Using Sequential Containers

Lecture 11

Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

1T 9IN309T ‘€%03/S0/E0 sIeurejUO)) [BIUsnbag Sursn ‘§z0g Suridg

Software

),
D
<+
o
Z
<+
-
D
&
Q
o
]
D
>
D
-

03/05/2023, Lecture 11

Systems and Modeling

- The use of modeling has a rich history in all engineering
disciplines

- The four basic principles of modeling

* The choice of what models to create has a profound influence on how
a problem 1s attacked and how a solution is shaped

- Every model may be expressed at different levels of precision
* The best models are connected to reality

- No single model is sufficient. Every nontrivial system 1s best
approached through a small set of nearly independent models

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

5

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

P

@)

The Unified Modeling Language User Guide, by G. Booch, J. Rambaugh & I. Jacobson

Unified Modeling Language (UML)

- Unified Modeling Language (UML) is a graphical meta-
language for visualizing, specifying, and documenting

—
—

)

=

)
=

Q
3
o
o]
(@)
X
~
e
o
~
Re)
(@)

wm
~
software systems —
y e D visitor g
o mwonrsemreuenrs f e E
O vodr L Wisr @ ey (e
o — walkl [} { YQ
for (Element element : struchae) { @ v (@)
alEmanlacceptfvEsarl); p—
A) e (o]
1 %z
.] r —————— I ,CI
i g
| @ concretevisiuez © Concresevisitort. | §
(visil [CancretElementh a) | W I 1 n
I ?a.ﬁﬂé‘l'll-ml:l: |40 @) ” L] I (O_.‘L
l arpae fﬂi] @ == ol
| < =
wisil ([ContretsElemanis b) i
| Ihun-:mmnﬂr. ! ;']
e &
| (3 Objectstructure IJJ“ oo
-
~
Q,
N
o
0
on
o
(@)
O ConcreteElementd @ toncreteElements 8
"mﬁu Tt — o) @ momm)
t L] L B]

Unified Modeling Language (UML)

- Developers (the 3 amigos)
- Grady Booch (Rational Software Corp)
- James Rumbaugh (General Electric)
- Ivar Jacobson (Objectory)

- Object Management Group (OMG)

- An open membership, not-for-profit consortium that produces and
maintains computer industry specifications for interoperable
enterprise applications

- UML Standards
- UML 1.0 (1995)
- UML 1.x (1995)
- UML 2.0 (2005), currently most widely used
- UML 2.x (2006-2015), minor revisions

03/05/2023, Lecture 11

wn
~
)
o
o=
<
+
=)
S
Q
—
<
o
5
=
<))
=]
o
M)
N
on
=)
o
S
N
S
N
on
=)
O]
o
o,
N
=
o0
™
@n)
QO
N
<

The Component Model

- The component model 1llustrates the software components
that will be used to build the system

03/05/2023, Lecture 11

- Components are high level aggregations of smaller
software pieces, and provide a 'black box' building block
approach to software construction

- Typically a component is made up of many internal
classes and packages of classes
- It may be assembled from a collection of smaller components

wn
~
(b}
=
o=
fas]
+
=)
RS
Q
—
<
o
+~
=]
)
=
oy
)
N
on
=)
o
5
AN
=
(A
on

CSC3380, Sprin

I

ure 11

The Component Model
Component Notation

03/05/2023, Lect

- The component diagram shows the relationship
between software components, their dependencies,
communication, location and other conditions

- The graphical representation of a component is a
rectangle with tabs:

9]
~
o
o
o
o
+
=)
RS
O
—
<
M
+~
=i
)
=
o
)
N
o0

g 2024, Usin

i | or

CSC3380, Sprin

The Component Diagram Interfaces

—
—

)

=

)
=

(S
3
o
o]
(@)
X
~
e
o
~
Re)
(@)

- Components may also expose interfaces

- These are the visible entry points or services that a component is
advertising and making available to other software components and

%

classes 3
=

* Modeled as lollypops 5
<

g

Active X Server YE

S

O—| GetCustomer() <

O GetDate() é

O SetCustorer() o

O SetDate() £

O WiiteConsignmentMote() =

N

@)

03/05/2023, Lecture 11

Component Diagram

Component @

- Components communicate with each /

other using interfaces (lollypop: circle . S

on a line) \@\
=g -

- The interfaces are linked using
connectors (wine glass: half circle on
a line)

1
PAYMENt & -oxvocome s
Account details
Provided -
interface {I

Account

'd Required Interface
p.

