
Ordering, Min, Max,
and MinMax
Lecture 15

Hartmut Kaiser

https://teaching.hkaiser.org/fall2023/csc3380/

Software
Development Notes

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

2

Agile Software Development
• An approach to software development that emphasizes:

 Small, collaborative development teams

 Usually 4-6 members of the team

 Working closely with customers/stakeholders

 Have a user representative, that interfaces regularly with customers / users /
stakeholders, on the team

 Developing software in an short iterative cycles

 requirements / code / testing / documentation

 Building working versions of code often

 Iterative Development

 Often employs Continuous Integration/Continuous Deployment (CI/CD)

 Test-driven development (TDD)

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

3

https://www.agilealliance.org/agile101/the-agile-manifesto/

• “We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

• That is, while there is value in the items on the right, we value the
items on the left more.”

Agile Manifesto 4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

4

This Photo by Alex86450 is licensed under CC BY-SA

Agile Method: Extreme Programming
• Characterized by feedback loops

• On-site customer

• Planning game (with customer)

• Avoid features until needed

• Pair programming

 Two programmers, one computer

 One person writes, the other dictates

 Typically writer is less skilled

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

5

https://commons.wikimedia.org/wiki/File:XP-feedback.gif
https://creativecommons.org/licenses/by-sa/3.0/

http://scrummethodology.com/

Agile Method: SCRUM
• Scrum is a simple set of roles, responsibilities, and meetings that

never change

• Time is divided into short work cadences, known as sprints, typically
two to four weeks long

• The product is kept in a potentially shippable (properly integrated
and tested) state at all times

• At the end of each sprint, stakeholders and team members meet to
see a demonstrated potentially shippable product increment and
plan its next steps

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

6

http://scrummethodology.com/

Scrum Roles
• Product Owner

 The Product Owner should be a person with vision, authority, and availability

 The Product Owner is responsible for continuously communicating the vision
and priorities to the development team

• Scrum Master
 The Scrum Master acts as a facilitator for the Product Owner and the team

 The Scrum Master does not manage the team

 The Scrum Master works to remove any impediments that are obstructing the
team from achieving its sprint goals

• Team
 A Scrum development team contains about 3-9 fully dedicated members, ideally

in one team room protected from outside distractions

 For software projects, a typical team includes a mix of software engineers,
architects, programmers, analysts, QA experts, testers, and UI designers

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

7

Scrum Phases/Steps
• Product Backlog Creation

• Sprints

 Sprint Planning and Sprint Backlog Creation

 Team commits to work to be accomplished in the Sprint

 Work on Sprint/Daily Scrum Meetings

 Development

 Testing

 Documentation

 Product Demonstration

 Retrospective

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

8

https://www.versionone.com/what-is-kanban/

Agile Method: Kanban
• Kanban is a method for managing the creation of products with an

emphasis on continual delivery while not overburdening the
development team

• Kanban is based on 3 basic principles:

 Visualize what you do today (workflow): seeing all the items in context of
each other can be very informative

 Limit the amount of work in progress (WIP): this helps balance the flow-
based approach so teams don’t start and commit to too much work at once

 Enhance flow: when something is finished, the next highest priority thing
from the backlog is pulled into play

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

9

https://www.inflectra.com/methodologies/kanban.aspx

The Kanban Board
• The Kanban process begins with a prioritized list of features, called a

backlog

• Agile team members work on the highest priority feature, based on
their team role

• Getting features to completion in priority order is the focus

• There is no set timeframe to complete features

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

10

https://kanbantool.com/online-kanban-board

Online Kanban tool: 4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

11

Ordering, Min, Max,
and MinMax

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

12

Component Efficiency
• What’s the criteria for a ‘good’ programming language?

 You can implement general-purpose components (algorithms, data
structures) that are universally usable

 Without losing efficiency

• Efficiency

 Relative efficiency

 A component is relatively efficient if when instantiated it’s as efficient as a non-
generic written in the same language

 Absolute efficiency

 A component is absolutely efficient if when instantiated it is as efficient as
anything which could be done on a given machine. Basically you know it’s as fast
as assembly language.

