 
process to be allocated to CPU

• Dispatch latency – time the dispatcher takes to stop one process and start 
another running

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

3



Representation of Process 
Scheduling

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

4

Useful formulation of scheduling: How is the scheduler 

to decide which of several tasks to take off a queue?



Common Scheduling Algorithms

• Several scheduling algorithms exist for single processor computer 
system:

 First-Come, First Served (FCFS) scheduling

 Shortest-Job-First (SJF) scheduling

 Shortest-Remaining-Time-First (SRTF) scheduling (preemptive)

 Priority scheduling (preemptive/non-preemptive)

 Round Robin (RR) scheduling (preemptive)

 Multilevel Queue scheduling

 Multilevel Feedback Queue scheduling

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

5



First-Come, First-Served Scheduling 
(FCFS)

• Also: “First In First Out” (FIFO)

• Example: Process Burst Time

T1 24
T2 3
T3 3 

• Arrival Order: T1, T2, then T3 (all arrive at time 0)

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

6

T1 T2 T3

24 27 300



First-Come, First-Served Scheduling 
(FCFS)

• Response Times: T1 = 24, T2 = 27, T3 = 30

 Average Response Time = (24+27+30) / 3 = 27

• Waiting times: T1 = 0, T2 = 24, T3 = 27

 Average Wait Time = (0 + 24 + 27) / 3 = 17

• Convoy Effect: Short processes stuck behind long processes

 If T2, T3 arrive any time < 24, they must wait

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

7

T1 T2 T3

24 27 300



Slightly Different Arrival Order?

• T2 < T3 < T1

• Response Time: T1 = 30, T2 = 3, T3 = 6

 Average Response Time = (30 + 3 + 6) / 3 = 13

 Versus 27 with T1 < T2 < T3

• Waiting Time: T1 = 6, T2 = 0, T3 = 3

 Average Waiting Time = (6+0+3) / 3 = 3

 Versus 17 with T1 < T2 < T3

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

8

T1T3T2

63 300



Optimization Criteria
• Speedup – Increasing throughput (the number of completed 

processes per time unit)

• Resource utilization – keeping processors as busy as possible

• Makespan or completion time – decreasing turnaround time 
(waiting + execution + event)

• Response time – reducing the time taken from request submission 
until the first response (important in time-sharing systems)

• Load sharing and balancing – key in distributed and multiprocessor 
systems

Optimize the max or min values or average measure or variance

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

9



Speedup
• The purpose of partitioning processes is for speeding up executions

 Speedup perhaps is the most important performance metric for distributed computing

• Speedup factor (S) is a function of the parallel/distributed algorithm, system 
architecture, and scheduling

• Si = ideal speedup, Sd = degradation due to actual implementation

• n = number of processors used

• RC = relative concurrency: how far from optimal is the usage of the processors

• RP = relative processing: how far from optimal is the speedup with a
parallel algorithm compared to the ideal sequential algorithm

• ρ = Efficiency loss: loss of parallelism when implemented on a real machine 
(ratio of overheads and optimal processing time)

• S reflects the real-world speedup for parallelizing a sequential program

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

10



Speedup
• RC - relative concurrency: how far from optimal is the usage of the 

processors

𝑅𝐶 =
σ𝑖=1
𝑚 𝑃𝑖

𝐶𝑃𝑇𝑖𝑑𝑒𝑎𝑙 × 𝑛
 𝑃𝑖: processing time for step 𝑖

 𝐶𝑃𝑇𝑖𝑑𝑒𝑎𝑙 : optimal concurrent processing time

• RP - relative processing: how far from optimal is the speedup with a
parallel algorithm compared to the ideal sequential algorithm

𝑅𝑃 =
σ𝑖=1
𝑚 𝑃𝑖

𝑆𝑃𝑇𝑖𝑑𝑒𝑎𝑙
 𝑆𝑃𝑇𝑖𝑑𝑒𝑎𝑙 : optimal sequential processing time

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

11



Multiple Processor Scheduling
• Scheduling becomes more complex when multiple CPUs/processors are 

available – load sharing/balancing is important

• Homogeneous (identical) processors within a multiprocessor system:
 Asymmetric multiprocessing

 One single processor (called master server like coordinator) does all scheduling 
including I/O processing

 Other processors execute only user codes

 Symmetric multiprocessing (SMP)

 Each processor is self-scheduling.

