Using Library Algorithms

Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

SW{}LI0STY ATeaqry Suls() ‘€303 18] ‘08€E

V1 2In3097 "€206/8¢/€

a

beer++;

}while (sober);

3/28/2023, Lecture 14

Abstract

- Many containers share similar operations, like insert() or
erase(). Those have the same interface for all of them
(even for strings).

- All containers expose a companion iterator type allowing
to navigate through the elements stored in the container.
Again, all of them expose a similar interface

- We will see how the library exploits these similarities by
exposing generic algorithms: by exposing uniform
interfaces independent of the container they are applied
to.

:f
=)
'(_1
+
o=
—
S
0
e
=
By
P~
<
-
o
=
—
an
o
o=
wn
]
(@)
N
—
—
<
~
o
0
o
(@)
N
O

3/28/2023, Lecture 14

Basic Model: Pair of Iterators (Range)

- A pair of iterators defines a sequence
- The beginning (points to the first element — if any)
- The end (points to the one-beyond-the-last element)

begin: end:

= An iterator is a type that supports the “iterator operations” of
= ++ Point to the next element
= * Get the element
= == Does this iterator point to the same element as that iterator?

w0
(=]
=
<
+~
o
=
o
=
Q0
—
<
>
~
(V]
~
(@)
e
3
o0
g
o=
w0
o
N
=
(o]
—
—
<
f=)
-]
Q0
(Ap)
[Am)
©)
@)

= Some iterators support more operations (e.g., --, +, and [])

71 9In399] ‘¢Z08/8%/€ SW{}LI0STY ATeaqry 3uls() ‘€303 [18d ‘0

)
=
=
o =
=
)
<
)
o
=
D
-
D
O

3/28/2023, Lecture 14

Analyzing Strings
- Looking back to picture concatenation:

// copy entire bottom picture, use iterators
for (auto it = bottom.begin(); it != bottom.end(); ++it)

{
ret.push_back(*it);

// copy entire bottom picture, use vector facilities
ret.insert(ret.end(), bottom.begin(), bottom.end());

-There 1s an even more generic solution:

// copy entire bottom picture, use standard algorithm
std: :copy(bottom.begin(), bottom.end(), std::back _inserter(ret));

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

3/28/2023, Lecture 14

Generic Algorithms

-std: :copy 1s a generic algorithm
- Not part of any container
- Its operation 1s determined by its arguments
* Most of the time the standard algorithms expect iterators

-std: : copy takes 3 iterators (begin, end, out) and copies
the range [begin, end) to a sequence starting at out
(extending as necessary)

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Standard Algorithm: copy
- Writing

std::copy(begin, end, out);

-Is equivalent to (except for iterators not being copied):

while(begin != end)
*out++ = *begin++;

- What does “*out++ = *begin++; mean?

{ *out = *begin; ++out; ++begin; }

:f
=)
'(_1
+
o=
—
S
0
e
=
By
P~
<
-
o
o=
—
an
o
o=
wn
]
(@)
N
—
—
<
G
o
w
o
(@)
N
O

3/28/2023, Lecture 14

Iterator Adaptor

-std: :back_inserter() is an 1terator adaptor
- Function returning an iterator created based on its arguments

- Here, 1t takes a container and returns an iterator, which when used as a
destination, appends elements to that container

- This will append all of bottom to the container ret:

std: :copy(bottom.begin(), bottom.end(), std::back _inserter(ret));

:f
=)
'(_1
+
o=
—
S
0
e
=
By
P~
<
-
o
=
—
an
o
o=
wn
]
(@)
N
—
—
<
~
o
0
o
(@)
N
O

3/28/2023, Lecture 14

Caveats: copy

- This will not work (why?):

std::copy(bottom.begin(), bottom.end(), ret);
// ret is not an iterator, but a container

- This will compile, but not work (why?):
std::copy(bottom.begin(), bottom.end(), ret.end());
// while ret.end() is an iterator, it does not refer to
// any element (remember ‘points’ past last element)

- Many problems, why designed that way?

