Distributed Process
Scheduling

Topic 4
Hartmut Kaiser
https://teaching.hkaiser.org/fall2025/csc7103/

Scheduling Basics

- Before execution/running, processes must be scheduled for CPUs and
allocated with resources

+ Objectives of scheduling

- Enhance overall system performance metrics such as process completion
(turnaround) time and processor (resource) utilization

+ Achieve location and performance transparency

- Several challenges:
+ Multiple processing nodes are geographically distributed
+ Dynamical behaviors of the system — underlying architecture
+ Local and global scheduling
- Distributed processes execute on remote nodes and may migrate from node to node:
+ Remote execution, process/task migration, data migration

+ Non-negligible communication overhead

Process/CPU Scheduling

« Scheduler selects from among the processes in ready queue, and allocates
the available processor/CPU to one of them

+ Scheduling decision may take place
+ When a process switches state (e.g., running to waiting)
+ When a new process enters the system
+ Whenever a scheduling condition is met
+ When a process terminates

- Preemptive vs. non-preemptive

+ Scheduling can be non-preemptive (static) — once CPU is allocated to a process, the
process keeps CPU until its execution finishes

+ Scheduling can be preemptive — process is interrupted (suspended) for other
process to be allocated to CPU

- Dispatch latency — time the dispatcher takes to stop one process and start
another running

Representation of Process
Scheduling

ready queue @

/O queue H I/O request |'—
time slice
expired
a

2025, Distributed Process

m fork
w child
m walt for an
oo S I

Useful formulation of scheduling: How is the scheduler
to decide which of several tasks to take off a queue?

Common Scheduling Algorithms

. Several scheduling algorithms exist for single processor computer
system:
« First-Come, First Served (FCFS) scheduling
« Shortest-Job-First (SJF) scheduling
+ Shortest-Remaining-Time-First (SRTF) scheduling (preemptive)
« Priority scheduling (preemptive/non-preemptive)
* Round Robin (RR) scheduling (preemptive)
+ Multilevel Queue scheduling
+ Multilevel Feedback Queue scheduling

]

]

First-Come, First-Served Scheduling
(FCFS)

. Also: “First In First Out” (FIFO)

- Example: Process Burst Time
T1 24
T2 3
T3 3

- Arrival Order: T1, T2, then T3 (all arrive at time 0)

0 24 27

[GV]
e

First-Come, First-Served Scheduling
(FCFS)

T, Tyl Ty

(@)
(en)

0 24 27
- Response Times: T1 =24, T2 =27, T3 =30
« Average Response Time = (24+27+30) / 3 = 27

- Waiting times: T1 =0, T2 = 24, T3 =27
- Average Wait Time = (0 + 24 + 27) / 3 =17

]
]

« Convoy Effect: Short processes stuck behind long processes
« If T2, T3 arrive any time < 24, they must wait

Slightly Different Arrival Order?

T, | Ts T,

- T2<T3<T1

- Response Time: T1 =30, T2=3,T3 =6
+ Average Response Time = (30 + 3 +6) /3 =13
+ Versus 27 with T1 < T2 < T3

- Waiting Time: T1=6,T2=0,T3=3
+ Average Waiting Time = (6+0+3) / 3 =3
» Versus 17 with T1 < T2 < T3

Optimization Criteria

- Speedup — Increasing throughput (the number of completed
processes per time unit

« Resource utilization — keeping processors as busy as possible

- Makespan or completion time — decreasing turnaround time
(waiting + execution + event)

- Response time — reducing the time taken from request submission
until the first response (important in time-sharing systems)

« Load sharing and balancing — key in distributed and multiprocessor
systems

Optimize the max or min values or average measure or variance

Speedup

+ The purpose of partitioning processes is for speeding up executions
+ Speedup perhaps is the most important performance metric for distributed computing

- Speedup factor (S) is a function of the parallel/distributed algorithm, system
architecture, and scheduling

S=5,xS§, =(%xn)(ﬁ)

- 8;=1ideal speedup, Sq = degradation due to actual implementation
- n = number of processors used

]

- RC = relative concurrency: how far from optimal is the usage of the processors

- RP = relative processing: how far from optimal is the speedup with a
parallel algorithm compared to the ideal sequential algorithm

- p = Efficiency loss: loss of parallelism when implemented on a real machine
(ratio of overheads and optimal processing time =
- S reflects the real-world speedup for parallelizing a sequential program -