 Provide a separate queue for each processor

 Use a common ready queue (naturally self-balancing)

• Distributed systems:
 Processors may not be identical (heterogeneous system)

 Communication overhead (heavy networking) is non-negligible

 Clock and memory are not shared

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

12



Scheduling Evaluation Methods
• Deterministic modeling

 Takes a particular predetermined workload, and evaluate the performance metric 
for the workload

• Queuing models

 Use statistical approaches

 X / Y / c queue with an arrival process X, a service time distribution of Y, and c 
servers (Kendall’s notation)

 e.g., Poisson distribution for arrival time, exponential distribution for service time, etc.

 Isolated workstation, processor pool, migration workstation

• Simulations – program a model of the computer system (a simulator)

• Implementation – code the algorithm, put in the real OS, and see how it 
works

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

13



Isolated Workstation Model

• Maintains a separate queue for each workstation – static 
scheduling

• M/M/1 queue - no sharing of the workload is attempted

 Arrival process distribution M / service time distribution M / one server

 M represents a Markovian distribution

• λ and μ are the arrival and service rates of each processing node 
(i.e., 1/λ: mean arrival time, 1/μ: mean service time)

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

14

Average turnaround

time:

t = 1/( - 
Turnaround time is the sum of service and queuing
times due to waiting of processes



Processor Pool Model

• A process is dispatched to an available processor and remains there 
statically throughout the entirety of its execution

• M/M/2 queue – a waiting job can be serviced by either of two 
processors

 Two servers model a system

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

15

Average turnaround time:

t =  / (   ( - 



Migration Workstation Model

• In migration workstation model, processes are allowed to move from 
one workstation to the other

• Process migration incurs some communication overhead (modeled 
as an additional queue)

  : process migration rate

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

16

Average turnaround time lies

between those of isolated

workstation model and

processor pool model (that is,

better than M/M/1 but worse 

than M/M/2)



Distributed 
Scheduling

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

17



Process Interaction Models

• Distributed scheduling algorithms represent sets of multiple processes 
governed by rules that regulate the interactions among processes

 Partitioning of processes and how to map processes to processors

• Graph models describing process communication:

 Precedence process model – satisfy precedence relationships

 Communication process model – processes coexist and communicate 
asynchronously

 Disjoint process model – process can run independently

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

18Precedence process model Communication process model Disjoint process model



Distributed Scheduling Algorithms

• Static (or off-line) scheduling

• Dynamic (or on-line) scheduling

 Load sharing – static workload distribution

 Load balancing – dynamic workload distribution

• Real-time scheduling

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

19



Static Scheduling

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

20



Static Process Scheduling

• Static process scheduling (deterministic scheduling theory) deals 
with a set of partially ordered tasks on a non-preemptive 
multiprocessor system

 System consisting of identical processors

 Goal of minimizing the overall finishing time – makespan

• The general problem is NP-complete

 Scheduling to optimize makespan is NP-complete

 Only approximate or heuristic methods to obtain near optimal solution

• In distributed systems, the problem becomes even more complicated 
because communication is not only non-negligible but is also a 
characteristic of the system. Moreover, processors are not identical

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

21



Static Process Scheduling (Cont.)
• Find good but easy-to-implement heuristic approaches for scheduling 

processes in distributed systems
 Balance and overlap computation and communication

• In static scheduling, the mapping of processes is determined before the 
execution of the processes
 Once a process is started, it stays at the processor until completion (static)

 Need good knowledge about process behavior: process execution time, precedence 
relationships and communication patterns between processes

 Scheduling decision is centralized and non-adaptive

 Impacted by communication: Communication process model versus communication 
system model