- Separation of copying and appending (expanding a container) allows
for more flexibility

- std: :back_inserter useful in other contexts as well

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

<t
—

o

P~

=
-

Q

5]
—
o
I
(@)
X
~
(7;\
N
~~

Another Copy Example

void f(std::vector<double> const& vd, std::list<int>& 1i)

{
if (vd.size() < li.size())
throw std::runtime_error("target container too small"); 2
std::copy(li.begin(), li.end(), vd.begin()); // note: different container types %
// and different element types ?
// (vd better have enough elements &
// to hold copies of 1i’s elements) ‘§
—
/] ... %
}
=
o

3/28/2023, Lecture 14

Input and Output Iterators

// we can provide iterators for output streams:

std::ostream_iterator<std::string> oo(std::cout); // assigning to *oo is to
// write to cout

*oo = "Hello, "; // meaning: std::cout << "Hello, "
++00; // "get ready for next output operation"
*00 = "world!\n"; // meaning: std::cout << "world!\n"

// we can provide iterators for input streams:

std::istream_iterator<std::string> ii(std::cin); // reading *ii is to read a
// string from cin

std::string sl
++11; // "get ready for the next input operation"
std::string s2

*ii; // meaning: std::cin >> sl

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

*ii; // meaning: std::cin >> s2

Make a Quick Dictionary (using a std::vector)

std

std:

std:
std:

std:
std:

std

std

std
std

::string from, to;
:cin >> from >> to;

:ifstream is(from);
:ofstream os(to);

:istream_iterator<std:

// get source and target file names

// open
// open

:string>

input stream
output stream

ii(is); // make input iterator for stream

:istream_iterator<std::string> eos; // input sentinel (defaults to EOF)
::ostream_iterator<std::string> oo(// make output iterator for
os, "\n"); // stream

// append "\n" each time
::vector<std::string> b(ii, eos); // b is a vector initialized

::sort(b.begin(), b.end());
::unique_copy(b.begin(), b.end(), o0o0); // copy buffer to output,

// from input
// sort the buffer

// discard replicated values

3/28/2023, Lecture 14

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

re 14

3/28/2023, Lectu

An Input File

This lecture and the next presents the STL (the
containers and algorithms part of the C++ standard
library). It is an extensible framework dealing with
data in a C++ program. First, I present the general
ideal, then the fundamental concepts, and finally
examples of containers and algorithms. The key notions
of sequence and iterator used to tie containers (data)

together with algorithms (processing) are presented.

=
<~
+~
o
=
@)
a0
]
=
>
~
(]
~
Q0
o=
—
on

Function objects are used to parameterize algorithms
with “policies™.

CSC3380, Fall 2023, Usin

Part of the Output

(data)
(processing)
(the

C++

First,
Function

I

It

STL

The

This

a
algorithms
algorithms.
an

and

are
concepts,
containers
data
dealing
examples
extensible

finally
Framework
fundamental
general
ideal,

in

18

iterator
key

lecture
library).
next
notions
objects

of
parameterize
part
present
presented.
presents
program.
sequence

3/28/2023, Lecture 14

E
=)
<
~
o=
—
o
)
—]
=
)
-
<
-
(@)
o
o=
—
o0
=i
o=
=
]
o
N
—
—
f;:
P~
=
o
0
o
o
@)
(@)

71 910399 ‘GZ02/8%/E SW{}LI0STY ATeaqry 3uls() ‘€303 [18d ‘0

)]
S
=
+
o =
3
2
=
=
D
-
D
O
D
=
o
>

3/28/2023, Lecture 14

Splitting Strings: Take 1

std::vector<string> split(std::string const& s)
{
std::vector<std::string> words;
typedef std::string::size_type string size;
string_size i = 0;

// invariant: we have processed characters [original value of i, i)
while (i !'= s.size()) {
// ignore leading blanks, find begin of word
while (i !'= s.size() && isspace(s[i])) // short-circuiting
++1;