9}
~
(b}
=

o
o

+
=)

S

Q

—
<

o

+
=]
)
=
oy
)

N
o0
:

o

S

N

=

(o]
on
=]

O]
~
[oR

N

d

0

™

o

©)

N

@)

O Provided Interface

The Unified Modeling Language User Guide, by G. Booch, J. Rambaugh & I. Jacobson
https://creately.com/blog/diagrams/uml-diagram-types-examples/

Sub-Components

03/05/2023, Lecture 11

«component» {
E' Web Store |

«component» [
Authentication

L

ICustomers

—O0—10) «mmponené:
E- Customers

«component» [}—
Orders

10)]
=
)
(=)
.-
<
+~
g
Q
O
e
<
ord
)
o
)
=}
o
)
N
on
=}
o=
5
<
N
o
N
on
(@}
s
~
Q
N
o
0
on
O
N
O

https://www.uml-diagrams.org/component-diagrams-reference.html

TT 9IN399T "€50%/S0/E0 sIeurejuo)) [eruenbeg suis ‘Fg0g suridg

/)]
D
o
Ay
=
O
<+
-
D
o
-
<+
).
o0
-
o r=i
N
>
—
Ma

Abstract

- We start looking beyond vector and string. We will focus
on sequential containers and demonstrate a couple of
problems we can solve when applying them.

03/05/2023, Lecture 11

- The standard library’s architecture will start to get
visible. That will help us to start understanding how to
use all of the different containers in the standard library.

wn
~
(b}
=
o=
fas]
+
=)
RS
Q
—
<
o
+~
=]
)
=
oy
)
N
on
=)
o
S
AN
=
(A
on

CSC3380, Sprin

I

Organizing Data

03/05/2023, Lecture 11

- Let’s write program analyzing student grades for a whole
course (many students)

-Read grades from a file:
Smith 93 91 47 90 92 73 100 87
Carpenter 75 90 87 92 93 60 0 98
1.e. Name Midterm Final Homework-Grades

- We want to produce output (overall grade)
Carpenter 90.4

Smith 86.8
- Alphabetical, formatting vertically lining up

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

03/05/2023, Lecture 11

Organizing Data

- Need to store all student data

* Sorted by name
* Line up: find longest name

- Let’s assume we can store all data about one student
(student_info)
- All students data: std: :vector<student info>

- Should be Regular! Maybe TotallyOrdered, most likely
StrictWeaklyOrdered

- Set of auxiliary functions to work with that data
* Solve the overall problem using those

9]
~
(b}
=

o=
fas]

+
=)

Q

Q

—
<

o

+
=]
)
=
oy
)

N
on
=)

o

5

AN

=

(A
on
=]

o
~
[oR

N

oS

Q0

™

o

©)

N

@)

03/05/2023, Lecture 11

Organizing Data

- We need to hold all data items related to one student
together:

// hold all information related to a single student
struct student_info

{
std::string name; // students name
double midterm, final; // midterm and final exam grades
std::vector<double> homework; // all homework grades

}s

- This is a new type holding four items (members)
- We can use this type to define new objects of this type
* We can store the information about all students in a
std: :vector<student_info> students;

wm
~
(D]
=
.-
favf
+
=
Q
O
r—
<
]
+~
=]
b}
=3
oy
)
N
o0
d
o=
N
S
(o]
o0
=]
o
~
o
n
S
a0
G
o
O
D]
(@)