• Static distributed process scheduling algorithms:
 Stone's algorithm

 Two heterogeneous processors, arbitrary communication process graph

 n-processor generalization

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

22



Using Precedence Process Model

• Static multiprocessor scheduling based on precedence process model

 Minimizing overall makespan (overall finishing time)

• Using the DAG of the program, a heuristic algorithm tries to find a 
good mapping of the process model to the system model

 Example: 7 tasks (A through G) with execution times and message units 
shown to be mapped on 3 processors (P1, P2 and P3) with non-negligible 
inter-processor communication costs/delays shown

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

23



List Scheduling –
Ignore Communication Overhead

• List Scheduling (LS): No processor remains idle if there are some 
tasks available that it could process

• Critical path – the longest execution path in the DAG, which is a 
lower bound of makespan

 Critical path for the example is ADG or AEG of length = 6 + 6 + 4 = 16

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

24
Makespan = 16

Optimal result though the algorithm

is heuristic



Extended List Scheduling – With 
Communication Overhead

• Extended List Scheduling (ELS): First allocate tasks to processor by 
applying LS and then add the necessary communication delays

• Communication delays are computed by multiplying the unit 
communication cost and message units

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

25

Cross lines represent 

waiting for communication

ELS makespan = 28 units

Far from optimal

Comm. Cost = 6

LS makespan = 16 units



Earliest Task First Scheduling -
Delaying Decision

• Earliest Task First (ETF) – the earliest schedulable task is 
(delayed) scheduled first

 Communication costs are included in the calculation

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

26

ELS makespan = 28 units

Delay scheduling task F because task E 

will become schedulable first

ETF makespan = 18 units

Comm. Cost = 5



Using Communication Process 
Model

• The primary objective of distributed 
process scheduling is to achieve maximal 
concurrency for task execution within a 
program

 Maximize resource utilization and minimize 
inter-process communication

• If there are no precedence constraints 
except the need for communication among 
processes, the applications can be better 
modeled by the communication process 
model

 Using undirected graph:

G = (V, E)

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

1.27

Communication process model

Six processes with communication links

and costs shown



Stone’s Algorithm - Assumptions
• Process execution and communication are considered in similar ways so cost

(objective function) includes both contributions:

• The system consists of heterogeneous (not-identical) processors

 Execution depends on the processor to which a process is assigned

 Execution cost 𝑒𝑗(𝑝𝑖) for each process is known for all participating processors

• Communication cost between each pair of processes 𝑐𝑖,𝑗(𝑝𝑖 , 𝑝𝑗) is known

 Inter-process communication incurs negligible (zero) cost if both the processes are in the 
same processor

• Module allocation problem first formulated by Stone – finding an optimal 
assignment of m process modules to P processors with respect to the cost
function

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

28



Stone’s Algorithm for Two Processors
• Stone’s algorithm minimizes the total execution and communication 

cost(G, P) by properly allocating the P processors among m processes

• For P = 2, Stone suggested an efficient polynomial-time solution:

 G = (V,E) : communication process model

 A and B : two heterogeneous processors

 wA(u) and wB(u) : cost of executing process u on A and B, respectively

 c(u, v) : communication cost between processes u and v if they are allocated 
different processors

 S : set of processes to be executed on processor A

 V-S : set of process to be executed on processor B

• Stone's algorithm computes S such that the cost function is minimized

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

29



Communication Process Model 
Example

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

Computation cost communication cost

A program consisting of six processes (1 through 6) to be allocated on two (non- identical)

processors A and B for minimizing the total computation and communication cost

30



Partitioning Communication Graph

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

Partition the graph by drawing a line that cuts

through some edges. This results in two disjoint graphs, one for each processor

The set of edges removed by the cut is called a cut set. Its cost is the sum of weights of the edges, which represents

the total interprocess communication cost between A and B

If processes are allocated to processor A and the rest to the processor B:

cost = (5+2) + (4+3+2+4) + (12+4+8+12+3) = 7 + 13 + 39 = 59

Compute cost on A Compute cost on B Comm. cost between A and B 31



Commodity Flow Problem
• Stone’s algorithm reduces the scheduling problem to the commodity-flow 

problem described below:

• Let G = (V, E) be a graph with two special nodes s (source) and d
(destination/sink). Each edge has a maximum capacity to carry some 
commodity. What is the maximum amount of the commodity that can be 
carried from the source to the sink?