// find end of next word

string size j = i;

while (j !'= s.size() && !isspace(s[j])) // short-circuiting
++J;

// if we found some non-whitespace characters, store the word
if (1 '= 3) {
// copy from s starting at i and taking j - i chars
words.push_back(s.substr(i, j - i));
1=173;

=i
<
+~
o]
~
o
an
—
<
P~
fav]
o
Q0
o=
—
an
g
o=
0
(o]
=
(o]
—
=
(o]
o
S
0
Gle)
o
@)
(@)

}
}

return ret;

Splitting Strings: Take 2

std::vector<std::string> split(std::string const& str)
{
std: :vector<std::string> ret;
auto i = str.begin();
while (i != str.end()) {
// ignore leading blanks
i = std::find_if(i, str.end(), not _space);

// find end of next word
auto j = std::find if(i, str.end(), space);

// copy the characters in [i, j)
if (i != str.end())
ret.push_back(string(i, j));
i=73;
}

return ret;

3/28/2023, Lecture 14

:f
=)
'(_1
+
o=
—
S
0
e
=
By
P~
<
-
o
=
—
an
o
o=
wn
]
(@)
N
—
—
<
~
o
0
o
(@)
N
O

3/28/2023, Lecture 14

Splitting Strings: Take 2

- Here are the predicates:

// true if the argument is whitespace, false otherwise
bool space(char c)

{

return std::isspace(c);

}

// false if the argument is whitespace, true otherwise
bool not_space(char c)

{

return !std::isspace(c);

}

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Standard Algorithm: find_if

- Find an entry 1n a sequence
std::find_if(begin, end, pred);
- Goes over the sequence [begin, end) and calls the predicate ‘pred’ for
each element

- Returns current position (iterator) as soon as the predicate returns
true for the first time

- Essentially this finds the first element in the sequence matching the
predicate

E
=)
<
~
o=
—
o
o0
—]
=
B>
-
]
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
@
P~
o
0
o
@)
N
(@)

Palindromes

3/28/2023, Lecture 14

- Palindromes are words that are spelled the same way
front to back as back to front: civic, eye, level, madam, etc.

- Simplest solution using a library algorithm:

bool is _palindrome(std::string const& s)

{
return std::equal(s.begin(), s.end(), s.rbegin());

}

- New constructs: equal(), rbegin()

:_E
=)
'(_1
+
o=
—
S
0
e
=
By
P~
<
-
o
=
—
an
o
o=
wn
]
(@)
N
—
—
<
~
o
0
o
(@)
N
O

3/28/2023, Lecture 14

Reverse Iterators

- Like begin(), rbegin() returns an iterator
- It 1s an 1terator that starts with the last element in the container
* When incremented, it marches backward through the container
- The 1terator returned 1s called reverse iterator

- Correspondingly, like end(), rend() returns an iterator
that marks the element before the first one

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Standard Algorithm: equal

- The standard algorithm std: :equal() compares two

sequences
- Returns whether these sequences hold the same elements
std::equal(beginl, endl, begin2)
- Compares [beginl, end1) with elements in sequence starting at
begin2
- Assumes second sequence is long enough

* There 1s an additional version allowing to specify the end of the
second sequence as well:

std::equal(beginl, endl, begin2, end2)

E
=)
<
~
o=
—
o
o0
—]
=
B>
-
]
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

i
o
P~
B

-
O
Q

—

(o]

=

[\

~

N

~

(a5

Palindromes, Take Two

- Solution using other library algorithms:

* Find the iterator pointing to the middle element and use that as the
end of the first sequence:

bool is palindrome2(std::string const& s)

¢ :
auto it = s.begin(); ,5
std::advance(it, s.size() % 2 ? s.size()/2 + 1 : s.size()/2); ’i
return std::equal(s.begin(), it, s.rbegin()); g

} -
bool is palindrome3(std::string const& s) E
{
return std::equal(s.begin(), %
std: :next(s.begin(), s.size() % 2 ? s.size()/2 + 1 : s.size()/2), ﬁ
s.rbegin()); %