Speedup

« RC - relative concurrency: how far from optimal is the usage of the
processors
m_p.
RC — =171
CPTideal Xn
+ P;: processing time for step i

* CPTigeq:: optimal concurrent processing time

« RP - relative processing: how far from optimal is the speedup with a
parallel algorithm compared to the ideal sequential algorithm
i=1Pi
SPTigear
* SPT;qeq; Optimal sequential processing time

RP =

Application

i L3

]

]

Multiple Processor Scheduling

+ Scheduling becomes more complex when multiple CPUs/processors are
available — load sharing/balancing is important

- Homogeneous (identical) processors within a multiprocessor system:
+ Asymmetric multiprocessing

+ One single /I(J)rocessor (called master server like coordinator) does all scheduling
including I/0 processing

+ Other processors execute only user codes
- Symmetric multiprocessing (SMP)
« Each processor is self-scheduling.
« Provide a separate queue for each processor
- Use a common ready queue (naturally self-balancing)

Distributed systems:
+ Processors may not be identical (heterogeneous system)
+ Communication overhead (heavy networking) is non-negligible
+ Clock and memory are not shared

Scheduling Evaluation Methods

+ Deterministic modeling

- Takes a particular predetermined workload, and evaluate the performance metric
for the workload

+ Queuing models
- Use statistical approaches

+ X /Y /c queue with an arrival process X, a service time distribution of Y, and ¢
servers (Kendall’s notation)

-+ e.g., Poisson distribution for arrival time, exponential distribution for service time, etc.

- Isolated workstation, processor pool, migration workstation
- Simulations — program a model of the computer system (a simulator)

- Implementation — code the algorithm, put in the real OS, and see how it
works

Application

Isolated Workstation Model

- Maintains a separate queue for each workstation — static
scheduling

« M/M/1 queue - no sharing of the workload is attempted
+ Arrival process distribution M / service time distribution M / one server

+ M represents a Markovian distribution

n—> _T—>(s >
Average turnaround

time:

E : : Turnaround time is the sum of service and queuing

times due to waiting of processes

- XA and p are the arrival and service rates of each processing node
(i.e., 1/A: mean arrival time, 1/p: mean service time)

Processor Pool Model

- A process is dispatched to an available processor and remains there
statically throughout the entirety of its execution

« M/M/2 queue — a waiting job can be serviced by either of two
processors
+ Two servers model a system

2N 5 Average turnaround time:
t=p/(n+n) (-2

2025, Distributed Process

1

Topic

N
Q

Migration Workstation Model

« In migration workstation model, processes are allowed to move from
one workstation to the other

- Process migration incurs some communication overhead (modeled
as an additional queue)
* ¥ process migration rate

N — @—) Average turnaround time lies

between those of isolated

workstation model and

(—@(—l | | | processor pool model (that is,
better than M/M/1 but worse
than M/M/2)

A—3

Distributed
Scheduling

Process Interaction Models

« Distributed scheduling algorithms represent sets of multiple processes
governed by rules that regulate the interactions among processes

+ Partitioning of processes and how to map processes to processors

« Graph models describing process communication:
+ Precedence process model — satisfy precedence relationships

+ Communication process model — processes coexist and communicate
asynchronously

+ Disjoint process model — process can run independently

Precedence process model Communication process model Disjoint process model

N,
-\, \~
~
~,
~ A
\ >
(N —— -
“ -~
X ’
,I Application
’
— ‘\, > i L3

]

Distributed Scheduling Algorithms

- Static (or off-line) scheduling

- Dynamic (or on-line) scheduling
+ Load sharing — static workload distribution

+ Load balancing — dynamic workload distribution

- Real-time scheduling

Static Scheduling

Static Process Scheduling

- Static process scheduling (deterministic scheduling theory) deals
with a set of partially ordered tasks on a non-preemptive
multiprocessor system

+ System consisting of identical processors

+ Goal of minimizing the overall finishing time — makespan

« The general problem is NP-complete
+ Scheduling to optimize makespan is NP-complete
+ Only approximate or heuristic methods to obtain near optimal solution

« In distributed systems, the problem becomes even more complicated
because communication is not only non-negligible but is also a
characteristic of the system. Moreover, processors are not identical

Static Process Scheduling (Cont.)

