Graphics Class
Design

Lecture 18
Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

8T 9IN399T ‘CZ02/9T/¥ usIsa(] sse[) soydery) yg0g Surids ‘0

Development Notes

O
o
Ay
>
&S
S,
p.

4/16/2023, Lecture 18

The SOLID Principles

Single-responsibility Principle

+ A class should have one and only one reason to change, meaning that a class should have
only one job.

Open-closed Principle

+ Objects or entities should be open for extension but closed for modification.

Liskov Substitution Principle

- Let q(x) be a property provable about o?'eci_; x of type T, Then q(y) should be provable for
object y of type S where S is a subtype (derived type) of T.

Interface segregation principle

+ A client should never be forced to de]gl)lend on an interface that it doesn’t use, or clients
shouldn’t be forced to depend on methods they do not use.

Dependency inversion principle

+ Entities must depend on abstractions, not on concretions. It states that the high-level
module must not depend on internal state of the low-level module,

+ They should depend on abstractions (functionalities exposed)

8
on
o=
w0
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
(%)
@)
N
o

4/16/2023, Lecture 18

Kinds of Refactoring

- Extract class/method

- Encapsulate field

g
jeT9)
o
n
S
195}
n
<
(=
o
n
Q
o=
<
o8
<
B~
s
</
N
&)
(o]

CSC3380, Spring

4/16/2023, Lecture 18

Extract Class/Method

- Pull methods and classes out of another method or class

- Reduce the size of the larger class/method to improve cohesion

- Which SOLID principle relates to this?

- Single-responsibility (A class should have one and only one reason to
change, meaning that a class should have only one job.)

8
on
o=
)
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
~
(o
N
=)
o
GlR)
(3]
@)
N
o

4/16/2023, Lecture 18

Example

class Car {

public:
Car() {
// extremely complicated state-dependent logic
}

void accelerate() { /*...*/ }
void brake() { /*...*/ }
void turn() { /*...*/ }

}s
- Move creating a Car to a factory:

class CarFactory {
public: Car create car() { /*...*/ }

// all the state

8
on
o=
)
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
~
(o
N
=)
o
GlR)
(3]
@)
N
o

s

4/16/2023, Lecture 18

Encapsulate Field

. Take a field (i.e., member variable) from being public to being
accessed by a “getter”

- In some languages, this is extremely easy:
* C# has a feature where you can make a field secretly call a getter

- In other programming languages, such as Java and C++, it takes a
bit of work:

- Hide the field by making it private
+ Fix all the errors that appear by using the new getter method

- When should you do that?

- Encapsulate members that may become inconsistent when one of those
changes independently

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
]
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o
=
(o
N
(@)
GlR)
o
@)
N
o

4/16/2023, Lecture 18

The Fallacy of Encapsulation

- If you return a mutable object, you are not encapsulating anything

- Consider the following attempt at encapsulation:

class OrderedCarlList {
private:

std: :map<std::string, Car> list;

public:
Car& get car(std::string const& brand) {

return list[brand];

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
<
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
o
@)
N
o

}s

4/16/2023, Lecture 18

The Fallacy of Encapsulation

OrderedCarlList car_list = { /*...*/ };
auto& car = car_list.get car("Ford");

car.set_price(car.get_price() * 0.9);

- The encapsulated map in the car _1ist object is changed outside of
the OrderedCarlList class!

8
on
o=
)
A
wm
w0
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
g
(o
N
=)
o
GlR)
(3]
@)
N
o

4/16/2023, Lecture 18

Real Encapsulation

class OrderedCarlList {
private:

std: :map<std::string, Car> list;

public:
void change price(std::string const& brand, double price) {

return list[brand].set price(price);

s

8
on
o=
)
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
~
(o
N
=)
o
GlR)
4]
@)
N
o

4/16/2023, Lecture 18

Why bother Encapsulating?

- Encapsulation has three purposes:
- Reduce state-based errors

- If an operation needs to occur before or after a state change, your setter can do
this so the caller won’t forget

* Reduce coupling

+ Dependency on an inner object means it can’t change to a different class without
breaking your build

- Maintain data integrity

* The class can run checks to data changes to make sure data states remain valid
and stable

8
on
o=
)
A
)}
)
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
g
(o
N
=)
o
GlR)
(3]
@)
N
o

4/16/2023, Lecture 18

In Conclusion

- Refactor between sprints to reduce technical debt

- Remember these simple, common refactoring techniques in future
technical interviews

- Use them on your own code if it’s getting unmanageable

- Remember, refactoring properly won’t break anything
- Testing, testing, testing...!

