Using Assoclative Containers

Lecture 13

Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

€T 9IN309T $303/9%/E SIOUIBIUO)) SAIIBIVOSSY SUIS() ‘€503 [1Bd ‘0

Development Notes

®
o
Ay
>
S
S
p.

3/26/2024 Lecture 13

Finite State Machine

- A finite state machine 1s a mathematical construct

- It 1s a type of state transition diagram
* Others include cellular automaton, petri nets, and Turing machines
- Entities change state upon the trigger of an event

- Common uses
* Discrete Event Simulations
- Asynchronous Programming
- UI Navigation

19}
S~
Q
=i

o
(av]

+~
=)
Q

@)
o
o

o

+
(o]

ot
Q
o
n
n

<
on
g

o
w0

AN

S

A

—

—
(o]

)

0

™

o

©)

N

@)

3/26/2024 Lecture 13

State Machine Diagram

- A State Machine diagram is a control flow diagram

- Shows discrete behavior of a part of a designed system
through finite state transitions

- How events change an object over its life

1)
~
)
a
=
<
-~
g
Q
(@)
o
o
-
e
<
o=
o
S
4]
4]
<
an
g
o=
=
o
(&
(@)
(A
—
—
(o]
o
a0
o
GR
@)
N
O

3/26/2024 Lecture 13

State Machine Diagram

- A state machine is a behavior that specifies the sequences
of states an object goes through during its lifetime
- In response to events, together with its responses to those events.

- A state 1s a condition or situation during the life of an
object during which
- It satisfies some condition
* Performs some activity, or
* Waits for some event.

- An event 1s the specification of a significant occurrence
that has a location in time and space.

- An event 1s an occurrence of a stimulus that can trigger a state
transition.

19}
S~
Q
=i

o
(av]

+~
=)
Q

@)
()
>

o

+
(o]

ot
Q
o
n
n

<
on
g

o

bj}

AN

S

A

f—

—
o]

=

oS

o0

™

o

QO

P

@)

3/26/2024 Lecture 13

State Machine Diagram

- A guard condition is evaluated after the trigger event for the
transition occurs.

» It 1s possible to have multiple transitions from the same source state
and with the same event trigger, as long as the guard conditions don’t
overlap.

* A guard condition is evaluated just once for the transition at the time
the event occurs.

- A transition is a relationship between two states indicating
that
* An object in the first state will perform certain actions and

- Enter the second state when a specified event occurs and specified
conditions are satisfied.

- An action is an executable atomic computation that results in a
change in the state of the model or the return of a value.

19}
S~
Q
=}

o
(av]

45
=)
Q

o
<

ol

+
(o]

ot
Q
o
n
n

<
on
g

o

bj}

N

S

(o]

—

=
o]

~
oS

o0

™

o

©)

P

<

3/26/2024 Lecture 13

Finite State Machine

Initial state

+ — — Final state

Event Event Parameter
+ ¥

tooHot (desiredTemp) tooCold (desiredTemp)

Initial State Action
| |

Final state — —»

tooHot (desiredTemp)

w0
o
5)
=]
=
fav}
hi)
g
=]
v
>
o=
IE
fav}
o
5
S
4]
wn
<
a0
o
o=
0
o
(&
o
=
(A
—
|
e
=S5
S

r'y
|

tc:uGold (desiredTemp)

Transition

= Meszted State

3/26/2024 Lecture 13

Key State Machine Elements

- Simple State: rounded rectangle [Waiting for]
ser Inpu

- State Transition, solid line with open arrow —>

- Initial (Start) State, solid circle

- Final (End) State, solid circle surrounded by solid line

—®

19}
S~
Q
=i

o
(av]

+~
=)
Q

@)
()
>

o

+
(o]

ot
Q
o
n
n

<
on
g

o

bj}

AN

S

A

f—

—
o]