+ Find good but easy-to-implement heuristic approaches for scheduling
processes in distributed systems

- Balance and overlap computation and communication

- In static scheduling, the mapping of processes is determined before the
execution of the processes

+ Once a process is started, it stays at the processor until completion (static)

+ Need good knowledge about process behavior: process execution time, precedence
relationships and communication patterns between processes

+ Scheduling decision is centralized and non-adaptive

+ Impacted by communication: Communication process model versus communication
system model

. Static distributed process scheduling algorithms:
+ Stone's algorithm
+ Two heterogeneous processors, arbitrary communication process graph
+ n-processor generalization

Application

Using Precedence Process Model

« Static multiprocessor scheduling based on precedence process model
+ Minimizing overall makespan (overall finishing time)

- Using the DAG of the program, a heuristic algorithm tries to find a
good mapping of the process model to the system model
« Example: 7 tasks (A through G) with execution times and message units

shown to be mapped on 3 processors (P1, P2 and P3) with non-negligible
inter-processor communication costs/delays shown

Communication cost

Precedence Communication

Message units
9 process model system model

List Scheduling —
Ignore Communication Overhead

- List Scheduling (LS): No processor remains idle if there are some
tasks available that it could process

« Critical path — the longest execution path in the DAG, which is a
lower bound of makespan
+ Critical path for the example is ADG or AEG of length=6+6 +4 =16

@ @ @ A/6 | D/6 | G/4

P1

pa | B/5| Fra| 7

@ @ e C/4|2| E/GI 4

P3

Makespan = 16
@ Optimal result though the algorithm
is heuristic

]
]

1

Topic

Extended List Scheduling — With
Communication Overhead

N
Q

- Extended List Scheduling (ELS): First allocate tasks to processor by
applying LS and then add the necessary communication delays

« Communication delays are computed by multiplying the unit

communication cost and message units

p1 A/6 | D/GI G/a

p2 | B/5| F/a| 7

c14|z| E/6| 4

P3 LS makespan = 16 units
P1 A/6 | 2 | D/6 | 10 | G/4| Cross lines represent
waiting for communication
p2 | B/5 a| 17)
I/ ELS makespan = 28 units
P3 c/4 |/ 10\ E/6 8 Far from optimal

o 4 @ 20 28 Comm. Cost=6

Earliest Task First Scheduling -
Delaying Decision
- Earliest Task First (ETF) — the earliest schedulable task is

(delayed) scheduled first

+ Communication costs are included in the calculation

p1 A/6 | z| D/6 | 10 | G/4
p2 | B/5 |)F‘(4| 17 /‘
P3 C/4|/ 10\ E/6 I/ 8 ELS makespan = 28 units

P1 A/6 I E/6 I 6 Delay scheduling task F because task E
b2 B/5 Im D/6 \m G/4 will become schedulable first

ETF makespan = 18 units
pz | /4) A F/4| & Comm. Cost =5

L] 4 8 12 18

Using Communication Process
Model

« The primary objective of distributed
process scheduling is to achieve maximal
concurrency for task execution within a
program

+ Maximize resource utilization and minimize
inter-process communication

- If there are no precedence constraints
except the need for communication among
processes, the applications can be better
modeled by the communication process
model

+ Using undirected graph:
G=(V,E)

Communication process model
Six pr with ication links

and costs shown

Stone’s Algorithm - Assumptions

- Process execution and communication are considered in similar ways so cost
(objective function) includes both contributions:

cost(G,P) = E e;(p)+ E ¢.;(pp))
JEV(G) (i.))EE(G)
- The system consists of heterogeneous (not-identical) processors
- Execution depends on the processor to which a process is assigned
+ Execution cost e;(p;) for each process is known for all participating processors

+ Communication cost between each pair of processes c; ;(p;, p;) is known

- Inter-process communication incurs negligible (zero) cost if both the processes are in the
same processor

« Module allocation problem first formulated by Stone — finding an optimal
assignment of m process modules to P processors with respect to the cost
function

Application

Stone’s Algorithm for Two Processors

- Stone’s algorithm minimizes the total execution and communication
cost(G, P) by properly allocating the P processors among m processes

« For P = 2, Stone suggested an efficient polynomial-time solution:
+ G = (V,E) : communication process model
« Aand B: two heterogeneous processors
+ w,(w and wy(w) : cost of executing process zon A and B, respectively

. c(u, v) : communication cost between processes u and vif they are allocated
different processors

+ St set of processes to be executed on processor A
+ V-S : set of process to be executed on processor B