Reading Data for one Student

03/05/2023, Lecture 11

- Very similar to what we already have seen:

// read all information related to one student
std::istream& operator>>(std::istream& in, student info& s)

{
// read the students name, midterm, and final exam grades
in >> s.name >> s.midterm >> s.final;
// read all homework grades for this student
return read_hw(in, s.homework);
}

- Any 1nput error will cause all subsequent input to fail as well
- Can be called repeatedly

wm
~
(D]
=
.-
favf
+
=
Q
O
r—
<
]
+~
=]
b}
=3
oy
)
N
o0
d
o=
N
S
(o]
o0
=]
o
~
o
n
S
a0
G
o
O
D]
(@)

03/05/2023, Lecture 11

Reading Data for one Student

std::istream& read hw(std::istream& in, std::vector<double>& hw)
{
if (in) {
hw.clear(); // get rid of previous content

// read homework grades

double x;

while (in >> x)
hw.push_back(x);

// clear the stream so that input will work for
// the next student
in.clear();

}

return in;

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

5

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

P

@)

Reading all Student Records

- Invoke operator>> as long as we succeed:

03/05/2023, Lecture 11

std: :vector<student _info> students; // all student records
std::string::size type maxlen = 0; // length of longest name

// read and store all the records, find the length of the longest name
student_info record;
while (std::cin >> record) {
maxlen = std::max(maxlen, record.name.size());
students.push_back(record);

- Function std: :max() 1s peculiar
* Both arguments need to have same type

wm
~
(D]
=
.-
favf
+
=
Q
O
r—
<
]
+~
=]
b}
=3
oy
)
N
o0
d
o=
N
S
(o]
o0
=]
o
~
o
n
S
a0
G
o
O
D]
(@)

—
—

L

=

)
-

(&}

)
—
o
o]
(@)
X
~~
e
o
~~
>
(@)

Calculate Final Grade | |
Exercise: rewrite median()

- Calculate grade based on data read: using std::nth_element.

// compute the median of a std::vector<double>
// note: calling this function copies the whole vector
double median(std::vector<double> vec)

auto size = vec.size(); S
if (size == @) throw std::domain_error("vector is empty, median undefined"); s
std::sort(vec.begin(), vec.end()); §
auto mid = size / 2; g
return size % 2 == 0 ? (vec[mid] + vec[mid-1]) / 2 : vec[mid]; G
} ¥
// Calculate the final grade for one student .g
double grade(student_info const& s) 2
{ S
return 0.2 * s.midterm + 0.4 * s.final + 0.4 * median(s.homework); é
}

Sort Student Data

- We know that sorting can be done using sort():
std: :vector<double> vec;
std::sort(vec.begin(), vec.end());

03/05/2023, Lecture 11

- Let’s do the same for all students:
std: :vector<student info> students;
std::sort(students.begin(), students.end());

- Not quite right, why?
- What criteria to use for sorting?
- What does it mean to sort the vector of students?
- How to express the need to sort ‘by name’?

wn
o
P
=
o=
o
+
g
RS
O
r—
<
o
~+
=]
P
=
oy
D
N
oD
g
o=
5
<
N
S
N
o0
=]
o
~
[oR
N
S
0
)
™
@)
P
@)

Sorting Student Data

- Normally, sort() uses the operator< to determine order
* Makes no sense for student_info’s!