=

oS

o0

™

o

QO

P

@)

https://www.uml-diagrams.org/state-machine-diagrams.html

3/26/2024 Lecture 13

Example State Machine Diagram: Bank ATM

state machine Bank ATI"u-u

service Idle in(card)

fixed cancel
Qut of
SEW|E:E done Active]

https://www.uml-diagrams.org/state-machine-diagrams.html

~
Q
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
o0
™
o
QO
P
<

€T 9IN3997T $¥Z0%/9%/C SIOUIBIUO)) SAIIBIVOSSY SUIS[) ‘€503 T8 (

0))]
=
D
-
o r={
S
<+
-
o
@
D
2
4
<
o r=i
&
o
)]
)]
<

Abstract

- Assoclative containers arrange their elements in a certain
sequence based on an ordering criteria for the elements
themselves

3/26/2024 Lecture 13

- They employ ordering to quicker find elements

- Often they store key/value pairs, ordering the values
based on the key

- We will investigate these containers and use maps to
write compact and efficient look-up-intensive programs.

wn
S~
Q
=}
o
(av]
+
=)
Q
o
()
>
=
+
(o]
o=
Q
o
n
n
{f:
an
g
o
bj}
N
(@)
(o]
—
=
o]
~
oS
o0
™
o
QO
P
<

3/26/2024 Lecture 13

Why Associative Containers?

- Finding an element in sequential containers entails
sequential search
- Potentially slow if container has many elements

- Alternative is to keep elements in sequential container in
certain order
- Devise a special search strategy, not easy
* Potentially slow to insert as it might reorder elements

- Another alternative is to use associative containers

wn
S~
Q
=i
o
<
+~
=)
Q
o
o
o
o
+
<
ot
Q
o
n
n
<
on
g
o
w0
AN
S
A
—
—
(o]
)
Q0
™
o
©)
N
<

3/26/2024 Lecture 13

Associative Containers

- Associative containers automatically arrange their
elements into a sequence that depends on the values of
the elements themselves, rather than the sequence in
which they were 1nserted

- Allows to locate element with particular value quickly

- The part which 1s used to locate an element is the key,
which sometimes has an associated value

19}
S~
Q
=i

o
(av]

+~
=)
Q

o
o
o

o

+
(o]

ot
Q
o
n
n

<
on
g

o

=

N

S

(o]

—

—
(o]

)

Q0

™

o

©)

N

<

€T 9IN309T $303/9%/E SIOUIBIUO)) SAIIBIVOSSY SUIS[) ‘€503 T8 (

2!
g
o
=
o0
-
B
-
-
o
O

Counting Words

- Almost trivial with associative containers:

int main()

{

std::string s;
std: :map<std::string, int> counters; // store each word and an
// associated counter
// read the input, keeping track of each word and
// how often we see it
while (std::cin >> s) {
++counters[s];
}

// write the words and associated counts

for (std::map<std::string, int>::const_iterator it = counters.begin();
it != counters.end(); ++it) {
std::cout << it->first << "\t" << it->second << std::endl;

}

return 0;

3/26/2024 Lecture 13

wm
S~
Q
=}
o
(av]
+
=)
Q
o
()
>
=
+
(o]
o=
Q
o
n
n
{f:
an
g
o
bj}
N
(@)
(o]
—
=
o]
~
oS
o0
™
o
QO
P
<

Counting Words

- As std: :map holds key/value pairs, we need to specify
both: std: :map<string, int>

- Holds values of type int (the word counters) with a key of type
std: :string (the counted words)

* We call this a ‘map from std: :string to int’

- ‘Associative array’, we use a string as the index (the key)

* Very much like vectors, except that index can be any type, not just
Integers

- The entries are kept ordered based on
- operator<(Key, Key) (total ordering of keys)
- Explicit comparison function (weak strict ordering of keys):
- std: :map<string, int, compare_func>

3/26/2024 Lecture 13

wm
S~
Q
=}
o
(av]
+
=)
Q
o
()
>
=
+
(o]
o=
Q
o
n
n
{f:
an
g
o
bj}
N
(@)
(o]
—
=
o]
~
oS
o0
™
o
QO
P
<

(2]
—

o

P~

B
-

[

Q
—
<t
(o]
=)
N
~
e}
N
~
(a0

Associative Container: std: :map

- Usually implemented as a (self-)balanced red-black tree
- Elements that compare less are left children, otherwise right children

- Tree stores std: :pair of key/values

m A %

header.parent | A | < | parent m.header é

)) header.left |A left null B E
std::map<int, std::string> m = { =
{ 42, "forty-two™ }, header.right | B right B < | parent A 2