• Let S be a subset of V such that the source is in S and the sink is in D (=V-
S). A set of edges (say C) with one end in S and the other end in D is called 
a cut set and the sum of the capacities of the edges in C is called the weight 
of the cut set
 Cut is a node partition (S, D) such that s is in S and d is in D

 Cut set separates the source and destination in the graph

• Given a commodity graph, the optimization problem is to find the 
maximum flow from source to destination. It can be shown that the 
maximum-flow is equal to the minimum possible cut-weight
 This is called max-flow, min-cut theorem

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

32



Minimum-cost Cut
• Given communication process graph G = (V, E), construct a new graph 

G'= (V',E') by adding two new nodes s (source, corresponding to processor A) 
and d (destination, corresponding to processor B). For every node u in G, 
add the edges (s, u) and (d, u) in G'. The weights (capacities) of the new 
edges will be wB(u) and wA(u), respectively

 wA(u): execution/computation cost of process u on processor B

 wB(u): execution/computation cost of process u on processor A

• A cut in G' (through the dashed-lines edges) gives a processor allocation for 
the job/task

• Only consider cuts that separate the processor nodes (A, B). The weight of 
the cut set is the sum of computation and communication costs

 Therefore, if we compute the max-flow on G', the corresponding min-cut gives the 
best processor allocation

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

33



Commodity Flow Problem

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

34



Problem Generalization

• To generalize the problem beyond two processors, use a repetitive 
approach using the two-processor algorithm to solve n-processor 
problem

• Finding a module allocation of m processes to n processors:

 The max-flow min-cut algorithm can be applied to a processor pi and an 
imaginary super processor P that consists of the remaining processors

 After some processes have been scheduled to pi the same procedure is 
repeated iteratively on the super processor until all processes are 
assigned

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

35



Clustering Processes

• The module allocation problem is complex, requiring heuristic 
solutions:

 Heuristic solutions make sense since we generally have approximate 
information about computation and communication costs

 Optimal static scheduling has high complexity

• One heuristic approach is to separate the optimization of 
computation and communication in two independent phases

 If communication cost is relatively high, merge processes with higher 
inter-process interaction into clusters of processes

 The number of processes in a cluster can be constrained using a threshold 
on communication cost (C) and a threshold on total execution cost (X)

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

36



Clustering Example

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

■ With estimated average communication cost C = 9

as threshold, we find three clusters: (2,4), (1,6), (3,5) – 12, 11, and 12 are larger than 9

■ Must assign (2,4) to A whereas (1,6) to B. Cluster (3,5) can be mapped to either A or B.

● If assigned to A, total cost = computation cost of 17 on A + computation cost of 14 on B + 

communication cost of 10 between A and B (overall 41)

● If cluster (3,5) assigned to B, communication cost becomes too high (6+8+3+5 = 22) 37



Dynamic Scheduling

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

38



Dynamic Scheduling
• Prior knowledge of processes (about their execution times 

and communication behaviors) is not realistic for most 
distributed applications

• Need an ad hoc scheduling strategy that is adaptive 
(dynamic) and allows its assignment decision to be made 
locally (decentralized)
 Static scheduling is non-adaptive and tends to be centralized

• Using disjoint process model:
 Ignoring the effect of the interdependency among processes as we 

do not know how these processes interact with each other

• Objectives/goals:
 Maximize the utilization of the system – considering throughput 

and completion time

 Provide fairness to the user processes – giving priority to a user’s 
process if the user has a lesser share of the resources

