A Display Model

Lecture 16
Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

91 0aNn3eT Fg0%/V /¥ [PPOIN AedsI(q V ‘Fg0g sutidg ‘08¢€DSD

Software
Development Notes

4/4/2024, Lecture 16

Singleton Pattern

- Singleton pattern ensures that there will only be one instance of a
particular class

. Instead of creating an object directly (and globally):
some_type global(..);

- We use a static method:
some_type& global = some type::get instance();

- some_type::get _instance() always returns the same instance

. Therefore, it is different from a factory (pattern), which creates new
objects

=
[
]
)
%
=
>
=
=
[oF
4]
5
<
<
(&
=
(o]
o0
(@}
o
~
Q
n
=
a0
G
™
(@)
N
(@)

4/4/2024, Lecture 16

What’s Wrong With It?

- Singletons are “anti-functional”
* And bad for multi-threaded contexts

- They’re essentially a fancy global variable

- Global variables are useful sometimes, but usually they're a terrible
1dea
* They make refactoring more difficult
* They make testing much more difficult
« They make reasoning about system behavior more difficult
* They create additional issues in multi-threaded environments

- Sometimes they are useful in spite of the above

=
[
]
)
%
=
>
=
=
[oF
4]
5
<
<
(&
=
(o]
o0
(@}
o
~
Q
n
=
a0
G
™
(@)
N
(@)

4/4/2024, Lecture 16

Where you see it

- Singleton 1s associated with factories:
- The factory itself can be a singleton (configuration managers)

- It 1s common when accessing hardware resources:
mouse: :get_instance();
screen::get _instance();

=
[
]
)
=
>
fay]
=
[oF
4]
o=
A
<
<
(&
=
(o]
o0
(@}
o
~
Q
n
o
a0
G
(@)
N
O

4/4/2024, Lecture 16

Singleton Class Diagram

- Singleton has the easiest UML class diagram

Singleton

- singleton : Singleton

- Singleton()
+ getlinstance() : Singleton

—
=
[=3
=
>
o]
—
o,
D)
o=
A
<
N
S
N
on
=)
i
~
joF
n
=
0
™
o
©)
0
@)

4/4/2024, Lecture 16

3 Things Worth Noting

- The constructor 1s private
* Why?

* Because if it weren’t, the user could create more than one instance,
defeating the purpose

. The instance field is a (function-local) static (indicated by
underline) and private
* Why?
+ Static because it’s an easy way to ensure that there is exactly one, globally
accessible field

+ Private to force users to use get_instance

- The only way to access the instance is through the get _instance
method (which is also static)

- This 1s where we return a reference to the one instance, or create 1t if 1t
doesn’t exist (on first access)

=
[
]
)
%
=
>
fay]
=
g
4]
5
<
<
(&
=
(o]
o0
(@}
o
~
Q
n
=
a0
G
™
(@)
N
(@)

©
—

o)

=

=
+~

O

b}
|
<
(o]
S
(@]
~
<
=
<

Example

class graphics_manager {
private:

graphics manager() { ... }

// ... Other (non-static) functionalities

public:

. . . '—‘m
static graphics manager& get instance() 3
{ =

static graphics _manager instance; // created on first access =

<

return instance; 3

S
} -
)
2
N
<

4/4/2024, Lecture 16

Benefits of Function-local static

- Correct order of initialization is forced, so it can’t be wrong
- The instances are also not global, which reduces coupling

- Basically, this is what you should do instead of using a global in
almost every circumstance

—
[}
]
)
P
>
=
=
[oF
0
o=
A
<
<+
(&
=
(o]
o0
(@}
o
~
Q
n
o
a0
(ap)
(@)
N
O

9T 9IN309T ‘¥G0G/¥/¥ [PPOIN Le1dsI(] V ‘$30g Suridg

r—
QD
xe.
=
>
<
r—
Q,
2
.
-
<

4/4/2024, Lecture 16

Abstract

- This lecture presents a display model (the output part of a GUI),
giving examples of use and fundamental notions such as screen
coordinates, lines, and color. Some examples of shapes are Lines,
Polygons, Axis, and Text.

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

4/4/2024, Lecture 16

Overview

- Why graphics?
- A graphics model

- Examples

—
[}
]
o
P
>
=
=
g
wn
o=
A
<
<
(&
=
(o]
o0
o
g
~
Q
n
o
a0
(ap)
(@)
N
O

4/4/2024, Lecture 16

Why bother with graphics and GUI?