{ 99, "ninety-nine" },] o0

1s size 2 color black left null g
’ -
data |42, "forty-two" right null e

color red ;:

=

- Complexities of operations data |99, "ninety-nine" %
* Insert, delete, find: 0(log N) %
<

3/26/2024 Lecture 13

Counting Words

- Necessary: #include <map>

while (std::cin >> s) ++counters[s];
- Indexing operator|[]: invoked with string ‘s’

- Returns reference to integer value associated with string ‘s’

* We increment this integer: counting words

- If no entry representing string ‘s’ exists, new entry is created and value
initialized (integer is set to zero)

std::cout << it->first << "\t" << it->second << endl;

- Iterator ‘it’ refers to both, key and value
- std: :pair: pair of arbitrary types, stored in map
* The parts are named: first, second

~
Q
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
o0
™
o
QO
P
<

(2]
—

)

~

B
-

[

Q
—
<t
(o]
=)
N
~
e}
N
~
(An)

Counting Words

- Almost trivial with associative containers:

int main()

{
std::string s; 0
std: :map<std::string, int> counters; // store each word and an g
// associated counter 2
// read the input, keeping track of each word and S
// how often we see it g
while (std::cin >> s) { ks
++counters[s]; §
) .
// write the words and associated counts 5
for (auto const& [key, value] : counters) { N
std::cout << key << "\t" << value << std::endl; 2
} &
g
return 0; &
}

13

3/26/2024 Lecture

An Input for the Word Counting Program

This lecture and the next presents the STL (the
containers and algorithms part of the C++ standard
library). It is an extensible framework dealing with
data in a C++ program. First, I present the general
ideal, then the fundamental concepts, and finally
examples of containers and algorithms. The key notions
of sequence and iterator used to tie containers (data)
together with algorithms (processing) are presented.
Function objects are used to parameterize algorithms

with “policies™.

19}
=
Q
=i

o
<

+~
=)
Q

o
)
>

o

+
<

ot
Q

g Asso

CSC3380, Fall 2023, Usin

Output (Word Frequencies)

(data): 1
(processing): 1
(the: 1

C++: 2

First,: 1
Function: 1
Fundamental: 1
I:1

It: 1

STL: 1

The: 1

This: 1

a1l
algorithms: 3
algorithms.: 1
an: 1

and: 5

are: 2
concepts,: 1
containers: 3
data: 1
dealing: 1
examples: 1
extensible: 1
finally: 1
framework: 1
general: 1
ideal,: 1

in: 1

st 1
iterator: 1
key: 1
lecture: 1
library).: 1
next: 1
notions: 1
objects: 1
of: 3
parameterize: 1
part: 1
present: 1
presented.: 1
presents: 1
program.: 1
sequence: 1
standard: 1
the: 5
then: 1

tie: 1

to: 2

3/26/2024 Lecture 13

wm
~
D)
a
-
<
+
o
Q
(@)
Qv
o
.-
3
<
o=
&)
o)
4]
4]
<
an
g
o=
=
oS
N
o
N
—
—
<
P~
o
0
g
(@)
N
O

Other Associative Containers

3/26/2024 Lecture 13

-std::multimap<K, V>:Same as map, however doesn’t enforce
uniqueness of keys

-std::set<T>! Same as map, except no ‘values’, just ‘keys’

estd: :multiset<T>: Same as set, however doesn’t enforce
uniqueness of keys

- Starting C++23 (gcc/clang option --std=c++23, msvce option
/std:c++23)
-std::flat map, std::flat _set, std::flat multimap, std::flat multiset
- Same interface as containers above, just implemented on top of std: :vector
- Re-arrange (sort) elements after each insertion

wm
S~
Q
=}
o
(av]
+
=)
Q
o
()
>
=
+
(o]
o=
Q
o
n
n
{f:
an
g
o
bj}
N
(@)
(o]
—
=
o]
~
oS
o0
™
o
QO
P
<

€T 9IN309T $303/9%/E SIOUIBIUO)) SAIIBIVOSSY SUIS[) ‘€503 T8 (

)]
o
=
=
o
<+
-
o r={
D
-
o r=i
]
<
o
-
5
RS
_—
Q
).