} 7
o

3/28/2023, Lecture 14

Standard Algorithm: advance (next)

- Advance a given iterator N times:
void std::advance(it, n);

- Uses most efficient implementation depending on iterator
type

- Random access containers: uses operator+=()
- Sequential containers: uses operator++(- N times

- The algorithm next 1s similar, except that it returns the
new iterator

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

71 9In399] ‘¢Z08/8%/€ SW{}LI0STY ATeaqry 3uls() ‘€303 18

0
-
o
-

o0
5
g
5
=

3/28/2023, Lecture 14

Finding URLs

- Goal: find all URLs embedded 1n a text document

- URL: sequence of characters like
protocol-name://resource-name
(http://google.com/)
* Protocol name contains letters only
- Resource name contains letters, digits, punctuation characters

* Look for :// and then for protocol name preceding it and resource
name that follow it

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Finding URLs
-Find all URLs embedded 1n a text document

std: :vector<std: :string> find_urls(std::string const& s)
{
std: :vector<std: :string> ret;
// look through the entire input
auto b = s.begin(), e = s.end();
while (b !=e) {
// look for one or more letters followed by ://
b = url beg(b, e);
// if we found it

if (b !=e) {
auto after = url _end(b, e); // get the rest of the URL
ret.push_back(std::string(b, after)); // remember the URL
b = after; // advance b and check for more URLs on this line

}

}

return ret;

<!
<
+~
=
~
o
an
=
=
>
P~
«
P~
)
o=
—
o0
g
o=
wn
N
o
N
a0
=
<
=
o
0
o
@)
0
(@)

3/28/2023, Lecture 14

Finding URLs
- This looks like:

€ D

...text http | !/ | www.acceleratedcpp.com more text...

1 1

b = url_begin(b, e) after = url_end(b, e)

- The functions url begin() and url end() locate the url
inside the overall string (document)

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

3/28/2023, Lecture 14

Finding URLs: url_end

- Look for one or more letters allowed in an url:

std::string::const_iterator
url end(std::string::const_iterator b, std::string::const_iterator e)

{

return std::find_if(b, e, not_url char);

- Where not_url char is our predicate:

bool not_url_char(char c)

{

// characters, in addition to alpha-numerics, that can
// appear in a URL
static std::string const url ch = "~;/?:@=8%-_ .+!*'(),";

// see whether c can appear in a URL and return the negative
return !(std::isalnum(c) ||
std: :find(url_ch.begin(), url_ch.end(), c) != url_ch.end());

:_E
=)
'(_1
+
-
—
S
0
e
=
By
P~
<
-
o
=
—
an
o
.=
wn
]
(@)
N
—
—
<
~
o
0
o
(@)
N
O

3/28/2023, Lecture 14

Standard Algorithm: find

- Find an entry 1n a sequence
std: :find(begin, end, value);
- Goes over the sequence [begin, end) and compares each element
with ‘value’

- Returns current position (iterator) as soon as the comparison
evaluates to true for the first time

- Essentially this finds the first element in the sequence matching the
value

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

1re 14

=
2

Q

(¢D]
3
N
S
N
Q
&
[\l
==

Finding URLs: url_begin

- We place several iterators inside our string:

Algorithms

ng Library

CSC3380, Fall 2023, Usi

3/28/2023, Lecture 14

Finding URLs: url_begin

- Look for one or more letters followed by ://

std::string::const_iterator url beg(
std::string::const_iterator b, std::string::const_iterator e)
{

static std::string const sep = "://";

auto i = b; // 1 marks where the separator was found
while ((i = std::search(i, e, sep.begin(), sep.end())) != e) {
// make sure the separator isn't at the beginning or end of the line
if (i !'=b & i + sep.size() !=¢e) {
// beg marks the beginning of the protocol-name
auto beg = i;
while (beg !'= b && std::isalpha(beg[-1]))
--beg;
// 1s there at least one appropriate character before and after the separator?
if (beg != i && !not_url char(i[sep.size()]))
return beg;
}
// the separator we found wasn't part of a URL, advance i past this separator
i += sep.size();