8
on
o=
w0
A
)}
15}
<
=
()
n
Q
]
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
~
(o
N
=)
o
GlR)
4]
@)
N
o

QT 9aN)097T ‘€Z0%/9T/¥ ustso(J sse[) sorydedy) ‘$g0g surrdg ‘0

U2
2
Ay
r—
O
),
>,
. r
e
Q
A
=
O

Design

Abstract

- We have discussed classes in previous lectures

4/16/2023, Lecture 18

- Here, we discuss design of classes
 Library design considerations
- Class hierarchies (object-oriented programming)
* Data hiding

8
on
o=
)
A
wm
w0
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
g
(o
N
=)
o
GlR)
(3]
@)
N
o

Ideals

« Our 1deal of program design 1s to represent the concepts of the
application domain directly in code.

« If you understand the application domain, you understand the code, and
vice versa. For example:

* Window — a window as presented by the operating system

* Point — a coordinate point

* Line — a line as you see it on the screen

* Color — as you see it on the screen

* Shape — what’s common for all shapes in our Graph/GUI view of the world

- The last example, Shape, is different from the rest in that it is a
generalization.
* You can’t make an object that’s “just a Shape”

4/16/2023, Lecture 18

8
on
o=
w0
A
)}
)
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
(%)
@)
N
o

Logically 1dentical Operations have
the same Name

- For every class,
* draw_1lines() does the drawing

4/16/2023, Lecture 18

* move(dx, dy) does the moving
- s.add(x) adds some x (e.g., a point) to a shape s.

- For every property x of a Shape,
* X() returns its current value and
- set_x() gives it a new value
- e.g.,
* Color ¢ = s.color();
- s.set _color(Color::blue);

8
on
o=
)
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
~
(o
N
=)
o
GlR)
4]
@)
N
o

Logically different Operations have
different Names

4/16/2023, Lecture 18

Lines lines;

Point p1(100, 200);

Point p2(200, 300);

// add points to lines (make copies)
lines.add(pl, p2); I)l:
// attach lines to window
win.attach(1ln); p2:

- Why not win.add(In)?

- add(copies information; attach() just creates a reference

g
on
.-
n
job)
w0
n
]
==
()
w0
O
o=
<
o8
(o]
i
s
o
<t
N
o~
=
(A
o0
=]
.-
=
o8
—
-
Q0
(Ap)
o
O
O

* we can change a displayed object after attaching it, but not after adding it

4/16/2023, Lecture 18

Possible pitfall

void add line(Simple window& win)

{
Graph_lib::Lines x;
x.add(Graph_lib::Point(100, 100), Graph 1lib::Point(200, 100));
x.add(Graph_lib::Point(150, 50), Graph lib::Point(150, 150));
win.attach(x);

} // oops, lifetime of x ends here

void main()

{
Simple window win(Graph_lib::Point(100, 100), 600, 400, "Canvas");
add _line(win); // asking for trouble

win.wait_for button();

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
<
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
o
@)
N
o

4/16/2023, Lecture 18

Expose Things Uniformly

- Data should be private
- Data hiding — so it will not be changed inadvertently
- Use private data, and pairs of public access functions to get and set the data

c.set _radius(12); // set radius to 12

c.set _radius(c.radius() * 2); // double the radius (fine)

c.set radius(-9); // set _radius() could check for negative,
double r = c.radius(); // returns value of radius

c.radius = -9; // error: radius is a function (good!)

c.r = -9; // error: radius is private (good!)

- Our functions can be private or public
* Public for interface
« Private for functions used only internally to a class

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
<
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
o
@)
N
o

What does “private” buy us?

- We can change our implementation after release

We don’t expose FLTK types used in implementation to our users
+ We could replace FLTK with another library without affecting user code

We could provide ‘checking’ in access functions
- But we haven’t done so systematically (later?)

Functional interfaces can be nicer to read and use
- E.g., s.add(x) rather than s.points.push_back(x)

We enforce immutability of shape
* Only color and style change; not the relative position of points
+ const member functions

The value of this “encapsulation” varies with application domains
+ Is often most valuable

+ Is the ideal
* 1l.e., hide representation unless you have a good reason not to

4/16/2023, Lecture 18

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
<
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
o
@)
N
o

4/16/2023, Lecture 18

What 1s a Library?