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

13

Abstraction Penalty
• The abstraction penalty is the ratio of runtime between a templated

operation (say, find on a vector<int>) and the trivial nontemplated
equivalent (say a loop over an array of int)

• Modern compilers have an abstraction penalty of 1-2%

• I still program in C++ because as far as I could ascertain it’s the only
language which allows me

 Generality and absolute efficiency

 I can program as general as I like

 I can talk about things like monoids and semi-groups

 When it compiles I could look at assembly code and see it is good. It is
absolutely efficient

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

14

Abstraction Penalty
• Components that are sufficient to see if a language is efficient:

 swap: takes two things and swaps them

 min: takes two things and figures out which one is smaller

 linear search: goes through a bunch of stuff and finds the one you want

• Are those too simple?

 How can you solve complicated things efficiently if you can’t solve those
simple things?

 Even simple things can be exciting

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

15

Swap

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

16

Swap
• Swap is a facility that – well swaps two values:

int a = 42, b = 43;

std::swap(a, b);

std::cout << "a: " << a << ", b: " << b << "\n"; // a: 43, b: 42

• Why is it important?

 Sorting sequences

 Reversing sequences

 Rotating sequences

 …

• Group theory has shown, that any permutation of a sequence can be
produced by a sequence of swaps

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

17

General swap

template <std::semiregular T>

void swap_copy(T& a, T& b)

{

T tmp(a);

a = b;

b = tmp;

}

• T must be semi-regular because of the copy construction

• This will work for any (semi-regular) type, however unfortunately,
this generic solution will be slow for some types. Why?

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

18

Slow for some Types

• For instance, for std::vector<> this would be very slow

• What we need is something like:

template <std::semiregular T>

void swap(std::vector<T>& a, std::vector<T>& b) {

// swap headers of a and b

// fix back pointers, if appropriate (for things like linked lists)

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

19

Special case for (unsigned) integers
• General swap requires additional memory location, can we do better?

template <std::unsigned_integral T>

void swap_xor(T& a, T& b)

{

// if a is identical to b the result is always 0
if (&a != &b) {

a = a ^ b;

b = a ^ b;

a = a ^ b;

}

}

• Why only unsigned integers?

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

20

Special case for (unsigned) integers
• The ^ symbol is bitwise exclusive or. The expression a ^ b means a is

true, or b is true, but not both. It is defined by the following truth
table:

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

21

a b a ^ b

0 0 0

0 1 1

1 0 1

1 1 0

swap_xor: Proof
• We need to use the fact that XOR is associative and commutative.

1. 𝑎 = (𝑎 ^ 𝑏) 𝑏 = 𝑏 a = a ^ b;

2. 𝑎 = (𝑎 ^ 𝑏) 𝑏 = (𝑎 ^ 𝑏) ^ 𝑏 b = a ^ b;

= 𝑎 ^ (𝑏 ^ 𝑏)

= 𝑎 ^ 0

= 𝑎

3. 𝑎 = (𝑎 ^ 𝑏) ^ 𝑎 𝑏 = 𝑎 a = a ^ b;

= 𝑏 ^ (𝑎 ^ 𝑎)

= 𝑏 ^ 0

𝑎 = 𝑏

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

22

Really general swap

template <std::semiregular T>

void swap(T& a, T& b)

{

T tmp(std::move(a));

a = std::move(b);

b = std::move(tmp);

}

• C++11 introduced move semantics that are meant to do exactly what
we need

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

23

Min & Max

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

24

Min & Max
• min and max are two facilities that return the smaller (larger) of two

values

• C++ standard has both: std::min and std::max

• Based on total ordering or strict weak ordering criteria

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

25

StrictWeak and Total Ordering
• A StrictWeaklyOrdered is a Binary Predicate that compares two objects,

returning true if the first precedes the second
 Invoke function on an element and totally order what it returns

 Applying TotallyOrdered to equivalence classes

• StrictWeaklyOrdered
 Partial ordering:

 Irreflexivity: !f(x, x)

 Antisymmetry: f(x, y)  !f(y, x)