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

39



Load Sharing and Balancing
• Performance can be enhanced if processes are free to be redistributed or 

moved around among the processors/nodes/sites in the system

• Distribute workloads among all available processors to avoid having idle 
processors as much as possible – load sharing

 An arriving (new) process can be assigned to the processor that has the shortest 
waiting queue to reduce processor idling

• Distribute workloads among all nodes as evenly as possible to keep the 
workload balanced among all nodes of the system – load balancing

 Needs to move processes from heavily loaded nodes to idle or lightly loaded nodes 
dynamically

 Improves performance and achieves a sort of fairness in terms of equal workload 
for each process

 Reduces the overall averaging turnaround time of processes

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

40



Processor Affinity
• A process has an affinity for the processor on which it is currently running 

– processor affinity

• Processor affinity makes more sense in SMP (symmetric multiprocessing) 
systems because of cache memory (locality)

 If a running process migrates to another processor, the contents of the cache 
memory must be invalidated for the first processor, and the cache for second 
processor must be repopulated

 To avoid high overhead, SMP systems try to keep a process running on the same 
processor as much as possible

• The process migration overhead is much worse in a distributed system

 Complete state information of migrating process must be passed to a remote site 
for its execution there

• Processor affinity counteracts the benefits of load balancing

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

41



Centralized Approach
• Designate a controller process that maintains the information about the 

queue size of each processor

 Processes arrive and depart from the system asynchronously

 Controller is responsible for transferring a process from one site to other site: 
Migrating process from a longer queue to a shorter queue dynamically

• An arriving process makes a request to the coordinator for the assignment 
to a processor.

• The controller schedules the process to the processor that has the shortest 
waiting queue

• To update the queue size information, each processor must inform the 
controller whenever a process completes its execution – overhead

• To remove the centralized controller, the process transfer must be initiated 
by either a sender or receiver or both

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

42



Sender-initiated Algorithms
• A sender-initiated algorithm is activated by a sender process that 

wishes to off-load some of its computation (push model)

 Facilitates migration of process from a heavily loaded sender to a lightly 
loaded receiver

• This process transfer procedure require three basic decisions

 Transfer policy: When does a node become the sender?

 When node’s queue length (SQ) becomes longer than a certain threshold (ST)

 Selection policy: How does the sender choose a process for transfer?

 A newly arrived process is a good candidate

 Location policy: Which node should be the target receiver?

 Randomly select a receiver node

 Probing receiver: poll a certain number of nodes (probe limit PL) to find an idle 
node or a node with the smallest queue length

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

43



Flow Chart of Sender-initiated 
Algorithm

• SQ, ST and PL are the sender’s queue length, threshold, and probe 
limit, respectively

• RQ is the queue length of a polled receiver

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

44



Sender-initiated Algorithm (Cont.)
• Sender-initiate load sharing algorithm is push model or push

migration, where processes are pushed from one node to the others

 Pushing (or moving) processes from the overloaded to idle or less-busy 
nodes

• A sender-initiated algorithm incurs additional communication 
overhead because of probing of receivers and migration of processes

• In an already heavily loaded system, if many (or all) nodes initiate 
the algorithm simultaneously, a ping-pong effect among senders 
trying to off- load processes fruitlessly can occur

 The algorithm becomes unstable at heavy system load due to high 
communication overhead

• The algorithm perform very well in a lightly loaded system since it 
is easy to find a receiver

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

45



Receiver-initiated Algorithms
• A receiver-initiated algorithm is activated by a receiver process to pull a 

process from others to its site for execution – pull model or pull migration

 Pulling waiting process from a busy processor/node

• Three similar basic decisions include

 Transfer policy – activate pull operation when the queue length (RQ) falls below a 
certain threshold (RT)

 Selection policy – require preemption since the processes at the sender site might 
have already been running

 Location policy – a probing strategy to identify a heavily loaded sender

• Receiver-initiated algorithms are more stable than the sender-initiated 
ones

 More effective at higher system load because a sender can be found easily and 
migration communication overhead is low. At very high load, the algorithm 
becomes less active (so no unstable problem)