« Stone's algorithm computes S such that the cost function is minimized

cost=EwA(u)+ 2 wy(v)+ E c(u,v)

ues ve(V-5) ues ve(V-S)

Communication Process Model
Example

Cost Cost
on A on B
10

1 5
2 2 ©
3 4 4
4 6 3
5 5 2
6 o0 4
Computation cost communication cost

A program consisting of six processes (1 through 6) to be allocated on two (non- identical)
processors A and B for minimizing the total computation and communication cost

Partitioning Communication Graph

15 10
2 2 =

s 4 4
4 & 3 3
s 5 2 £
6 o 4 p

]

Partition the graph by drawing a line that cuts
through some edges. This results in two disjoint graphs, one for each processor

The set of edges removed by the cut is called a cut set. Its cost is the sum of weights of the edges, which represents
the total interprocess communication cost between A and B

, Fall

If processes are allocated to processor A and the rest to the processor B Application

cost= (5+2) + (4+3+2+4) + (12+4+8+12+3) =7+13+39=59

Compute cost on A Compute cost on B Comm. cost between A and B

Commodity Flow Problem

« Stone’s algorithm reduces the scheduling problem to the commodity-flow
problem described below:

Let G=(V, E) be a Era h with two special nodes s (source) and d
(destination/sink). acﬁ edge has a maximum capacity to carry some
commodity. What is the maximum amount of the commodity that can be
carried from the source to the sink?

- Let S be a subset of V such that the source is in S and the sink is in D (=V-
S). A set of edges (say C) with one end in S and the other end in D is called
a cut set and the sum of the capacities of the edges in C is called the weight
of the cut set

+ Cut is a node partition (S, D) such that s isin S and d is in D

+ Cut set separates the source and destination in the graph

- Given a commodity graph, the optimization problem is to find the
maximum flow from source to destination. It can be shown that the
maximum-flow is equal to the minimum possible cut-weight

+ This is called max-flow, min-cut theorem)
Tt

]

Minimum-cost Cut

- Given communication process graph G = (V, E), construct a new graph
G'= (V,E") by adding two new nodes s (source, corresponding to processor A)
and d (destination, corresponding to processor B). For every node u in G,
add the edges (s, v and (d u)in G'. The weights (capacities) of the new
edges will be wg(u) and w,(w), respectively
- w,(w): execution/computation cost of process u on processor B

+ wg(w): execution/computation cost of process u on processor A

- A cut in G' (through the dashed-lines edges) gives a processor allocation for
the job/task

]

- Only consider cuts that separate the processor nodes (A, B). The weight of
the cut set is the sum of computation and communication costs

- Therefore, if we compute the max-flow on G', the corresponding min-cut gives the
best processor allocation

Application

i b3

Commodity Flow Problem

Cost Cost
on A on B

o O A WO N =
a o & N O

Problem Generalization

+ To generalize the problem beyond two processors, use a repetitive
approach using the two-processor algorithm to solve n-processor
problem

- Finding a module allocation of m processes to n processors:
+ The max-flow min-cut algorithm can be applied to a processor p; and an
imaginary super processor P that consists of the remaining processors

+ After some processes have been scheduled to p; the same procedure is
repeated iteratively on the super processor until all processes are
assigned

]
N

Application

i L3

Clustering Processes

- The module allocation problem is complex, requiring heuristic
solutions:

+ Heuristic solutions make sense since we generally have approximate
information about computation and communication costs

+ Optimal static scheduling has high complexity

« One heuristic approach is to separate the optimization of
computation and communication in two independent phases

+ If communication cost is relatively high, merge processes with higher
inter-process interaction into clusters of processes

]

+ The number of processes in a cluster can be constrained using a threshold
on communication cost (C) and a threshold on total execution cost (X)

Application

i b3

Clustering Example

Process Cost on | Cost
A on B
1 5 10
2 2 o
3 a a4
4 6 3 :
[
5 5 2 é
6 o a E

= With estimated average communication cost C = 9

as threshold, we find three clusters: (2,4), (1,6), (3,5) — 12, 11, and 12 are larger than 9

= Must assign (2,4) to A whereas (1,6) to B. Cluster (3,5) can be mapped to either A or B.