- It’s very common
* If you write conventional PC applications, you'll have to do it

. It’'s useful
- Instant feedback

* Graphing functions
- Displaying results

- It can 1llustrate some generally useful concepts and techniques

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

4/4/2024, Lecture 16

Why bother with graphics and GUI?

- It can only be done well using some pretty neat language features ©

- Graphics are a good introduction to what 1is commonly known as

‘O0P
- Lots of good (small) code examples

- It can be non-trivial to “get” the key concepts
* So it’s worth teaching
 If we don’t show how it’s done, you might think it was “magic”

« Graphics is fun!

=
[
]
)
=
>
=
=
[oF
4]
o=
A
<
<
(&
=
(o]
o0
(@}
o
~
Q
n
o
a0
G
(@)
N
O

4/4/2024, Lecture 16

Why Graphics/GUI?

- WYSIWYG

- What you see (in your code) is what you get (on your screen)

- Direct correspondence between concepts, code, and output

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

9T 9IN309T ‘¥G0G/¥/¥ [PPOIN Le1dsI(] V ‘$30g Suridg

r—
QD
xe.
=
>
<
r—
Q,
2
.
-
<

4/4/2024, Lecture 16

Text vs. Graphics

- So far we have seen text based stream 10
* Possible to do ‘graphics’

- Simplest HTML:

<ldoctype html>
<html lang="en-US">
<head>
<meta charset="utf-8" />
<title>My test page</title>
</head>
<body>
<p>This is my page</p>
</body>
</html>

- Here and in the next lectures we will provide an alternative approach
« Directly aimed at the screen, drawing lines, rectangles, circles, etc.

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

4/4/2024, Lecture 16

Display Model

attach()

attach()

- Objects (such as graphs) are “attached to” a window.

+ The “display engine” invokes display commands (such as “draw line from x to y”) for
the objects 1n a window

—
D
e
o
=
>
(&)
—_—
Q
D)
5
<
<
N
ol)
=)
Ok
o
Q
0
O
N

- Objects such as Square contain vectors of lines, text, etc. for the window to draw

3o
—

)

~

B
-

S

Q
—
<
N
=)
[\
~
<t
~
<

Display Model

- An example 1llustrating the display model

int main()

{
Graph_lib::Point t1(100, 200); // a point (obviously)
Simple window win(tl, 6@, 4@, "Canvas"); // make a simple window
g5
Graph_lib::Polygon poly; // make a shape (a polygon, obviously) E
=
poly.add(Graph_lib::Point(300, 200)); // add three points ég
poly.add(Graph_lib::Point(350, 100)); =
poly.add(Graph_lib::Point (400, 200)); <
N
poly.set_color(Graph_lib::Color::red); // make the polygon red (obviously) 51
a0
win.attach(poly); // connect poly to the window ;;
win.wait_for_ button(); // give control to the display engine ‘Z
&)

9T 2IN3T HZ0G/7 /¥ [PPoIN Ae1dsIq V ‘$g0g Sutidg ‘08¢€DSD

Ing Screen

The Result

3o
—

)

~

B
-

S

Q
—
<
N
=)
[\
~
<t
~
<

Display Model

- An example 1llustrating the display model

int main()

{
Graph_lib::Point t1(100, 200); // a point (obviously)
Simple window win(tl, 6@, 4@, "Canvas"); // make a simple window
g5
Graph_lib::Polygon poly; // make a shape (a polygon, obviously) E
=
poly.add(Graph_lib::Point(300, 200)); // add three points ég
poly.add(Graph_lib::Point(350, 100)); =
poly.add(Graph_lib::Point (400, 200)); <
N
poly.set_color(Graph_lib::Color::red); // make the polygon red (obviously) 51
a0
win.attach(poly); // connect poly to the window ;;
win.wait_for_ button(); // give control to the display engine ‘Z
&)

Graphics/GUI Libraries

- You'll be using a few interface classes we wrote

* Interfacing to a popular GUI toolkit

» GUI == Graphical User Interface

- FLTK: www.fltk.org // Fast Light Tool Kit, pronounced ‘FullTick’
 Installation, etc.