3/26/2024 Lecture 13

Splitting a Line into Words

- We'll write a function which takes a whole line of input
and returns a vector of strings holding the single words of

that line:
std::vector<std::string> split(std::string const& s);

- Strings support indexing in the same way as vectors:
* s[0]: refers to the first character in the string ‘s’
*s[s.size()-1]: refers to the last character in a string

- Our function will find 1ndices ‘i’ and ‘j’ delimiting each of
the words, where the range of characters
[i, J) constitutes the word

19}
S~
Q
=i

o
(av]

45
=)
Q

o
()
>

=

+
(o]

o=
Q
o
n
n

<
on
g

o

bj}

AN

S

A

—

=
o]

=
oS

o0

™

o

O

P

<

3/26/2024 Lecture 13

Splitting a Line into Words
. This looks like:

- Words are split at whitespace characters
* Very similar to the processing during stream input into a string

wm
~
)
=
o=
<
+
o
o
O
)
g
>
o=
3
<
o=
&)
o)
(07}
wn
<
o0
=i
o=
4]
o3
N
=
N
—
—
<
~
=
o
0
on
on
£3
(-
O

Splitting a Line into Words

std::vector<std::string> split(std::string const& s)

{
std::vector<std::string> words;
std::vector<std::string>::size type i = 0;
// invariant: we have processed characters [original value of i, i)
while (i !'= s.size()) {
// ignore leading blanks, find begin of word
// find end of next word
// if we found some non-whitespace characters, store the word
}
return words;
}

3/26/2024 Lecture 13

wm
S~
Q
=}
o
(av]
+
=)
Q
o
()
>
=
+
(o]
o=
Q
o
n
n
{f:
an
g
o
bj}
N
(@)
(o]
—
=
o]
~
oS
o0
™
o
QO
P
<

3/26/2024 Lecture 13

Splitting a Line into Words
- Ignore leading blanks

// invariant: characters in range [original i, current 1)

// are all spaces

while (i != s.size() && std::isspace(s[i])) // short-circuiting
++1;

- Find end of next word
// find end of next word
auto j = 1i;

// invariant: none of the characters in range

// [original j, current j) is a space

while (j != s.size() && !std::isspace(s[j])) // short-circuiting
++3;

wm
S~
Q
=}
o
(av]
+
=)
Q
o
()
>
=
+
(o]
o=
Q
o
n
n
{f:
an
g
o
bj}
N
(@)
(o]
—
=
o]
~
oS
o0
™
o
QO
P
<

3/26/2024 Lecture 13

Splitting a Line into Words
- Store the word if any

// if we found some non-whitespace characters

if (1 !=3){
// copy from s starting at i and having j - i characters
words.push _back(s.substr(i, j - i));

i=73;

(9]
~
)
a

=
<

-~
g
Q

(@)
o
o

o=

e
<

o=
o
S
4]
4]

<
an
g
=
=

o

(&

(@)

(A

—

—
(o]

o

a0

o

GR

@)

N

O

Splitting a Line into Words

std::vector<std::string> split(std::string const& s)

{

std::vector<std::string> words;

std::vector<std::string>::size_type i = 0;

while (i != s.size()) {

while (i != s.size() && std::isspace(s[i])) ++i;

auto j = 1i;

while (j != s.size() && !std::isspace(s[j])) ++3J;

if (i 1= 3) {
words.push_back(s.substr(i, j - 1));

i=73;

}

return words;

3/26/2024 Lecture 13

wm
S~
Q
=}
o
(av]
+
=)
Q
o
()
>
=
+
(o]
o=
Q
o
n
n
{f:
an
g
o
bj}
N
(@)
(o]
—
=
o]
~
oS
o0
™
o
QO
P
<

(2]
—

o

P~

B
-

[

Q
—
<t
(o]
o
N
~
e}
N
~
(a0

Splitting a Line into Words: Simplified

std::vector<std::string> split(std::string const& s)

std::stringstream str = s;
wm
2
std: :vector<std::string> words; g
std::string word; S
)
while (str >> word) { g
n
words.push_back(word); <
an
}
return words; S
} =
=
=
N
©