03/05/2023, Lecture 11

- We can teach sort() how to order by specifying a predicate

- A function returning a bool taking two arguments of the type to be
compared

* Returns true if the first argument is smaller than the second
(whatever that means)

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

Sorting Student Data

- We can teach sort() how to order by specifying a predicate:

03/05/2023, Lecture 11

// compare two student _info instances, return whether 'x°¢

// is smaller than 'y' based on comparing the stored names
// of the students

bool compare(student_info const& x, student _info const& y)

{

return Xx.name < y.name; // get _name(x) < get name(y)

¥

- Now, we can use this function as:
std: :vector<student _info> students;
std::sort(students.begin(), students.end(), compare);

wm
~
(D]
=
.-
favf
+
=
Q
O
r—
<
]
+~
=]
b}
=3
oy
)
N
o0
d
o=
N
S
(o]
o0
=]
o
~
o
n
S
a0
G
o
O
D]
(@)

Sorting Student Data

- Alternatively, we could define an appropriate operator

03/05/2023, Lecture 11

// compare two student info instances, return whether 'x¢

// 1s smaller than 'y' based on comparing the stored names
// of the students

bool operator<(student _info const& x, student_info const& y)

{

}

- Now, we would be able to use this function as:
std: :vector<student _info> students;
std::sort(students.begin(), students.end());

return x.name < y.name;

wm
~
(D]
=
.-
favf
+
=
Q
O
r—
<
]
+~
=]
b}
=3
oy
)
N
o0
d
o=
N
S
(o]
o0
=]
o
~
o
n
S
a0
G
o
O
D]
(@)

- But 1s this what we really want?

03/05/2023, Lecture 11

Sorting Student Data

- Alternative: lambda function:
// sorting the student data using a lambda function
sort(students.begin(), students.end(),
[](student_info const& x, student info const& y)

{
}

return X.name < y.name;
)

* Note: this lambda has no explicit return type
- Although, it could be specified (-> bool)

- Much nicer! Everything is 1n one place
* This ordering 1s called StrictWeakOrdering
- Weaker than TotallyOrdered as we might want to sort by grades, etc.

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

5

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

P

@)

Sorting Student Data

- A StrictWeakOrdering is a Binary Predicate that
compares two objects, returning true if the first precedes

the second
- Applying TotalOrdering to equivalence classes
* Invoke function on an element and totally order what it returns

03/05/2023, Lecture 11

-StrictWeakOrdering
- Partial ordering:
* Irreflexivity: ' f(x, x)
* Antisymmetry: f(x, y) & !f(y, x)
* Transitivity: f(x, y) && f(y, z) & f(x, z)
* Transitivity of equivalence
‘ifx=yandy =z thenx=z

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

Generating the Report

- Now we’re ready to generate the report:

for (std::vector<student info>::size type i = @; i != students.size(); ++i) {
// write the name, padded on the right side to maxlen + 1 characters
std::cout << students[i].name

<< std::string(maxlen + 1 - students[i].name.size(), ' ');

// compute and write the grade
try {
double final grade = grade(students[i]);
std::streamsize prec = cout.precision();
std::cout << std::setprecision(3) << final grade << std::setprecision(prec);
}
catch (std::domain_error e) {
std::cout << e.what();

}

std::cout << std::endl;

03/05/2023, Lecture 11

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

5

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

P

@)

Generating the Report

- Now we're ready to generate the report:

for (student _info const& si: students)

{

// write the name, padded on the right side to maxlen + 1 characters

std::cout << si.name
<< std::string(maxlen + 1 - si.name.size(),

// compute and write the grade
try {
double final grade = grade(si);
std::streamsize prec = cout.precision();
std::cout << std::setprecision(3) << final grade <<
}
catch (std::domain_error e) {
std::cout << e.what();
}

std::cout << std::endl;

")

std: :setprecision(prec);

03/05/2023, Lecture 11

wm
~
(D]
=
.-
favf
+
=
Q
O
r—
<
]
+~
=]
b}
=3
oy
)
N
o0
d
o=
N
S
(o]
o0
=]
o
~
o
n
S
a0
G
o
O
D]
(@)

03/05/2023, Lecture 11

Separating Students into Categories

- Sort out failed students
* Who failed?
- Remove from our data

- Create a new vector of student data containing only

students who succeeded:

// predicate to determine whether a student failed
bool fail grade(student_info const& s)

{

return grade(s) < 60;

}

- Push student data onto one of two containers based on
this predicate

n
&
2
&

o=
fay]

+
=

Q

O

r—
<

o=

=
o
b}
=}
o
o)

N
o0
=i

o

5

N

S

(o]
o0
o

o
~
(=F

N

o

a0

G

GR

O

N

(@)

Separating Students into Categories

. What’s wrong here? (Hint: what’s the memory consumption?)