- FLTK

* Our GUI and graphics classes

* Project settings

- This model is far simpler than common toolkit interfaces
- The FLTK (very terse) documentation is 1000 pages
* Our interface library 1s < 20 classes and < 500 lines of code

* You can write a lot of code with these classes
* And what you can build on them

4/4/2024, Lecture 16

=
[
]
)
%
=
>
=
=
[oF
4]
5
<
<
(&
=
(o]
o0
(@}
o
~
Q
n
=
a0
G
™
(@)
N
(@)

4/4/2024, Lecture 16

Graphics/GUI libraries (cont.)

- The code 1s portable
+ Windows, Unix, Mac, etc.

- This model extends to most common graphics and GUI uses

- The general ideas can be used with any popular GUI toolkit

* Once you understand the graphics classes you can easily learn any
GUI/graphics library

« Well, relatively easily — these libraries are huge

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

4/4/2024, Lecture 16

Graphics/GUI libraries

- Often called “a layered architecture”

—
[}
el
O
P
>
<
=
[oF
0
a
<
<
(&

CSC3380, Spring 2

Coordinates

4/4/2024, Lecture 16

0,0 200,0

v

50,50

200,100

¥ 0,100
- Oddly, y-coordinates “grow downwards” // right, down

- Coordinates identify pixels in the window on the screen

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

- You can re-size a window (changing x_max() and y_max()

4/4/2024, Lecture 16

Interface classes

« An arrow means “is a kind of” >

- Color, Line_style, and Point are “utility classes” used by the other classes

—
)
el
o
(=]
-
)
fay]
—
joh
()
a
<
<
(&
o
)
(o]
o0
=]
o=
=
(oF
n
—
)
o0
[ap)
o
'
Q
N

- Window is our interface to the GUI library (which is our interface to the screen)

4/4/2024, Lecture 16

Interface classes

- Current
+ Color, Line_style, Font, Point,
- Window, Simple_window
- Shape, Text, Polygon, Line, Lines, Rectangle, ...
- Axis

. Easy to add (for some definition of “easy”)
« Grid, Block_chart, Pie_chart, etc.

- Later, GUI
* Button, In_box, Out_box, ...

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

3o
—

)

~

B
-

S

Q
—
<
N
=)
[\
~
<t
~
<

Demo code 1

// Getting access to the graphics system
#include "Graph.h" // graphical shapes
#include "Simple_window.h" // stuff to deal with your system's windows

int main()

t 3
// make a simple window §

// screen coordinate (100, 200) top left of window ;%

// window size(600*400) <

// title: Canvas g
Simple window win(Graph_lib::Point(100, 100), 600, 400, "Canvas"); .g
win.wait_for_button(); // give control to the display engine 2

<

} =
O

N

&

91 2aN109T 208/ /¥ [PPOIN Ae[ds1(q V¥ ‘¥¢0g Sutidg ‘08¢€DSD

2

“blank canvas

4/4/2024, Lecture 16

Demo code 2

// make an Axis, an axis is a kind of Shape
// Axis::x means horizontal
// starting at (20, 300)
// 280 pixels long
// 10 "notches"
// text "x axis"
Graph lib::Axis xa(
Graph_lib::Axis::x, Graph_lib::Point(20, 300), 280, 10, "x axis");

win.set_label("Canvas #2");

win.attach(xa); // attach axis xa to the window

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

91 9INYI9T ‘FZ0G//¥ [PPOIN Le[dsI(q V ‘F30g Sutidg ‘08€€DSD

o
1
X axis

~aXl1S

W Canvas #2

Add an X

4/4/2024, Lecture 16

Demo code 3

win.set label("Canvas #3");

Graph lib::Axis ya(
Graph_lib::Axis::y, Graph_lib::Point(20, 300), 280, 10, "y axis");

ya.set color(Graph lib::Color::cyan); // choose a color for the axis

ya.label.set color(Graph_lib::Color::dark_red); // choose a color for the text

win.attach(ya);

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

4/4/2024, Lecture 16

Add a Y-axis (colored)

M Canvas #3

¥ axis

r—
)
=
=
>
<
r—
joF
n
o=
A
<
<
N
o
N
o
=}
=
~
oF
N
=
0
)
™
®)
)
©

Yes, it’s ugly, but this is a programming course, not a graphics design course

4/4/2024, Lecture 16

Demo code 4

win.set label("Canvas #4");

// sine curve

// plot sin() in the range [0:100)

// with (@, @) at (20, 150)

// using 1000 points

// scale x values * 50, scale y values * 50

Graph_lib::Function sine(std::sin, @, 100, Graph lib::Point(20, 150), 1000, 50, 50);

win.attach(sine);