<!
<
+~
=
~
o
an
=
=
>
P~
«
P~
)
o=
—
o0
g
o=
wn
N
o
N
a0
=
<
=
o
0
o
@)
0
(@)

}

return e;

3/28/2023, Lecture 14

Standard Algorithm: search

- Find a sequence 1nside another sequence:

- The std: : search algorithm takes to sequences [beginl, end1) and [begin2,
end?2)

- It tries to find [begin2, end?2) inside [begini, end1)

- Returns iterator pointing to first element inside [beginl, end1) if found, and
returns ‘endl’ otherwise

E
=)
<
~
o=
—
o
o0
—]
=
>
-
F‘v‘
-
e}
o=
—
o0
=i
o=
=
]
o
N
—
—
P~
=
o
0
o
o
@)
(@)

71 910399 ‘GZ02/8%/E SWYILI03[y ATeaqr suts() ‘€z0g [1Bd ‘08¢£0SD

),
D
=
D
<
O
75
o
-
o p=i
=
R
=]
O
o
=
=]
x
S,
=
o
O

3/28/2023, Lecture 14

Comparing Grading Schemes

- Devious students could exploit our grading scheme (median):
- Bottom half of results does not influence outcome
* Stop turning in homework after having good median

- What’s the difference between final grades of students
* Who submitted all and not all of homework
- What would have been the final grade if we
- Used average, while treating missing homework as zero
* Used median only of submitted homework

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
@
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Comparing Grading Schemes

- Separate students into two groups
* Those having all homework
* Those having missed homework

- Apply all three grading schemes to each student
- Average while treating missed homework as zero
* Median while treating missed homework as zero
* Median of submitted homework only

- Report the median of each of the groups

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Comparing Grading Schemes

- Separate students into groups:

// read all the records, separating them based on
// whether all homework was done
std::vector<student_info> did, didnt;
student_info student;
while (read(cin, student)) {
if (did_all homework(student))
did.push_back(student);
else
didnt.push_back(student);

}

// check that both groups contain data
if (did.empty())
std::cout << "No student did all the homework!" << std::endl;
if (didnt.empty())
std::cout << "Every student did all the homework!" << std::endl;

=}
g
+~
i
~
o
a0
—
<
~
(V]
—
)
o=
—
on
g
o=
w0
&S
N
o
AN
—
—
(o]
o
S
o0
(22
om
©)
)
o

3/28/2023, Lecture 14

Comparing Grading Schemes

- Test 1f student did all homework

bool did_all homework(student _info const& s)

{

return std::find(s.homework.begin(), s.homework.end(), @) ==
s.homework.end();

- Student did all homework if no homework grade 1s zero

:_E
=)
'(_1
+
-
—
S
0
e
=
By
P~
<
-
o
=
—
an
o
.=
wn
]
(@)
N
—
—
<
~
o
0
o
(@)
N
O

3/28/2023, Lecture 14

Comparing Grading Schemes

- Analyzing the grades

- Three analyses to perform, all on two different data sets (groups of
students)

* Reporting requires both results at the same time
* For each of the analysis types

- Encapsulate analysis types into a function each

- Pass those functions to the reporting, together with the two data
sets

- Reporting function interface:
write analysis(std::cout, "median", median_analysis, did, didnt);

:_E
=)
'(_1
+
o=
—
S
0
e
=
By
P~
<
-
o
o=
—
an
o
o=
wn
]
(@)
N
—
—
<
G
o
w
o
(@)
N
O

3/28/2023, Lecture 14

Median Analysis of Grades

- Needed for write_analysis

// this function doesn't quite work
double median_analysis(std::vector<student _info> const& students)

{
std: :vector<double> grades;
std: :transform(
students.begin(), students.end(),
std::back_inserter(grades), grade);
return median(grades);
}