 Transitivity: f(x, y) && f(y, z)  f(x, z)

 Connectedness: !f(a, b) && !f(b, a)  a ≅ b (equivalence)
 Transitivity of equivalence

 if x ≅ 𝑦 and y ≅ 𝑧, then x ≅ 𝑧

• TotallyOrdered is a Binary Predicate similar to StrictWeaklyOrdered
 Connectedness: !f(a, b) && !f(b, a)  a == b (equality)

 Transitivity of equality

 if x == 𝑦 and y == 𝑧, then x == 𝑧

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

26

Equivalence vs. Equality
• Equational reasoning must be applied:

 Equivalence is reflexive, symmetric, and transitive:
𝑎 ≅ 𝑎

𝑎 ≅ 𝑏֞𝑏 ≅ 𝑎

𝑎 ≅ 𝑏 ∧ 𝑏 ≅ 𝑐 ֞(𝑎 ≅ 𝑐)

 Equality implies substitutability:

for any function f on T, a == 𝑏 ֜ 𝑓 𝑎 == 𝑓(𝑏)

 Inequality must be the negation of equality:

𝑎 ≠ 𝑏 ֞¬(𝑎 == 𝑏)

 There is a fundamental connection between < and ==.

 If !(b < a) then it must be the case that b >= a.

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

27

Min
• We write an incorrect version and then fix it. We will start with
TotallyOrdered because we are more familiar with it

template <std::totally_ordered T>

T const& min_flawed(T const& a, T const& b)

{

if (a < b) {

return a;

}

else {

return b;

}

}

• We need to pass things by const reference

 Allow to invoke using constant objects while avoiding to copy things

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

28

Min, corrected version
• What should min return if the arguments are equal?

 Does it matter?

• When we sort a range which is already sorted, we should not do any
operations. Nothing should be swapped

• When we sort two things, the first guy should be the min afterwards
and the second guy should be the max

• Default ordering should be ascending (one, two, three, …)

• We can conclude that min should return the first argument if both
are equal

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

29

Sort2
• We previously said that min, max, and sort should work together

naturally.
 To see how they should all work, let’s write sort2, which sorts two things

template <typename T, typename Compare>
requires(std::strict_weak_order<Compare, T, T>)

void sort2(T& a, T& b, Compare cmp)
{

if (cmp(b, a))
{

swap(a, b);
}

}

• Sorting in-place is preferable

• Order of comparison same as for min
 After calling sort2, a should be the minimum and b should be the

maximum

 If a and b are equivalent, we don’t want to swap them

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

30

Min, corrected version
• Let’s avoid swapping values unnecessarily

template <std::totally_ordered T>

T const& min(T const& a, T const& b)

{

if (b < a) {

return b;

}

else {

return a;

}

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

31

Min, corrected, final version
• Let’s avoid swapping values unnecessarily

template <typename T, typename Compare>
requires(std::strict_weak_order<Compare, T, T>)

T const& min(T const& a, T const& b, Compare cmp)
{

if (cmp(b, a)) {
return b;

}
return a;

}

• Why do we pass cmp as a generic type argument instead of a function
pointer?
 Functionality: allows for function objects
 Performance: compiler can optimize function call overhead

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

32

Min, back to TotallyOrdered
• TotallyOrdered version, using std::less function object:

template <std::totally_ordered T>
T const& min(T const& a, T const& b)
{

return min(a, b, std::less<T>()); // std::less<T>() is an object
}

• Possible implementation of std::less:

template <std::totally_ordered T>
struct less
{

bool operator()(T const& a, T const& b) const
{

return a < b;
}

};

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

33

Max
• Implementing max correctly is hard

 It seems to be just calling min using operator>()

template <std::totally_ordered T>

T const& max(T const& a, T const& b)

{

return min(a, b, std::greater<T>());

}

 One couldn’t be more wrong about this! Why?