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

91 2an3097 ‘F30%/F/¥ [PPoIN Ae1dsIq V ‘$g0g Sutidg ‘08¢€DSD

1
axis

X

M Canvas #4

Add a sine curve

4/4/2024, Lecture 16

Demo code 5

win.set label("Canvas #5");

sine.set color(

Graph_lib::Color::blue); // I changed my mind about sine's color

Graph_lib::Polygon poly; // a polygon, a Polygon is a kind of Shape
poly.add(Graph_lib::Point(300, 200)); // three points makes a triangle
poly.add(Graph_lib::Point(350, 100));

poly.add(Graph_lib::Point(400, 200));

poly.set color(Graph lib::Color::red); // change the color
poly.set_style(Graph_lib::Line_style::dash); // change the line style

=
[
]
)
%
=
>
=
=
[oF
4]
5
<
<
(&
=
(o]
o0
(@}
o
~
Q
n
o
a0
G
™
(@)
N
(@)

win.attach(poly);

91 9INPT FZ0G/¥/¥ [PPOIN Ae1dsIq V $20g Sutidg ‘08€€DSD

1
axis

X

M Canvas #5

Add a triangle (and color the curve)

4/4/2024, Lecture 16

Demo code 6

// add a rectangular shape

// at position 200, 200
// of size 100*50
Graph_lib::Rectangle r(Graph_lib::Point(200, 200), 100, 50);

win.attach(r);

—
[}
]
o
P
>
=
=
g
wn
o=
A
<
<
(&
=
(o]
o0
o
g
~
Q
n
o
a0
(ap)
(@)
N
O

9T 9IN309T ‘¥G0G/¥/¥ [PPOIN Le1dSI(] V ‘F30g Sutids ‘08ee0DS)

1
axis

X

M Canvas #6

Add a Rectangle

Demo code 6.1

// Add a shape that looks like a rectangle

win.set_label("Canvas #6.1");

Graph_lib::Closed polyline poly rect;

poly rect.add(Graph lib:
poly rect.add(Graph lib:
poly rect.add(Graph lib:
poly rect.add(Graph lib:

win.attach(poly rect);

:Point (100,
:Point (200,
:Point (200,
:Point (100,

50));
50));

100));
100));

4/4/2024, Lecture 16

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

Add a Shape that looks like a
Rectangle

4/4/2024, Lecture 16

FEX
yaxls Lo Ned

—
)
[=3
=
>
<
—
o8
0
=
A
<
AN
S
N
on

CSC3380, Sprin

But 1s 1t a rectangle?

4/4/2024, Lecture 16

Demo code 6.2

- We can add a point

win.set label("Canvas #6.2");

poly rect.add(Graph lib::Point(50, 75)); // now poly rect has 5 points

- “looking like” 1s not the same as “i1s”

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

91 2an3097 ‘F30%/F/¥ [PPoIN Ae1dsIq V ‘$g0g Sutidg ‘08¢€DSD

1
axis

X

M Canvas #6.2

Obviously a polygon

Add fill

win.set label("Canvas #7");

4/4/2024, Lecture 16

// color the inside of the rectangle

r.set fill color(Graph_lib::Color::yellow);

// make the triangle contour fat and dashed
poly.set style(Graph lib::Line style(Graph lib::Line style::dash, 4));

poly rect.set fill color(Graph_lib::Color::green);
poly rect.set style(Graph lib::Line style(Graph lib::Line style::dash, 2));

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

91 2an3097 ‘F30%/F/¥ [PPoIN Ae1dsIq V ‘$g0g Sutidg ‘08¢€DSD

1
axis

X

M Canvas #7

Add fill

4/4/2024, Lecture 16

Demo Code 8

win.set label("Canvas #8");

// add text
Graph_lib::Text t(Graph_lib::Point(100, 100), "Hello, graphical world!");
win.attach(t);

—
[}
]
o
P
>
=
=
g
wn
o=
A
<
<
(&
=
(o]
o0
o
g
~
Q
n
o
a0
(ap)
(@)
N
O

91 23T FZOG/V /¥

M Canvas #8

Add text

[9POIN Le1dsi(] V ‘20z Sutidg ‘08€8DSD

graphical world!