« If assignedto A, total cost = computation cost of 17 on A + computation cost of 14 on B +
communication cost of 10 between A and B (overall 41)

« If cluster (3,5) assigned to B, communication cost becomes too high (6+8+3+5 = 22)

Dynamic Scheduling

Dynamic Scheduling

Prior knowledge of processes Sabout their execution times
and communication behaviors) is not realistic for most
distributed applications

Need an ad hoc scheduling strategy that is adaptive
(dynamic) and allows its assignment decision to be made
locally (decentralized)

+ Static scheduling is non-adaptive and tends to be centralized

Using disjoint process model:

- Ignoring the effect of the interdependency among processes as we
o not know how these processes interact with each other

Objectives/goals:

+ Maximize the utilization of the system — considering throughput
and completion time

- Provide fairness to the user processes — %Ving priority to a user’s
process if the user has a lesser share of the resources

Application

Load Sharing and Balancing

- Performance can be enhanced if processes are free to be redistributed or
moved around among the processors/nodes/sites in the system

- Distribute workloads among all available processors to avoid having idle
processors as much as possible — load sharing

+ An arriving (new) process can be assigned to the processor that has the shortest
waiting queue to reduce processor idling

- Distribute workloads among all nodes as evenly as possible to keep the
workload balanced among all nodes of the system — load balancing
+ Needs to move processes from heavily loaded nodes to idle or lightly loaded nodes
dynamically

- Improves performance and achieves a sort of fairness in terms of equal workload
for each process

]

- Reduces the overall averaging turnaround time of processes

Application

i L3

Processor Affinity

+ A process has an affinity for the processor on which it is currently running
— processor affinity

- Processor affinity makes more sense in SMP (symmetric multiprocessing)
systems because of cache memory (locality)

- If a running process migrates to another processor, the contents of the cache
memory must be invalidated for the first processor, and the cache for second
processor must be repopulated

+ To avoid high overhead, SMP systems try to keep a process running on the same
processor as much as possible

« The process migration overhead is much worse in a distributed system

- Complete state information of migrating process must be passed to a remote site
for its execution there

« Processor affinity counteracts the benefits of load balancing

Application

Centralized Approach

- Designate a controller process that maintains the information about the
queue size of each processor

- Processes arrive and depart from the system asynchronously

+ Controller is responsible for transferring a process from one site to other site:
Migrating process from a longer queue to a shorter queue dynamically

« An arriving process makes a request to the coordinator for the assignment
to a processor.

+ The controller schedules the process to the processor that has the shortest
waiting queue

- To update the queue size information, each processor must inform the
controller whenever a process completes its execution — overhead

- To remove the centralized controller, the process transfer must be initiated
by either a sender or receiver or both

Application

Sender-initiated Algorithms

+ A sender-initiated algorithm is activated by a sender process that
wishes to off-load some of its computation (push model)

+ Facilitates migration of process from a heavily loaded sender to a lightly
loaded receiver

« This process transfer procedure require three basic decisions
« Transfer policy: When does a node become the sender?
+ When node’s queue length (SQ) becomes longer than a certain threshold (ST)
+ Selection policy: How does the sender choose a process for transfer?
+ A newly arrived process is a good candidate
+ Location policy: Which node should be the target receiver?
- Randomly select a receiver node

- Probing receiver: poll a certain number of nodes (probe limit PL) to find an idle
node or a node with the smallest queue length
Application

i L3

]
N

Flow Chart of Sender-initiated
Algorithm

- 8Q, ST and PL are the sender’s queue length, threshold, and probe
limit, respectively

- RQ is the queue length of a polled receiver

SENDER
Process Arrives

yes| probe
receiver

Select
shortest RQ

]

ye

no l
queue migrate queue
process process process

RECEIVER

Sender-initiated Algorithm (Cont.)

- Sender-initiate load sharing algorithm is push model or push
migration, where processes are pushed from one node to the others

. Pushing (or moving) processes from the overloaded to idle or less-busy
nodes

- A sender-initiated algorithm incurs additional communication
overhead because of probing of receivers and migration of processes

- In an already heavily loaded system, if many (or all) nodes initiate
the algorithm simultaneously, a ping-pong effect among senders
trying to off- load processes fruitlessly can occur

* The algorithm becomes unstable at heavy system load due to high
communication overhead

]

]

- The algorithm perform very well in a lightly loaded system since it
1s easy to find a receiver

Receiver-initiated Algorithms

« A receiver-initiated algorithm is activated by a receiver process to pull a
process from others to its site for execution — pull model or pull migration

- Pulling waiting process from a busy processor/node

- Three similar basic decisions include

+ Transfer policy — activate pull operation when the queue length (RQ) falls below a
certain threshold (RT)