03/05/2023, Lecture 11

// separate passing and failing student records: first try
std::vector<student _info> extract fails(std::vector<student info>& students)
{

std: :vector<student_info> pass, fail;

for (std::vector<student info>::size type i = 0;

i != students.size(); ++1i)
{
if (fail_grade(students[i]))
fail.push_back(students[i]);
else
pass.push_back(students[i]);
}

students = pass;
return fail;

wn
~
)
=
o
av]
+
=)
Q
Q
—
(V]
o
+~
=]
<}
=
oy
5
N
on
g
o
5
AN
=
(A
on
=]
s
~
[oR
N
S
0
™
o
©)
95}
@)

03/05/2023, Lecture 11

Separating Students into Categories

- Requires twice as much memory
- Each record 1s held twice

- Better to copy failed students, removing the data from
original vector
- How to remove elements from a vector?
* Slow, too slow for larger amounts of data.
* Why?
- What happens if all students have failed?

* This can be solved by either using a different data structure or by
modifying the algorithm

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

Erasing Elements in Place

- Slow, but direct solution (Why is it slow?)

03/05/2023, Lecture 11

// second try: correct but potentially slow
std: :vector<student_info> extract_fails(std::vector<student_info>& students)
{

std::vector<student_info> fail;

std::vector<student_info>::size type i = 0;

// invariant: elements [@, i) of students represent passing grades
while (i !'= students.size()) {
if (fail_grade(students[i])) {
fail.push back(students[i]};
students.erase(students.begin() + i);
} else
++1;
}

return fail;

wm
~
(D]
=
.-
favf
+
=
Q
O
r—
<
]
+~
=]
b}
=3
oy
)
N
o0
d
o=
N
S
(o]
o0
=]
o
~
o
n
S
a0
G
o
O
D]
(@)

03/05/2023, Lecture 11

Erasing Elements in Place

- The erase() function takes a special type ‘pointing’
(referring) to the element to erase, i.e. an iterator:

students.erase(students.begin() + i);

students.size() == n Element 1

students.size() ==n - 1 (These elements are copied)

wn
~
<]
@]
!
<
-
=)
o
=
o
—
<
e
-
=]
D
—
-
oy
)
[ol)
=)
!
w0
—
(D)
<
N
P
-
(o]
ol)
=]
.-
~
[oh
—
-
Q0
(A

CSC3

Erasing Elements in Place

03/05/2023, Lecture 11

- Caution: why will this fail?

// this code will fail because of misguided optimization
auto size = students.size();
while (i != size) {
if (fail_grade(students[i])) {
fail.push_back(students[i]);
students.erase(students.begin() + i);
} else

++1;

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

5

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

P

@)

Sequential Versus Random Access

03/05/2023, Lecture 11

- Both versions share a non-obvious property
- The elements are accessed sequentially only
- We used integer 1’ as an index, which hides that
- Need to analyze every operation on 1’ to verify
- We might access student data in arbitrary order

- Every container type has its performance characteristics
for certain operations

- By knowing what access pattern we use we can utilize the ‘best’
container type

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

03/05/2023, Lecture 11

Sequential Versus Random Access

- Let’s restrict our access to being sequential

- The standard library exposes special types we can use to
express this intent: /terators

* By choosing the right type of iterator we ‘tell’ the library what access
pattern we need to support

- Allows for optimal selection of the underlying algorithm
Implementation

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

1T 9IN399T ‘€%0%/S0/€0 sIeurejuo)) rerpuenbeg suisn ‘¥z0g 8

6O

)]
=]
o
=
Ay
=
D
+
=

03/05/2023, Lecture 11

Iterators

« Our code uses the index for
« Access of an element
fail grade(students[i])

- Move to the next element (increment 1)
while (i != students.size()) {
// work gets done here; but doesn't change the value of i
++1;

}

- We use 1ndex for sequential access only!