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

34

Max
• So, if we define max with min and > it’s not going to work. Suppose we

have a ≅ b (they are both equivalent), then
 min(a, b) a

 max(a, b) a

• But we want min and max to do different things because they’re both
useful

template <typename T, typename Compare>
requires(std::strict_weak_order<Compare, T, T>)

T const& max(T const& a, T const& b, Compare cmp)
{

if (cmp(b, a)) {
return a;

}
return b;

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

35

Max, TotallyOrdered
• For the sake of completeness:

 TotallyOrdered version, using std::less function object:

template <std::totally_ordered T>

T const& max(T const& a, T const& b)

{

return max(a, b, std::less<T>()); // std::less<T>() is an object

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

36

Min, Max, and
MinMax

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

37

Min Element in a Range
• Let’s find the min element in a range of values

 (Suppose we want to find an item with smallest price)

• std::min_element: simple algorithm, but hidden details

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

38

Min Element in a Range
template <std::forward_iterator I, typename Compare>

requires(std::strict_weak_order<Compare, std::iter_value_t<I>, std::iter_value_t<I>>)
I min_element(I first, I last, Compare cmp)
{

if (first == last)
return last;

I min_el = first;
++first;

while (first != last) {
if (cmp(*first, *min_el)) {

min_el = first;
}
++first;

}

return min_el;
}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

39

Min Element in a Range
• Note: this returns an iterator referring to the min element. Why?

• Because we probably want to update the value

 E.g. you want to find the worst performing employee and fire him

 You don’t need the person itself, you need a handle on him/her

 Often, you want to do things with what you found!

• Because the sequence might be empty

 What would you return in that case?

 The algorithm returns the end iterator

• Finds first of all minimal elements

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

40

Iterator Categories

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

41

Algorithms and Iterators
• Library defines five iterator categories

 Each corresponds to a specific set of exposed container operations

 Each library algorithm states what iterator category is compatible

 Possible to understand what containers are usable with which algorithms

 Each category corresponds to an access strategy for elements, also limits
usable algorithms

 For instance: single pass algorithms, or random access algorithms

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

42

Sequential Read-Only Access
• std::find:

template <std::input_iterator Iterator, typename T>
Iterator find(Iterator first, Iterator last, T const& val)
{

for (/**/; first != last; ++first)
if (*first == val)

break;
return first;

}

• Requires iterator operators: != (==), ++, * (for reading)
 Input iterators

• Not possible to store a copy of the iterator ‘to go back’

• All iterators we’ve seen so far are (at least) input
iterators

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

43

Sequential Write-Only Access
• std::copy

template <std::input_iterator In, std::output_iterator Out>
Out copy(In begin, In end, Out dest)
{

while (begin != end)
*dest++ = *begin++;

return dest;
}

• Required iterator operators: != (==), ++, * (for writing)
 Output Iterators, example: std::back_inserter

• Implicit requirements:
 Do not execute ++it more than once between assignments to *it
 Do not assign a value to *it more than once without incrementing it

• Not possible to store a copy of the iterator to overwrite output

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

44

Sequential Read-Write Access
• std::replace

template <std::forward_iterator Fwd, typename X>

void replace(Fwd beg, Fwd end, X const& x, X const& y)

{

while (beg != end) {

if (*beg == x)

*beg = y;

++beg;

}

}

• Required iterator operators: != (==), ++, * (for reading and writing), ->
for member access
 Forward iterators

• Storing copy of iterator possible! Very handy!

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

45

Reversible Access
• std::reverse

template <std::bidirectional_iterator BiDir>
void reverse(BiDir begin, BiDir end)
{

while (begin != end) {
--end;
if (begin != end)

swap(*begin++, *end);
}

}

• Required iterator operators: !=, ==, ++, --, * (for reading and writing), -> for
member access
 Bidirectional iterators

• The standard-library container classes all support bidirectional iterators.
 Except std::forward_list (singly linked list)

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

46

Random Access
• std::binary_search:

template <std::random_access_iterator Ran, class X>

bool binary_search(Ran begin, Ran end, X const& x)

{

while (begin < end) {

Ran mid = begin + (end - begin) / 2; // find the midpoint of the range

// see which part of the range contains x; keep looking only in that part

if (x < *mid)

end = mid;

else if (*mid < x)

begin = mid + 1;

else // if we got here, then *mid == x so we're done

return true;

}

return false;

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

47

Random Access
• Required iterator operators:

 != (==), ++, --, * (for reading and writing), -> for member access

 Let’s assume p, q are iterators, n is integer

 p + n, p - n, and n + p

 p - q

 p[n] (equivalent to *(p + n))

 p < q, p > q, p <= q, and p >= q

• We’ve used std::sort

• Containers: std::vector, std::string
 std::list is not random access (it’s bidirectional), why?