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

46



Sender/Receiver-initiated Approach

• It makes sense to combine two algorithms into one so that a node 
can dynamically play the role of either a sender or a receiver

 Node can activate the sender-initiated algorithms when its queue size 
exceeds the threshold ST and can enable the receiver-initiated algorithms 
when its queue size falls below the threshold RT

• The decision of which algorithm to use can be based on the 
estimated system load information – an adaptive approach

• Senders rendezvous with receivers

 A registration service can be used to match a sender with a receiver --

 Can even serve as a trader for best matching based on some price (e.g., 
computational cost)

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

47



Distributed Process 
Implementation

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

48



Distributed Process Implementation

• Load sharing and balancing in distributed system require the 
activation of process execution at a remote site

• Creating a remote process using the client/server model

 Front-end stub processes facilitate the creation and communication 
between processes on different machines

 Stub processes serve as a logical link between local and remote processes

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

49



Different Remote Applications

• Based on how request messages are interpreted, different 
application scenarios can arise:

 Remote service: The message is interpreted as a request for a known 
service at the remote site

 Remote execution: The messages contain a program to be executed at the 
remote site

 Process migration: The messages represent a process being migrated to 
the remote site for continuing execution

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

50



Remote Service
• The request message is interpreted as a request for a known service 

at the remote site

• Primary application is resource sharing in distributed systems

 Sharing of file systems, peripherals, and processing capabilities

 Remote service views the computation environment as accessing remote 
resources

 Whereas remote execution and process migration views it as remote host

• Request message can be generated at three different software 
levels:

 As remote procedure calls at the language level

 As remote commands at the operating system level

 As interpretive messages at the application level

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

51



Remote Execution
• Remote execution (or dynamic task placement) is used for off-loading 

computation (load sharing):

 The message sent from a client to a server is a client program to be executed at the 
server

 In essence, it is the spawning of a process at a remote host

• Remote execution is difficult to implement:

 Load sharing algorithm – process (or) servers are responsible for maintaining load 
distribution, negotiating remote host, invoking remote operation, and creating stub 
processes for linking clients and servers

 Location independence – each remote process is represented by an agent process at 
the originating host. Parent/child relationship is preserved

 System heterogeneity – need to recompile the program or use Java program 
execution or XDR data transfer

 Protection and security – a double-edge sword. A foreign code image can be a 
Trojan horse

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

52



Process Migration
• Extend load-sharing model further to allow a remote execution to be 

preempted and moved to another remote host

 In effect, a process can migrate from host to host dynamically

• A process migration facility needs to locate and negotiate a remote host, 
transfer the code image, and initialize the remote execution

• Since the target process is preempted, its state information

 Computation state – information necessary to save and restore process at remote 
site, similar to conventional context switching

 Communication state – status of process communication links and the messages in 
transit, difficult to handle

• Two key components of process migration procedure:

 Link redirection and message forwarding

 State and context transfer

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

53



Handling Process Migration

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

54



Process Frozen Time
• Freeze (suspend) migrating process after remote host identified

• Transfer the state and context (code image) of the process to remote host

• Perform link redirection at different stages of migration
 Explicit update requests for link tables of all communicating processes

 The time of link update affects how process’s received messages are forwarded

• Early messages are buffered by source kernel and are transferred together with the 
context or forwarded later

• Late messages (received after link update) are handled by destination kernel

• Freeze time is process migration overhead
 Context transfer, link redirection, and message forwarding can proceed concurrently – some 

overlapping can reduce the overhead

 To start remote execution requires the transfer of the process’s computation state information 
and some initial codes (i.e., some blocks/pages needed)

 Link redirection and message forwarding can wait until remote execution begins

1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

55



1
0
/1

4
/2

0
2

5
, 

T
o
p

ic
 4

C
S

C
7
1
0
3
, 

F
a
ll

 2
0
2
5
, 

D
is

tr
ib

u
te

d
 P

ro
ce

ss
 

S
ch

e
d

u
li

n
g

56