€1 9In300T $303/9%/S SIOUIEIUO)) PATEIIOSSY SUIS() ‘€303 [TBd ‘086€DSD

0
0
O
o
O
4y
on
-
5
©
S
O
-
O
O

D
Q
-
D
m._U
Gy
D
o'

3/26/2024 Lecture 13

Generating a Cross-Reference Table

- Write a program to generate a cross-reference table that
indicates where (what line) each word occurs in the input
- Read a line at a time, allowing to associate line numbers with words
* Split line into words
- Store more data in a map: all lines a particular word occurred on

std: :map<std::string, std::vector<int>>

19}
S~
Q
=i

o
(av]

+~
=)
Q

@)
o
o

o

+
(o]

ot
Q
o
n
n

<
on
g

o

=

N

S

(o]

—

—
(o]

)

Q0

™

o

©)

N

@)

3/26/2024 Lecture 13

Generating a Cross-Reference Table

- Find all the lines that refer to each word in the input:

std: :map<std::string, std::vector<int>>
xref(std: :istream& in,
std::vector<std::string> find words(std::string const&) = split)
{
std::string line; // current line
int line_number = 0; // current line number
std: :map<std::string, std::vector<int>> ret; // cross reference table

// read the next line

while (std::getline(in, line)) {
// store current line number for each word
/] ...

}

return ret;

~
Q
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
o0
™
o
QO
P
<

3/26/2024 Lecture 13

Generating a Cross-Reference Table

- Default argument specification:
std: :map<std::string, std::vector<int>>

xref(std: :istream& in,
std::vector<std::string> find words(std::string const &) = split);

- Allows to leave out this argument at invocation:

// uses split() to find words in the input stream
. = xref(std::cin);

// uses the function named find urls to find words
. = xref(std::cin, find urls);

Ef‘\
~
Q
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
o0
™
o
QO
P
<

3/26/2024 Lecture 13

Generating a Cross-Reference Table

- Store current line number for each word:

while (std::getline(in, line)) {
// adjust current line number
++1ine_number;

// break the input line into words
std::vector<std::string> words = find words(line);

// remember that each word occurs on the current line
for (auto const& s: words)

{

ret[s].push_back(line_number); // see next slide

}

~
Q
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
o0
™
o
QO
P
<

3/26/2024 Lecture 13

Generating a Cross-Reference Table
- What 1s this doing here:

ret[s].push_back(line_number);

* s: the current word

‘ret[s]: returns a reference to the value associated with the key ‘s’
yielding the vector of line numbers

- If this 1s the first occurrence, an empty vector is put into the map

‘ret[s].push back(): adds the current line number to the end of
the vector

19}
S~
Q
=i

o
(av]

+~
=)
Q

o
o
o

o

+
(o]

ot
Q
o
n
n

<
on
g

o
w0

N

S

(o]

—

—
(o]

)

Q0

™

o

©)

N

<

Printing the Cross-Reference

- Print the generated map:

int main() {
// call xref using split by default
std::map<std::string, std::vector<int>> xrefmap = xref(std::cin);

// write the results
for (auto it = xrefmap.begin(); it != xrefmap.end(); ++it)
{
// write the word followed by one or more line numbers
std::cout << it->first << " occurs on line(s): ";

auto line it = it->second.begin();
std::cout << *line_ it++; // write the first line number

// write the rest of the line numbers, if any
std::for_each(line_it, it->second.end(), [](int line) { std::cout << ", " << line; });
std::cout << endl; // write a new line to separate each word from the next

}

return 0;

3/26/2024 Lecture 13

Ef‘\
~
5}
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
Q0
™
o
QO
95}
<

3/26/2024 Lecture 13

Printing the Cross-Reference

Whether I shall turn out to be the hero of my own life
or whether that station will be held by anybody else
these pages must show

A

I occurs on line(s): 1
Whether occurs on line(s): 1
anybody occurs on line(s): 2
be occurs on line(s): 1, 2
by occurs on line(s): 2

else occurs on line(s): 2
held occurs on line(s): 2

hero occurs on line(s): 1

(9]
~
)
a

=
<

-~
g
Q

(@)
o
o

o=

e
<

o=
o
S
4]
4]

<
an
g
=
=

o

(&

(@)

(A

—

—
(o]

o

a0

o

GR

@)