- But there 1s no way of telling the library about this

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

Iterators

03/05/2023, Lecture 11

- Iterators are special types
- Identify a container and an element in the container
- Let us examine the value stored in that element
- Provide operations for moving between elements in the container

- Restrict the available operations in ways that correspond to what
the container can handle efficiently

wm
=
)
(=)
.-
<
+~
)
Q
O
—
<
=
)
o
)
=}
o
)
N
o0
=)
o=
5
<t
(o]
=
N
o0
(@}
o
=
Q
n
o
0
g
(@)
N
O

03/05/2023, Lecture 11

Iterators

- Code using iterators is often analogous to index based code:
// code based on indicies
for (std::vector<student info>::size type i = 0;
i != students.size(); ++i)

std::cout << students[i].name << std::endl;

// code based on iterators
for (std::vector<student_info>::const_iterator iter = students.begin();
iter != students.end(); ++iter)

{

std::cout << (*iter).name << std::endl; // same as iter->name

wn
~
)
=
o
av]
+
=)
Q
Q
—
(V]
o
+~
=]
<}
=
oy
5
N
on
g
o
5
AN
=
(A
on
=]
s
~
[oR
N
S
0
™
o
©)
95}
@)

Iterator Types

03/05/2023, Lecture 11

- Every standard container, such as std: :vector, defines two
assoclated 1terator types:
container_ type::iterator
container type::const _iterator
- Where container_type is the container (std: : vector<student_info>)

- Use iterator to modify the element, const_iterator otherwise (read
only access)

- Note, that we don‘t actually see the actual type, we just know
what we can do with 1t.
- Abstraction 1is selective ignorance!

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

Iterators

—
—

)

=

)
-

(S

)
—
o
o]
(@)
X
~
e
o
~
>
(@)

- Code using iterators is often analogous to index based code:

// code based on indicies

// code based on iterators, we don't care about the actual element type
for (auto const& s : students)

{
}

cout << s.name << endl;

for (auto i = @; i != students.size(); ++1i) .
{ £
cout << students[i].name << endl; =

} 3
// code based on iterators, we don't care about the actual iterator type §
for (auto iter = students.begin(); iter != students.end(); ++iter) g
cout << (*iter).name << endl; =

} 3
%

N

<

03/05/2023, Lecture 11

Iterator Types

- Every container type::iterator is convertible to the
corresponding container_type::const iterator

- students.begin() returns an iterator, but we assign it to a
const_iterator

- Opposite 1s not true! Why?

10)]
=
=
o
o=
=
+~
)
Q
O
—
<
o
i)
o
)
=}
o
)
N
o0
=)
o
5
<
(o]
=
N
o0
(@}
o
=
Q
n
o
0
g
(@)
N
O

Iterator Operations

03/05/2023, Lecture 11

- Containers do not only expose their (specific) iterator types, but also
actual iterators:

students.begin(), students.end()

- begin(): ‘points’ to the first element
- end(): ‘points’ to the element after the last one

- Iterators can be compared:

iter != students.end()
* Tests, whether both 1terators refer to the same element

- Iterators can be incremented-

++iter
- Make the iterator ‘point’ (refer) to the next element

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

03/05/2023, Lecture 11

Iterator Operations

- Iterators can be dereferenced.

*iter
- Evaluates to the element the 1iterator refers to

- In order to access a member of the element the iterator
refers to, we write:

(*iter).name
- (why not: *iter.name ?)