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

48

Iterator Ranges
• Algorithms take pair of iterators

 c.begin() – refers to first element

 c.end() – refers to first element after last (‘one off ’)

• Allows simple handling of empty ranges, both iterators point to the
one off element

• Allows for comparing iterators for equality (!=/==), no need to define

notion of iterators being larger/smaller than others

• Allows to indicate ‘out of range’, see url_beg(), where we returned
end (off by one) iterator if nothing was found

• Only caveat for end iterators is that they can’t be dereferenced

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

49

Input/Output Iterators
• Why are they separate from forward iterators?

 (no container exposes them)

• One reason is

 Not all iterators come from containers

 std::back_inserter, usable with any container supporting push_back

 Iterators bound to streams: using iterator operations allowing to access
std::istreams and std::ostreams

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

50

Input/Output Iterators
• The input stream iterator is an input-iterator type named
std::istream_iterator:

// read ints from the standard input and append them to v

std::vector<int> v;

std::copy(
std::istream_iterator<int>(cin), std::istream_iterator<int>(),
std::back_inserter(v));

• Stream iterators are templates!

 Need to specify type to read from input

 Same as for normal input operations, which are always typed as well

 Default constructed std::istream_iterator denotes end of input

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

51

Input/Output Iterators
• The output stream iterator is an output-iterator type named
std::ostream_iterator:

// write the elements of v each separated from the other

// by a space

std::copy(
v.begin(), v.end(),
std::ostream_iterator<int>(std::cout, " "));

• ostream_iterator is a template as well

 Need to specify type of required output

 Second argument is separator (defaults to no separation)

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

52

Min and max Element in a Range
• How many comparisons do we need to find the min of five elements?

 Four.

• In general why do we need n - 1 comparisons.

 Why no more?

 We don’t need to compare an element with itself.

 Why no fewer? Maybe we could do it in n - 2 with a clever algorithm?

 We need to look at all elements to know which one is the min

• How many comparisons do we need to find min and max together?

 Obviously we could do 2n - 2, but what about fewer6?

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

53

Min and max Element in a Range
• Instead of comparing each element of the sequence against running

min and max

 Compare two (adjacent) elements amongst themselves

 Compare the smaller one against the running min

 Compare the larger one against the running max

• How many operations?

 Three comparisons for every two elements: 3n/2

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

54

Min and max Element in a Range
template <std::forward_iterator I, typename Compare>

requires(std::strict_weak_order<Compare, std::iter_value_t<I>,
std::iter_value_t<I>>)

std::pair<I, I> minmax_element(I first, I last, Compare cmp)

{
// handle empty sequence

// handle sequence with one element

// initialize running min and max
// loop over elements updating min and max

while (first != last && next != last) {

//...
}

// handle possible leftover element

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

55

Min and max Element in a Range
• Handle empty sequence

template <std::forward_iterator I, typename Compare> requires(...)
std::pair<I, I> minmax_element(I first, I last, Compare cmp)
{

// handle empty sequence
if (first == last) {

return std::make_pair(last, last);
}

// handle sequence with one element
// initialize running min and max
// loop over elements updating min and max
while (first != last && next != last) {

// ...
}
// handle possible leftover element

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

56

Min and max Element in a Range
• Handle sequence with one element

template <std::forward_iterator I, typename Compare> requires(...)
std::pair<I, I> minmax_element(I first, I last, Compare cmp)
{

// handle empty sequence
// handle sequence with one element
I min_el = first; // refers to current min
++first;
if (first == last)

return std::make_pair(min_el, min_el);