1
axis

X

4/4/2024, Lecture 16

Demo Code 9

- Modify text font and size

t.set _font(Graph lib::Font::times bold);
t.set font size(20);

—
[}
]
o
P
>
=
=
g
wn
o=
A
<
<
(&
=
(o]
o0
o
g
~
Q
n
o
a0
(ap)
(@)
N
O

9T 9IN309T ‘¥G0G/¥/¥ [PPOIN Le1dSI(] V ‘F30g Sutids ‘08ee0DS)

1
axis

X

M Canvas #9

Text font and size

4/4/2024, Lecture 16

Add an Image

win.set label("Canvas #10");

// open an image file
Graph_lib::Image ii(Graph_lib::Point(100, 50), "image.gif");

win.attach(ii);

—
[}
]
o
P
>
=
=
g
wn
o=
A
<
<
(&
=
(o]
o0
o
g
~
Q
n
o
a0
(ap)
(@)
N
O

9T 9IN309T ‘¥G0G/¥/¥ [PPOIN Le1dSI(] V ‘F30g Sutids ‘08ee0DS)

1
axis

X

M Canvas #10

Add an 1mage

4/4/2024, Lecture 16

Oops!

- The 1mage obscures the other shapes
- Move it a bit out of the way

win.set label("Canvas #11");

ii.move(100, 200);

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

4/4/2024, Lecture 16

Move the Image

M Canvas #11

Note how the parts of a shape that don’t fit in the
window are “clipped” away

—
)
=
=
>
<
—
o8
D)
o=
A
<
.
AN
=
(A
on
=]
s
~
[oR
n
=
0
™
[ap)
QO
)
<

4/4/2024, Lecture 16

Demo Code 12

win.set_label("Canvas #12");
Graph_lib::Circle c(Graph_lib::Point(100, 200), 50);

Graph_lib::Ellipse e(Graph_lib::Point(100, 200), 75, 25);

e.set color(Graph_lib::Color::dark_red);
Graph_lib::Mark m(Graph_lib::Point(100, 200), 'x');

std::ostringstream oss;

0SS << "screen size: " << Graph_lib::x_max() << "*" << Graph_lib::y max()

<< "; window size: << win.x_max() << "*" << win.y max();

Graph_lib::Text sizes(Graph_lib::Point(100, 20), oss.str());

Graph_lib::Image cal(Graph_lib::Point(225, 225), "snow_cpp.gif"); // 320*240 pixel gif
cal.set_mask(Graph_lib::Point(40, 40), 200, 150); // display center of image

—
&
]
O
%
=
>
&
=
Q
4]
=
<
<
N
o
N
o0
=)
o
~
(o
n
o
D0
0
o
@)
P
©

win.wait_for_button();

4/4/2024, Lecture 16

Add shapes, more text

M Canvas #12

screen size: 1400*1020; window size: 6007400

—
)
=
o
P
>
<
—
o8
0
o=
A
<
<
N
o
N
o0
=]
s
~
[oR
n
S
0
o)
™
®)
95}
©

4/4/2024, Lecture 16

Boiler Plate

#include "Graph.h" // graphical shapes

#include "Simple_window.h" // stuff to deal with your system's windows

int main()

try {
demo(); // the main part of your code
return 0;

}

catch (std::exception const& e) {
std::cerr << "exception: " << e.what() << "\n';
return 1;

}
catch (...) {

std::cerr << "Some exception\n";

—
5}
]
©
=
>
<
—_—
Q
0
o=
A
<
<
(o]
S
N
o0
=)
o
~
(o
n
S
o0
@R
GR
QO
N
O

return 2;

4/9/2024, Lecture 17

Code Organization

Point.h:

Graph.h:

Graph.cpp:

Window.cpp: GUIL.cpp:

0]
o}
wn
n
<
==
O
0
O
o=
<
joR
o
=
O
=
o\
=
(N
o0
(@}
or
=
Q
n
o
o0
lap)
o
(@)
(@)

demo.cpp:

4/4/2024, Lecture 16

Primitives and Algorithms

- The demo shows the use of library primitives
+ Just the primitives
+ Just the use

- Typically what we display is the result of
- an algorithm
- reading data

- Next lectures
* Graphics Classes
* Graphics Class Design
* Graphing Functions and Data
« Graphical User Interfaces

—
)
el
=
=
>
Z
=
o8
4]
o=
A
<
<
N
=
N
on
=]
-
~
[oR
N
oS
0
on
@)
N
o

CENTER FOR COMPUTATION
& TECHNOLOGY

4/4/2024, Lecture 16

CSC3380, Spring 2024, A Display Model

Ot
N