- A collection of classes and functions meant to be used together
+ As building blocks for applications
* To build more such “building blocks”

. A good library models some aspect of a domain
* It doesn’t try to do everything

* Our library aims at simplicity and small size for graphing data and for
very simple GUI

- We can’t define each library class and function in isolation
- A good library exhibits a uniform style (“regularity”)

8
on
o=
w0
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
(%)
@)
N
o

4/16/2023, Lecture 18

“Regular” Interfaces

Line ln(Point(100, 200), Point(300, 400));
Mark m(Point(100, 200), 'x'); // display a single point as an 'x’
Circle c(Point(200, 200), 250);

// Alternative (not supported):
Line 1n2(x1, y1, x2, y2); // from (x1, yl) to (x2, y2)

// How about? (not supported):
Square s1(Point(100, 200), 200, 300); // width==200 height==300
Square s2(Point(100, 200), Point(200, 300)); // width==100 height==100

Square s3(100, 200, 200, 300);
// 1s 200, 300 a point or a width plus a height?

8
a0
o
1))
A
w0
n
<
=
o
n
Q
o=
<
jon
[ay]
B~
s
<
<t
N
&)
(o]
on
=]
o
=
o8
=
(22
o
@)
o

4/16/2023, Lecture 18

Class Shape

- All our shapes are “based on” the Shape class
- E.g., a Polygon is a kind of Shape

g
on
o=
job)
w0
n
]
==
()
w0
(S
o=
<
o8
(o]
i
s
o
<t
N
P
=
(A
o0
=]
o=
=
o8
—
-
Q0
(Ap)
o
O

4/16/2023, Lecture 18

Class Shape

- Shape ties our graphics objects to “the screen”
* Window “knows about” Shapes
« All our graphics objects are kinds of Shapes

- Shape 1s the class that deals with color and style
* It has Color and Line_style members

- Shape can hold Points

- Shape has a basic notion of how to draw lines
* It just connects its Points

8
on
o=
w0
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
~
(o
N
=)
o
GlR)
4]
@)
N
o

4/16/2023, Lecture 18

Class Shape —1s abstract

« You can’t make a “plain” Shape
protected:
Shape(); // protected to make class Shape abstract

+ For example:

Shape ss; // error: cannot construct Shape

* Protected means “can only be used from a derived class”

- Instead, we use Shape as a base class
struct Circle : Shape { // "a Circle is a Shape"

/] ...
s

. An1 abstract class 1s a user defined data type, which can be used as a base class
only

8
on
o=
)
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:(v
~
G
</
N
(@)
N
o0
@
o=
~
(o
N
=)
o
GlR)
4]
@)
N
o

4/16/2023, Lecture 18

Class Shape

- Shape deals with color and style
- It keeps its data private and provides access functions

public:
void set_color(Color col);
Color color() const;
void set style(Line style sty);
Line style style() const;

/] ...
private:
/] ...

Color line color = fl color();
Line_style 1s = 0;

8
on
o=
w0
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
g
(o
N
(@)
GlR)
(%)
@)
N
o

4/16/2023, Lecture 18

Class Shape

- Shape stores Points
- It keeps its data private and provides access functions

public:
Point point(int i) const; // read-only access to points
int number of points() const;
/] ...
protected:
void add(Point p); // add p to points
/] ...
private:

std: :vector<Point> points; // not used by all shapes

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
<
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
o
@)
N
o

Class Shape

- Shape itself can access points directly:

void Shape::draw_lines() const // draw connecting lines
{
if (color().visible() && points.size() > 1)
for (int i = 1; i < points.size(); ++1i)
f1 line(points[i - 1].x, points[i - 1].y, points[i].x, points[i].y);
}

- Others (incl. derived classes) use point() and number_of_points()
* why?

void Lines::draw_lines() const // draw a line for each pair of points

{
for (int i = 1; i < number_of points(); i += 2)

f1 line(point(i - 1).x, point(i - 1).y, point(i).x, point(i).y);

4/16/2023, Lecture 18

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
<
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
o
@)
N
o

(‘j:)
—

o

P~

=
-

3]