- Selection policy — require preemption since the processes at the sender site might
have already been running

- Location policy — a probing strategy to identify a heavily loaded sender

- Receiver-initiated algorithms are more stable than the sender-initiated
ones
+ More effective at higher system load because a sender can be found easily and

migration communication overhead is low. At very high load, the algorithm
becomes less active (so no unstable problem) SRR

Sender/Receiver-initiated Approach

- It makes sense to combine two algorithms into one so that a node
can dynamically play the role of either a sender or a receiver

+ Node can activate the sender-initiated algorithms when its queue size
exceeds the threshold ST and can enable the receiver-initiated algorithms
when its queue size falls below the threshold RT

« The decision of which algorithm to use can be based on the
estimated system load information — an adaptive approach

- Senders rendezvous with receivers
+ A registration service can be used to match a sender with a receiver --

 Can even serve as a trader for best matching based on some price (e.g.,
computational cost)

Distributed Process
Implementation

Distributed Process Implementation

+ Load sharing and balancing in distributed system require the
activation of process execution at a remote site

- Creating a remote process using the client/server model

+ Front-end stub processes facilitate the creation and communication
between processes on different machines

+ Stub processes serve as a logical link between local and remote processes
CLIENT SERVER

Application

A
v

2025, Distributed Process

Different Remote Applications

- Based on how request messages are interpreted, different
application scenarios can arise:
+ Remote service: The message is interpreted as a request for a known
service at the remote site
+ Remote execution: The messages contain a program to be executed at the
remote site

+ Process migration: The messages represent a process being migrated to
the remote site for continuing execution

]
N

Application

i L3

Remote Service

« The request message is interpreted as a request for a known service
at the remote site

- Primary application is resource sharing in distributed systems
+ Sharing of file systems, peripherals, and processing capabilities

- Remote service views the computation environment as accessing remote
resources

+ Whereas remote execution and process migration views it as remote host

- Request message can be generated at three different software
levels:

+ As remote procedure calls at the language level

]

+ As remote commands at the operating system level
- As interpretive messages at the application level

Application

i b3

Remote Execution

- Remote execution (or dynamic task placement) is used for off-loading
computation (load sharing):

+ The message sent from a client to a server is a client program to be executed at the
server

- In essence, it is the spawning of a process at a remote host

- Remote execution is difficult to implement:

* Load sharing algorithm — process (or) servers are responsible for maintaining load
distribution, negotiating remote host, invoking remote operation, and creating stub
processes for linking clients and servers

* Location independence — each remote process is represented by an agent process at
the originating host. Parent/child relationship is preserved

+ System heterogeneity — need to recompile the program or use Java program
execution or XDR data transfer

* Protection and security — a double-edge sword. A foreign code image can be a
Trojan horse

Process Migration

- Extend load-sharing model further to allow a remote execution to be
preempted and moved to another remote host

+ In effect, a process can migrate from host to host dynamically

« A process migration facility needs to locate and negotiate a remote host,
transfer the code image, and initialize the remote execution

- Since the target process is preempted, its state information

+ Computation state — information necessary to save and restore process at remote
site, similar to conventional context switching

+ Communication state — status of process communication links and the messages in
transit, difficult to handle

- Two key components of process migration procedure:
+ Link redirection and message forwarding
- State and context transfer

Application

Handling Process Migration

suspend state and context resume
execution transfer execution
|] |] -
| | | |
messages messages 3
I< buffered by >1< buffered by .
source kernel destination kernel S
l< ! process freeze time ! >} SRR

i 3

atl

Process Frozen Time

Freeze (suspend) migrating process after remote host identified

.

Transfer the state and context (code image) of the process to remote host

.

Perform link redirection at different stages of migration
+ Explicit update requests for link tables of all communicating processes
+ The time of link update affects how process’s received messages are forwarded

Early messages are buffered by source kernel and are transferred together with the
context or forwarded later

.

Late messages (received after link update) are handled by destination kernel

Freeze time is process migration overhead

Context transfer, link redirection, and message forwarding can proceed concurrently — some
overlapping can reduce the overhea

To start remote execution requires the transfer of the process’s computation state information
and some initial codes (i.e., some blocks/pages needed

Link redirection and message forwarding can wait until remote execution begins

Application

CENTER FOR COMPUTATION
& TECHNOLOGY

S
¥e)