- Syntactic sugar, 100% equivalent:

iter->name

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

Iterator Operations

03/05/2023, Lecture 11

- Some 1terators can get a number added

students.erase(students.begin() + i);

- Overloaded operator+, makes the iterator refer to the 1’ —s element
after begin

- Equivalent to invoking ++ %’ times
* Defined only for iterators from random access containers
- std: :vector, std: :string are random access (indexing is possible)

- Will result in compilation error for sequential (non-random access)
containers

[0))
~
(b}
=

o=
fas]

+
=)

RS

Q

—
<

o

=
=
<))
=]
oy
M)

N
on
=)

o=

S

N

S

N
on
=)

O]
=~
(o

N

=

o0

™

3]

O

N

<

Erasing Elements in Place

—
—

)

=

)
-

(&}

)
—
o
o]
(@)
X
~
e
o
~
>
(@)

- Slow, but direct solution

// second try: correct but potentially slow
std: :vector<student _info> extract fails(std::vector<student info>& students)

{
std: :vector<student _info> fail; £
std: :vector<student_info>::size type i = 0; §
// invariant: elements [0, 1) of students represent passing grades §
while (i != students.size()) { 3

if (fail_grade(students[i])) { 2
fail.push_back(students[i]}; =)
students.erase(students.begin() + i); 3

} else S
++1; .é

} %)
return fail; 2

’ 5
8

Erasing Elements in Place

03/05/2023, Lecture 11

- Still slow, but without indexing:
// version 3: iterators but no indexing
std: :vector<student _info> extract fails(std::vector<student info>& students)

{

std: :vector<student _info> fail;

auto iter = students.begin();
while (iter != students.end()) {
if (fail_grade(*iter)) {
fail.push_back(*iter);
iter = students.erase(iter); // watch out! Why?
} else
++iter;

}

return fail;

wm
~
(D]
=
.-
favf
+
=
Q
O
r—
<
]
+~
=]
b}
=3
oy
)
N
o0
d
o=
N
S
(o]
o0
=]
o
~
o
n
S
a0
G
o
O
D]
(@)

Iterator Invalidation

03/05/2023, Lecture 11

- What happens to an iterator if the element it refers to 1s
deleted?

It 1s invalidated

- Certain containers invalidate all iterators after the deleted element
as well (vectors)

- For that reason erase() returns the next (valid) iterator:

iter = students.erase(iter);

9}
~
o
=

o
fas]

+
=)

Q

Q

—
<

o

+
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

o
~
[oR

N

oS

Q0

)

o

©)

N

@)

Same Problem as before
- Why does this code fail:

03/05/2023, Lecture 11

// this code will fail because of misguided optimization
auto iter = students.begin();
auto end_iter = students.end();
while (iter != end _iter) {
// ... erase elements from students without updating end_iter

}

- End 1terator 1s invalidated as well when element 1s erased!

9}
~
(b}
=

o
o

+
=)

S

Q

—
<

o

+
=]
)
=
oy
)

N
o0
=)

o

5

AN

=

(A
on
=]

O]
~
[oR

N

CJ'

o0

™

o

©)

P

@)

What'’s the Problem with std: :vector?

- For small inputs, vector works just fine, larger inputs
cause performance degradation

* Vector 1s optimized for fast access to arbitrary elements and for fast
addition to the end

* Inserting or removing from the middle 1s slow.

- All elements after the inserted/removed element need to be moved
1n order to preserve fast random access

* Our algorithm has quadratic performance characteristics
- Let’s utilize a different data structure:
- Next lecture: The list type

03/05/2023, Lecture 11

9}
~
(b}
=

o
(o]

+
=)

RS

Q

—
<

o

+~
=]
)
=
oy
)

N
on
=)

o

S

AN

=

(A
on
=]

O]
~
[oR

N

oS

0

™

o

©)

N

@)

CENTER FOR COMPUTATION
& TECHNOLOGY

03/05/2023, Lecture 11

wn
-
(M)
=)
-5
<
3
=)
!
&}
—
]
-5
=
<]
]
<
=
o
5]
»n
op
g
=
5
N
o
N
ap
=)
oz
=
2
»n