5]
—
o
I
(@)
X
~
>
—
~
<t

Class Shape (Basic Idea of Drawing)

// The real heart of class Shape (and of our graphics interface system)
// called by Window (only)

void Shape::draw() const

// ... save old color and style 5

// ... set color and style for this shape 5

é

// ... draw what is specific for this particular shape £

// ... Note: this varies dramatically depending on the type of shape §

// ... e.g. Text, Circle, Closed polyline i%

// ... reset the color and style to their old values %

} 2
o

Class Shape (Implementation of
Drawing)

// The real heart of class Shape (and of our graphics interface system)
// called by Window (only)
void Shape::draw() const

-
—

o

P~

=
-

13)

)
—
o
I
(@)
X
~
©
—
~
<t

{
F1 Color oldc = f1 color(); // save old color .
// there is no good portable way of retrieving the current style (sigh!) -%
f1 color(line_color.as _int()); // set color and style @
f1 line style(ls.style(), ls.width()); &
// here is what is specific for a "derived class" is done g
draw_lines(); // call the appropriate draw_lines() i
_--7 // a "virtual call" S
}Qk)tea! f1 color(oldc); // reset color to previous ;%
f1 line_style(9); // (re)set style to default)
Z

4/16/2023, Lecture 18

Class Shape

In class Shape

virtual void draw lines() const; // draw the appropriate lines

In class Circle

void draw_lines() const { /* draw the Circle */ }

In class Text
void draw_lines() const { /* draw the Text */ }

Circle, Text, and other classes
« “Derive from” Shape
- May “override” draw_lines()

8
on
o=
w0
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
(%)
@)
N
o

4/16/2023, Lecture 18

Class Shape

// deals with color and style, and holds a sequence of lines

class Shape {

public:
void draw() const; // deal with color and call draw_lines()
virtual void move(int dx, int dy); // move the shape += dx and += dy
void set color(Color col); // color access

int color() const;

// ... style and fill color access functions

Point point(int i) const; // (read-only) access to points
int number_of points() const;

protected:
/]l ...

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
<
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
o
@)
N
o

s

(‘j:)
—

o

P~

=
-

Q

5]
—
o
I
(@)
X
~
S
—
~
<t

Class Shape

// deals with color and style, and holds a sequence of lines

class Shape {

protected:
/...
Shape(); // protected to make class Shape abstract E
// ... prevent copying E
void add(Point p); // add p to points é
virtual void draw_lines() const; // simply draw the appropriate lines g
private: §
std: :vector<Point> points; // not used by all shapes f%
Color 1color; // line color z%
Line_style 1s; // line style %
Color fcolor; // fill color %

}s

4/16/2023, Lecture 18

Display Model Completed
draw_lines() - draw()

draw_lines() -

attach()

g
jeT9)
.-
n
O
w0
<
—
o
w0
O
o=
<
(o}
<
bl
s
<
<t
N
)
-
(A

wait_for button()

CSC3380, Spring

Language Mechanisms

- Most popular definition of object-oriented programming:
* OOP == inheritance + polymorphism + encapsulation

- Base and derived classes /l inheritance
* struct Circle : Shape { .. };
« Also called “inheritance”

- Virtual functions /[polymorphism
* virtual void draw_lines() const;

+ Also called “run-time polymorphism” or “dynamic dispatch”

- Private and protected I/l encapsulation
- protected: Shape();
* private: std::vector<Point> points;

4/16/2023, Lecture 18

8
on
o=
w0
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
(%)
@)
N
o

Lecture 18

4/16/2023,

A simple Class Hierarchy

- We chose to use a simple (and mostly shallow) class hierarchy
- Based on Shape

S
jeT9)
o=
w0
job)
9]
w0
<
=
o
w0
(S
o
<
o8
<
P~
ks
</
—
N
e
QO
(A

i

=

CSC3380, Spring

=4

4/16/2023, Lecture 18

Object Layout

- The data members of a derived class are simply added at the end of
its base class (a Circle is a Shape with a radius)

Shape:

) .

g
on
.-
n
O
w0
n
<
—
1)}
O
o=
<
(o}
<
i
5
O
<
N
[a)
N
o0
@
.-
S~
Q
N
—
o0
™
o
O
<

Benefits of Inheritance

- Interface inheritance

- A function expecting a shape (a Shape&) can accept any object of a class
derived from Shape.