N

O

GT 2dN3O93T ¥606/96/6 SI9UIBIUO!) 9AIIBIIOS %HS,LD ‘2205 mred 0

)]
D
Q
-
D
+
-
D
).
o0
-
5
Ay
e
D
-
D
O

o
—

5]

=

=
=

o

«B)
—
(&
S
(@]
~
O
(@]
~~
@9

Generating Sentences

<noun> cat
<noun> dog
<noun> table
wn
<noun-phrase> <noun> g
o=
<noun-phrase> <adjective> <noun-phrase> £
. 3
<adjective> large O
)
o Q >
<adjective> brown 5
V)
<adjective> absurd §
.]
<verb> jumps <
an
<verb> sits %
. . -
<location> on the stairs o
(&
<location> under the sky =
<location> wherever it wants E
<sentence> the <noun-phrase> <verb> <location> =3
@)
n
&)

- Example: the table jumps wherever it wants

3/26/2024 Lecture 13

Representing the Rules

- Categories, rules, and ‘normal’ words
- Categories: enclosed in angle brackets

- Right hand side 1s a rule consisting out of a sequence of categories
and words

- How to represent/store categories?

- Let’s use a std: :map to associate the categories with the
corresponding rules

- Several rules for same category

using category = std::string;

using rule = std::vector<std::string>;

using rule collection = std::vector<rule>;

using grammar = std::map<category, rule collection>;

~
Q
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
o0
™
o
QO
P
<

3/26/2024 Lecture 13

Reading the Grammar

// read a grammar from a given input stream
grammar read _grammar(std::istream& in)
{
grammar ret;
std::string line;
// read the input
while (std::getline(in, line)) {
// split the input into words
std::vector<std::string> entry = split(line);
if ('entry.empty()) {
// use the category to store the associated rule
ret[entry[0]].push_back(
rule(entry.begin() + 1, entry.end()));

}
}

return ret;

Ef‘\
~
5}
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
Q0
™
o
QO
95}
<

3/26/2024 Lecture 13

Generating the random Sentence

- Start off with category <sentence>

- Assemble the output 1in pieces from various rules

*Result is a std: :vector<std: :string> holding the words of the
generated sentence

std::vector<std::string> generate_sentence(grammar const& g)

{
std::vector<std::string> ret;
generate(g, "<sentence>", ret);
return ret;

}

19}
S~
Q
=i

o
(av]

45
=)
Q

o
()
>

=

+
(o]

o=
Q
o
n
n

<
on
g

o

bj}

AN

S

A

—

=
o]

=
oS

o0

™

o

O

P

<

3/26/2024 Lecture 13

Generating the random Sentence

- Our algorithm generate() knows how to query the
grammar and how to collect the words

- Needs to decide whether a string 1s a category:

// return true if 's' represents a category
bool bracketed(std::string const& s)

{

return s.size() > 1 && s[@] == '<' && s[s.size() - 1] == '>';

}

- If 1t’s a category, look up rule and expand it

)
S~
Q
=}

o
(av]

45
=)
Q

o
()
>

=

+
(o]

o=
Q
o
n
n

{f:
an
g

o

bj}

N

(@)

(o]

—

=
o]

~
oS

o0

™

o

QO

P

<

- If 1t’s not a category, copy word to output

(An)
—

D)

~

B
=

Q

(<D)
—
N
S
N
~
o)
N
~
@n)

Generating the random Sentence

void generate(grammar const& g, std::string const& word, std::vector<std::string>& ret)

{
if (!bracketed(word)) {

ret.push_back(word);
)
else { =
// locate the rule that corresponds to word é
auto it = g.find(word); Z
if (it == g.end()) throw std::logic_error("empty rule"); s
rule_collection const& c = it->second; // fetch the set of possible rules <i
rule const& r = c[nrand(c.size())]; // from which we select one at random i
S
// recursively expand the selected rule %
for (auto it = r.begin(); it != r.end(); ++it) Z
generate(g, *i, ret); %
}

3/26/2024 Lecture 13

Selecting a Random Element

#tinclude <random>

// return a random integer in the range [0, n)
int nrand(int n)

{
static std::mt19937 mt; // Mersenne Twister engine
std::uniform_int_distribution<int> dist(@, n - 1);
return dist(mt);