// initialize running min and max
// loop over elements updating min and max
while (first != last && next != last) {

// ...
}
// handle possible leftover element

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

57

Min and max Element in a Range
• Initialize running min and max

template <std::forward_iterator I, typename Compare> requires(...)
std::pair<I, I> minmax_element(I first, I last, Compare cmp)
{

I min_el = first; ++first; // refers to current min

// initialize running min and max
I max_el = first; // refers to current max
I next = first; ++next; // first and next refer to pair to examine

if (cmp(*max_el, *min_el))
std::swap(min_el, max_el);

// loop over elements updating min and max
while (first != last && next != last) {

// ...
}
// handle possible leftover element

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

58

Min and max Element in a Range
• Loop over elements, updating min and max

template <std::forward_iterator I, typename Compare> requires(...)
std::pair<I, I> minmax_element(I first, I last, Compare cmp)
{

I min_el = first; ++first; // refers to current min
I max_el = first; // refers to current max
I next = first; ++next; // first and next are pair to examine

// loop over elements updating min and max
while (first != last && next != last) {

I potential_min = first, potential_max = next;

if (cmp(*potential_max, *potential_min)) // potential_min refers to smaller of the two
std::swap(potential_max, potential_min);

if (cmp(*potential_min, *min_el)) // update current min
min_el = potential_min;

if (!cmp(*potential_max, *max_el)) // update current max
max_el = potential_max;

first = next; ++first; ++next; // go to next pair of elements
}
// handle possible leftover element

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

59

Min and max Element in a Range
• Handle possible leftover element

template <std::forward_iterator I, typename Compare> requires(...)
std::pair<I, I> minmax_element(I first, I last, Compare cmp)
{

I min_el = first; // refers to current min
I max_el = first; // refers to current max
I next = first; ++next; // first and next are pair to examine
while (first != last && next != last) { ... }

// handle possible leftover element
if (first != last) { // odd elements, one left over

if (cmp(*first, *min_el))
min_el = first;

else if (!cmp(*first, *max_el))
max_el = first;

}
return std::make_pair(min_el, max_el);

}

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

60

Min and max Element in a Range
• This algorithm was invented by Ira Pohl of UC Santa Cruz, in the

mid-seventies

 He also proved it was optimal

 std::minmax_element is part of the C++ standard since C++11

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

61

Min and max Element in a Range
Comparisons

n minmax_simple minmax gain(%)

64 1.97 1.5 24

128 1.98 1.5 24

256 1.99 1.5 25

512 2 1.5 25

1024 2 1.5 25

2048 2 1.5 25

4096 2 1.5 25

8192 2 1.5 25

16384 2 1.5 25

32768 2 1.5 25

65536 2 1.5 25

131072 2 1.5 25

262144 2 1.5 25

524288 2 1.5 25

1048576 2 1.5 25

2097152 2 1.5 25

4194304 2 1.5 25

8388608 2 1.5 25

16777216 2 1.5 25

33554432 2 1.5 25

67108864 2 1.5 25

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

62

Times

n minmax_simple minmax gain(%)

64 3.67 1.02 72

128 4.24 1.13 73

256 4.31 1.08 75

512 4.41 1.08 76

1024 4.43 1.11 75

2048 4.43 1.1 75

4096 4.42 1.13 74

8192 4.42 1.12 75

16384 4.46 1.35 70

32768 4.63 1.14 75

65536 4.61 1.17 75

131072 4.79 1.17 76

262144 4.68 1.17 75

524288 4.65 1.14 75

1048576 4.92 1.21 75

2097152 4.82 1.24 74

4194304 4.88 1.18 76

8388608 4.79 1.16 76

16777216 4.98 1.35 73

33554432 4.7 1.36 71

67108864 4.7 1.18 75

ns/iterationComparisons

per iteration

4
/2

/2
0

2
4

,
L

e
ct

u
re

 1
5

C
S

C
3

3
8

0
,
S

p
ri

n
g
 2

0
2

4

O
rd

e
ri

n
g
,
M

in
,
M

a
x
,
a
n

d
 M

in
M

a
x

63