- Doesn’t quite work! (Why?)
- Function grade() is overloaded
- Function grade() may throw exception

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

3/28/2023, Lecture 14

Standard Algorithm: transform

- The transform algorithm is like copy on steroids

- It not only copies the input sequence, but calculates a new value on
the fly

- It invokes the function for each element and inserts the returned
result instead of the original element:
std::transform(beginl, endl, begin2, func)
- The function ‘func’ is expected to have one parameter (the sequence
element) and to return the value to insert

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

Median Analysis of Grades

- Create an indirection layer (as usual):
double median_grade(student_info const& s)

{
try {
return grade(s); // throws if no homework
} catch (std::domain_error) {
return grade(s.midterm, s.final, 0);
}
}

- Now we can use 1t as:
double median_analysis(std::vector<student info> const& students)
{
std: :vector<double> grades;
std::transform(students.begin(), students.end(),
std::back_inserter(grades), median_grade);
return median(grades);

3/28/2023, Lecture 14

<!
<
+~
=
~
o
an
=
=
>
P~
«
P~
)
o=
—
o0
g
o=
wn
N
o
N
a0
=
<
=
o
0
o
@)
0
(@)

3/28/2023, Lecture 14

Invoking Analysis Functions

- We define write_analysis as

void write_analysis(std::ostream& out, std::string const& name,
double analysis(std::vector<student info> const&),
std: :vector<student_info> const& did,
std::vector<student _info> const& didnt)

{
out << name
<< ": median(did) = " << analysis(did)
<< ", median(didnt) = " << analysis(didnt)
<< std::endl;
}

- Parameter type to pass functions

=}
g
+~
i
~
o
a0
—
<
~
(V]
—
)
o=
—
on
g
o=
w0
&S
N
o
AN
—
—
(o]
o
S
o0
(22
om
©)
)
o

- Return type ‘void’

Comparing Grading Schemes

- Pulling everything together:

int main()

{

// students who did and didn't do all their homework
std::vector<student_info> did, didnt;

// read the student records and partition them
// ... (see previous slides)

// do the analyses

write _analysis(std::cout, "median", median_analysis, did, didnt);

write _analysis(std::cout, "average", average analysis, did, didnt);

write analysis(std::cout, "median of homework turned in",
optimistic_median_analysis, did, didnt);

return 0;

3/28/2023, Lecture 14

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

3/28/2023, Lecture 14

Analyzing Averages
- We need to calculate averages now (instead of medians:

double average(std::vector<double> const& v)

{

return std::accumulate(v.begin(), v.end(), 0.9) / v.size();

}

- Calculating average grade:

double average grade(student_info const& s)

{

return grade(s.midterm, s.final, average(s.homework));

}

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
wn
o]
S
N
—
—
<
e
o
0
o)
(ap]
(@)
O

re 14

3/28/2023, Lectu

Standard Algorithm: accumulate

- Unlike the other algorithms it’s declared in <numeric>

- Adds the values in the range denoted by its first two
arguments, starting the summation with the value given
by 1ts third argument

- The type of the sum is the type of the third argument,
crucial to write ‘0.0’

=
<
+~
o
=
@)
a0
—
=
>
~
<
~
=)
o=
—
ol)
g

CSC3380, Fall 2023, Usi

3/28/2023, Lecture 14

Analyzing Averages
- Average analysis is straight forward now:

double average analysis(std::vector<student info> const& students)

{
std: :vector<double> grades;
std::transform(students.begin(), students.end(),
std::back_inserter(grades), average grade);
return median(grades);
}

- Only difference is use of average grade instead of median_grade

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

—
o
P~
=

+
O
5}

—

(o]

S

(@]

~

0

(@]

~~

Median of Completed Homework

- Optimistic assumption that the students' grades on the
homework that they didn't turn in would have been the
same as the homework that they did turn in

// median of the nonzero elements of s.homework, £
// or @ if no such elements exist 5
double optimistic _median(student_info const& s) i
{ £
std: :vector<double> nonzero; @
std: :remove copy(s.homework.begin(), s.homework.end(), &
std: :back_inserter(nonzero), 90); 3

if (nonzero.empty()) =
return grade(s.midterm, s.final, 0); i

return grade(s.midterm, s.final, median(nonzero)); %

} 2

3/28/2023, Lecture 14

Standard Algorithm: remove_copy

- Library provides copying versions like ‘_copy’
- Equivalent to in-place versions except that they create a copy

* Therefore std::remove copy() is copying equivalent of
std: :remove()

- The std: :remove() algorithm finds all values that match
a given value and ‘removes’ those values from the
container.