}

19}
S~
Q
=i

o
(av]

+~
=)
Q

o
o
o

o

+
(o]

ot
Q
o
n
n

<
on
g

o

=

N

S

(o]

—

—
(o]

)

Q0

™

o

©)

N

<

3/26/2024 Lecture 13

Function local statics

- A function-local static variable
- I's 1n1tialized once whenever the function 1s called first
- Stays ‘alive’ even after the function execution has finished
- Retains 1t’s state between function calls
- Is visible only from inside the function

9]
S~
S
=i
o
<
-~
=)
Q
@)
2
o
.-
e
<
o
3,
S
n
142!
<
on
g
o=
<
o
N
S
(2]
—
—
o]
)
0
(9]
o
O
N
|

3/26/2024 Lecture 13

Pulling everything together

int main() {
// generate the sentence
std::vector<std::string> sentence = generate_sentence(read grammar(std::cin));

// write the first word, if any

auto it = sentence.begin();

if (!sentence.empty())
std::cout << *it++;

// write the rest of the words, each preceded by a space
std::for_each(it, sentence.end(), [](std::string const& s) {

std: :cout << << S5
})s
std::cout << std::endl;
return 0;

Ef‘\
~
5}
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
Q0
™
o
QO
95}
<

3/26/2024 Lecture 13

Pulling everything together

int main() {
// generate the sentence
std::vector<std::string> sentence = generate_sentence(read grammar(std::cin));

// write the words, separated by a space
bool first = true;
for(auto const& s : sentence) {
if (!first) {
std::cout << " ";
first = false;

}

std::cout << s;
}
std::cout << std::endl;
return 0;

~
Q
=}
o
(av]
+
=)
Q
o
)
>
=
+
(o]
o=
Q
o
n
%
an
g
o
5
-
N
(@)
(o]
—
—
o]
~
S
o0
™
o
QO
P
<

3/26/2024 Lecture 13

Selecting a Random Element

- Why does it print the same sentence whenever run?
- Random number generators are not random
- Generate a sequence of numbers with certain statistical properties

- Each time they are used they generate the same sequence of
numbers (by default)

- Each generator can be 1nitialized using a ‘seed’ causing it
to generate different sequences of numbers
* Let’s use a truly random number as the seed

wn
S~
Q
=i
o
<
+~
=)
Q
o
o
o
o
+
<
ot
Q
o
n
n
<
on
g
o
w0
AN
S
A
—
—
(o]
)
Q0
™
o
©)
N
<

3/26/2024 Lecture 13

Selecting a Random Element

#tinclude <random>

// return a random integer in the range [0, n)
int nrand(int n)

{

static std::random_device rd; // truly random number generator
static std::mt19937 mt(rd()); // seeded Mersenne Twister engine

std::uniform_int_distribution<int> dist(@, n - 1);

return dist(mt);

)
S~
Q
=}

o
(av]

45
=)
Q

o
()
>

=

+
(o]

o=
Q
o
n
n

{f:
an
g

o

bj}

N

(@)

(o]

—

=
o]

~
oS

o0

™

o

QO

P

<

3/26/2024 Lecture 13

Performance Considerations

- Unlike to associative containers in other languages, std: :map
1s not implemented as a hash table
- For each key type those need a hash function
- Performance i1s exquisitely sensitive to the details of this hash function.

* There 1s usually no easy way to retrieve the elements of a hash table in a
useful order.

- C++ associative containers are hard to implement in terms of
hash tables:
- The key type needs only the < operator or equivalent comparison function
- Associative-container elements are always kept sorted by key

- C++ has std: :unordered_map<>, std: :unordered set<>, etc.
* Those are hash tables

wn
S~
Q
=}
o
(av]
+
=)
Q
o
()
>
=
+
(o]
o=
Q
o
n
n
{f:
an
g
o
bj}
N
(@)
(o]
—
=
o]
~
oS
o0
™
o
QO
P
<

3/26/2024 Lecture 13

CENTER FOR COMPUTATION
& TECHNOLOGY

wn
-
Q
=
=
<
3
q
=
o
[
>
o=
gl
<
o
o
o
n
[}
('E
o0
g
=
n