« Simplifies use
- sometimes dramatically

* We can add classes derived from Shape to a program without rewriting
user code

+ Adding without touching old code is one of the “holy grails” of programming

- Implementation inheritance
« Simplifies implementation of derived classes
« Common functionality can be provided in one place

* Changes can be done in one place and have universal effect
+ Another “holy grail”

4/16/2023, Lecture 18

8
on
o=
w0
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
g
(o
N
(@)
GlR)
(%)
@)
N
o

Access Model

4/16/2023, Lecture 18

All users

Derived class’s members

Class’s own members

' Protected members

Private members

8
a0
o
1))
A
w0
n
<
=
o
n
Q
o=
<
jon
[ay]
B~
s
<
<t
N
&)
(o]
on
=]
o
=
o8
=
(22
o
@)
o

- A member (data, function, or type member) or a base can be
« Private, protected, or public

(‘j:)
—

o

P~

=
-

Q

)
—
o
I
(@)
X
~
S
—
~
<t

Pure virtual functions

- Often, a function in an interface can’t be implemented
- E.g. the data needed 1s “hidden” in the derived class
- We must ensure that a derived class implements that function
- Make it a “pure virtual function” (=0)

+ This is how we define truly abstract interfaces (“pure interfaces”) !
2

// interface to electric motors £
struct Engine Eg
{ =
// no data ;g

// (usually) no constructor \g
virtual double increase(int i) = 0; // must be defined in a é

// derived class ~§

/] ... A
virtual ~Engine(); // (usually) a virtual destructor ‘g

; @)
: z

Engine eee; // error: Engine is an abstract class

4/16/2023, Lecture 18

Pure virtual functions

- A pure interface can then be used as a base class
- We talked about Constructors and destructors before

// engine model M123
class M123 : public Engine {
// representation
public:
M123(); // constructor: initialization, acquire resources

// overrides Engine::increase
double increase(int i) { /* ... */ }

/] ...

~M123(); // destructor: cleanup, release resources

}s

M123 window3 control; // OK

8
on
o=
w0
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
g
(o
N
(@)
GlR)
(%)
@)
N
o

Technicality: Copying

- If you don’t know how to copy an object, prevent copying
- Abstract classes typically should not be copied

class Shape

{
/] ...
Shape(Shape const&) = delete; // don't copy construct
Shape& operator=(Shape const&) = delete; // don't copy assign
}s
void f(Shape& 2a)
{
Shape s2 = a; // error: no Shape copy constructor (it's deleted)
a = s2; // error: no Shape copy assignment (it's deleted)
}

4/16/2023, Lecture 18

8
on
o=
wn
A
)}
15}
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
<
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
o
@)
N
o

Technicality: Overriding

- To override a virtual function, you need

« A virtual function
- Exactly the same name
- Exactly the same type

struct B

{
void f1(); // not virtual
virtual void f2(char);
virtual void f3(char) const;

virtual void f4(int);

}s

struct D : B

{
void f1(); // doesn't override
void f2(int); // doesn't override
void f3(char); // doesn't override

void f4(int); // overrides

s

4/16/2023, Lecture 18

S
an
or
1¢)]
S
4]
0
<
=
(©)
wn
Q
o=
<
2
<
e
o}
~—
N
)
N
on
=
o=
B~
o7
RN
o
™
@)
R
@)

Types of Inheritance

- Interface inheritance
* Derived class depends on an interface that is defined by the base class
* Code relies on interface for invoking functionalities
* Our graphics system critically depends on the draw_lines() interface

- Implementation inheritance
- Simplify derived classes by moving common functionalities to base class
* Our Shape class manages colors, line styles, and list of points

. All of this ensures independence of graphics system (Window) from
kinds of Shapes

* We can add new shapes without recompiling

- In fact Window doesn’t know anything about concrete shapes (Circles,
Rectangles, etc.)

4/16/2023, Lecture 18

8
on
o=
w0
A
)}
w0
<
=
()
n
Q
o=
<
o8
f:'(v
~
G
</
N
(@)
N
on
@
o=
~
(o
N
(@)
GlR)
(%)
@)
N
o

CENTER FOR COMPUTATION
& TECHNOLOGY

4/16/2023, Lecture 18

CSC3380, Spring 2024, Graphics Class Design

N
O