- All non-matching values are retained/copied
- The first two iterators denote the input sequence.
* The third denotes the beginning of the destination for the copy.

- Assumes that there is enough space in the destination (same as
std: : copy)

:_E
=)
'(_1
+
o=
—
S
0
e
=
By
P~
<
-
o
o=
—
an
o
o=
wn
]
(@)
N
—
—
<
G
o
w
o
(@)
N
O

Classifying Students,
Revisited

3/28/2023, Lecture 14

Classifying Students, Revisited
- Here 1s what we had:

// second try: correct but potentially slow
std::vector<student _info> extract fails(std::vector<student info>& students)
{

std: :vector<student_info> fail;

std: :vector<student_info>::size type i = 0;

// invariant: elements [@, 1) of students represent passing grades
while (i != students.size()) {
if (fail grade(students[i])) {
fail.push back(students[i]};
students.erase(students.begin() + i);
} else
++1;
}

return fail;

S|
<
+~
e

~

(@)

a0
=
=

P~

o

P~
0
o=
—

a0

g
o=

wn
]
o
N
—
=

<
o
o
0
o
&
N
@)

3/28/2023, Lecture 14

Classifying Students, Revisited

- We promised to show an algorithmic solution (instead of
using std::1ist<T> or 1ist<T>)

- We'll show two solutions
- Slower one: uses two passes over the data
- And second one uses one pass over the data

- Both solutions expose complexity of O(N)

E
=)
<
~
o=
—
o
o0
—]
=
B>
-
]
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
@
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Classifying Students, Revisited

- Two pass solution:

std::vector<student _info> extract fails(std::vector<student info>& students)

{

std: :vector<student _info> fail,;

// create copy of student records while ignoring pass grades
std: :remove copy if(students.begin(), students.end(),
std::back_inserter(fail), pass_grade);

// remove fail grades from original sequence

students.erase(
std::remove if(students.begin(), students.end(), fail grade),
students.end());

<!
<
+~
=
~
o
an
=
=
>
P~
«
P~
)
o=
—
o0
g
o=
wn
N
o
N
a0
=
<
=
o
0
o
@)
0
(@)

return fail;

3/28/2023, Lecture 14

Standard Algorithm: remove_copy_if

-Same as std: :remove_copy(), except it expects a

predicate instead of the value
- Will ‘remove’ all elements for which predicate returns true

* New sequence will contain only elements for which predicate
returned false

- The algorithm std: :remove_if() 1s similar to
std: :remove(), except that it takes a predicate

- Does not really ‘remove’ elements, just copies non-matching
elements to the front.

E
=)
<
~
o=
—
o
o0
—]
=
B>
-
]
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
@
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Standard Algorithm: remove_if

0 0

students.begin() students.end()

A A A

students.begin() result of remove_if students.end()

w0
=)
=)
<
+~
o
B~
o
Ty
—
|
4
>
~
(o]
~
-~
e
3
o0
o
o=
w0
—
—
o
P
(o]
—
—
<
—
Q0
@
O
<

students.begin() students.end()

3/28/2023, Lecture 14

Member Function: erase

- Erases all the elements 1n the range delimited by the
iterators passed in: [begin, end)
- Changes the size of container

- Frees up space, might invalidate iterators (depending on container
type)

E
=)
<
~
o=
—
o
o0
—]
=
>
-
F‘v‘
-
e}
o=
—
o0
=i
o=
=
]
o
N
—
—
P~
=
o
0
o
o
@)
(@)

3/28/2023, Lecture 14

Classifying Students, Revisited

- Current solution calculated homework grades twice:
std: :remove_copy_ if, std::remove_1if

- What we really need 1s a way to partition our student
records based on the pass/fail criteria

* One pass solution
-std::stable partition

E
=)
<
~
o=
—
o
o0
—]
=
B>
-
]
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

3/28/2023, Lecture 14

Classifying Students, Revisited

- Single pass solution:

std::vector<student _info> extract fails(std::vector<student info>& students)
{
// partition input sequence based on pass_grade
auto iter = std::stable partition(
students.begin(), students.end(), pass_grade);

// copy failed student records
std::vector<student _info> fail(iter, students.end());

// remove failed student records from original vector
students.erase(iter, students.end());
return fail;

=}
g
+~
i
~
o
a0
—
<
~
(V]
—
)
o=
—
on
g
o=
w0
&S
N
o
AN
—
—
(o]
o
S
o0
(22
om
©)
)
o

3/28/2023, Lecture 14

Standard Algorithm: stable_partition

- Takes a sequence and rearranges its elements so that the
ones that satisfy a predicate precede the ones that do not
satisfy it.

- Two versions of this algorithm: std: :partition and
std::stable partition

- Algorithm partition might rearrange the elements within each
category

- Algorithm std: :stable_partition keeps them in the same order
aside from the partitioning.

- Both return an iterator to the first element of the second
data partition

:f
=)
'(_1
+
o=
—
S
0
e
=
P~
<
-
o
=
—
an
o
o=
wn
]
(@)
N
—
—
<
~
o
0
o
(@)
N
O

Standard Algorithm: stable_partition

A

students.begin() students.end()

A A A

students.begin() result of partition students.end()

students.begin() students.end()

3/28/2023, Lecture 14

w0
=)
=)
<
+~
o
B~
o
Ty
—
|
4
>
~
(o]
~
-~
e
3
o0
o
o=
w0
—
—
o
P
(o]
—
—
<
—
Q0
@
O
<

3/28/2023, Lecture 14

Classifying Students, Revisited

- Results:

- Algorithm based solutions are roughly as fast as list based solution
presented earlier

- Algorithmic solutions are substantially better than vector base
solution

* One pass solution i1s roughly twice as fast as two pass solution

E
=)
<
~
o=
—
o
o0
—]
=
>
-
F‘v‘
-
e}
o=
—
o0
=i
o=
=
]
o
N
—
—
f;:
P~
=
o
0
o
on
@)
(@)

3/28/2023, Lecture 14

Algorithms, Containers, and Iterators

- Important piece of information alert!
- Algorithms act on container elements—they do not act on containers

- This call acts on elements only:

// library algorithm, as no container is changed
std: :remove if(students.begin(), students.end(), fail grade)

- But this changes the container:

// member function of container as erase() changes the vector
students.erase(
std::remove_if(students.begin(), students.end(), fail grade),
students.end());

z
=)
g
+~
=
~
o
a0
Lt
<
>
P~
<
-
o
o=
5
o0
g
o=
=
o]
S
N
—
—
<
e
o
0
o)
(ap]
@)
O

3/28/2023, Lecture 14

Algorithms, Containers, and Iterators

- Changing the container (erase, insert) invalidates
1terators
- Not only 1iterators pointing to erased elements
- But also those pointing to elements after the erased ones

- Moving elements around (std: :remove if,
std: :partition) will change the element an iterator is

referring to
* Be careful when holding on to iterators/

E
=)
<
~
o=
—
o
o0
—]
<
B>
-
<
-
e}
o=
—
o0
=i
o=
4]
]
o
N
—
—
P~
o
0
o
@)
N
(@)

CENTER FOR COMPUTATION
& TECHNOLOGY

23, Lecture 14

>
-
<
=
2
=
—
on
=]
B=l
(2}
o
N
=
N
—
=
<
=
S

8

