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4/18/2024, Lecture 19

Test Driven Development

- Add requirements/stories
- Write automated tests for each
- Write code until it passes

- Test pass % acts as progress bar to next release
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4/18/2024, Lecture 19

Manual Testing

- The most basic form of testing
* Run the program yourself
* When an error occurs, write 1t down
« Ensure that the error can be reproduced

- Create issue on github
* How to run? What input used?
* What system run on?
« Everything needed to reproduce
- What result is expected? What result is seen?
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4/18/2024, Lecture 19

Issues with Manual Testing

- To be effective, bugs must be tracked
* Bug reproduction steps must be carefully retained
- Have to re-test after changes

- Expensive and error-prone

www.shutterstock.com - 58787104
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4/18/2024, Lecture 19

Automated Testing

- Manual testing is still necessary for sanity checks
- But we can create automated tests to provide immediate feedback
. Tests are automatically run for each change set (commit)

- We receive a checklist afterwards seeing how many, and which, tests
succeeded and failed
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4/18/2024, Lecture 19

Unit Testing

- The most common kind of automated testing is Unit Testing

- Unit testing is a form of automated testing where you test a single
class, module, or method

- A unit is the smallest testable portion of an application:
- Each unit test tests one thing

« We can test every function of the unit, and every meaningful case of the
function

« Pay particular attention to testing boundary cases
 Zero length strings

¢ Check at minimum/maximum index bounds
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4/18/2024, Lecture 19

Regressions

- It 1s extremely common for a new update to fix old bugs, but
Introduce new ones

- If a test used to pass, but after applying a change set it fails, this is
called a regression

- Automated testing provides a mechanism to quickly discover
regressions

- When fixing regressions always add a test verifying it has been fixed
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4/18/2024, Lecture 19

Integration Tests

- An integration test crosses unit boundaries
* When more than one class is involved
« Interactions with external systems

- Simple examples:
« Testing that a database works with a software system
« Testing that a frontend works with a backend
« Testing a system component works with another system component

« Testing that the interface for an external data source works with a
software system
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4/18/2024, Lecture 19

Mutation Testing

- Basic idea: test the tests

- Take some code that passes all the tests

- Mutate that code (an operation, a constant, etc.)
+ One of the tests should now fail

- If not, you need more tests!
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4/18/2024, Lecture 19

Test Coverage

- Automated testing raises an interesting problem:
* How do we know we’ve tested everything

- How many tests do we actually need?
- Tests take time to execute
* There 1s no benefit to redundant tests
- We might be missing an important test case
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4/18/2024, Lecture 19

Test Coverage

Function coverage: has every function/method been called at least
once?

Statement coverage: has every statement been executed once?

Branch coverage: has every branch been executed?

Condition coverage: has every Boolean expression been evaluated as
both true and false.

o0
=i
o=
<
[o)
i
s
N
3
4]
g
o
o=
5
($)
=
=)
e
N
o
N
o0
=
o=
3
o,
)
=
o
0
o
on
@)
)
(@)




4/18/2024, Lecture 19

Function Coverage

- Every function called at least once
- This 1s the absolute bare minimum level of coverage

- Even still, it 1s surprisingly difficult
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4/18/2024, Lecture 19

Statement Coverage

- The most common “bare-minimum” level of testing observed in real
software

- Ensure that each statement 1s executed at least once
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Statement Coverage:
How to Calculate

. (#tested statements) / #statements)
- That’s 1t
« Shoot for 100%

- Note: we care about the innermost statements
* the ones inside the body of ifs and loops

4/18/2024, Lecture 19
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4/18/2024, Lecture 19

Branch Coverage

- Every branch must be covered

- Often similar to statement coverage
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4/18/2024, Lecture 19

Limits on Testing

- Testing can find the presence of faults, not absence
. Testing is difficult for certain domains (games, graphics, ...)

. Testing assumes that methods terminate (the halting problem)
- If they don’t, testing must freeze or be occasionally wrong

- Testing is not a substitute for code review
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4/18/2024, Lecture 19

Zero-Defects Philosophy

« Introduced by Philip Crosby at the Pershing Missile Program

- The philosophy was introduced to reduce the failure rate of the
Pershing Missile

- Major failures happen when engineers tolerate mistakes because
they know inspectors will detect them later

- Getting i1t right the first time dramatically reduces errors
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4/18/2024, Lecture 19

Zero-defects Software Development

- Don’t write code you know to be bad, because your friends will catch
the error in testing

- Don’t build new code on defective code

- Don’t add features if your tests aren’t passing
« Create new features only if all existing tests pass successfully
* Create new tests with each new feature
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Abstract

- Here we present ways of graphing functions and data and some of
the programming techniques needed to do so, notably scaling.

4/18/2024, Lecture 19
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4/18/2024, Lecture 19

Note

- This course 1s about programming
« The examples — such as graphics — are simply examples of
+ Useful programming techniques
+ Useful tools for constructing real programs
+ Look for the way the examples are constructed
- How are “big problems” broken down into little ones and solved separately?
- How are classes defined and used

* Do they have sensible data members?
* Do they have useful member functions?
+ Use of variables
* Are there too few?
+ Too many?
* How would you have named them better?
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4/18/2024, Lecture 19

Graphing functions

- Start with something really simple
« Always remember “Hello, World!”

- We graph functions of one argument yielding a value
- Plot (x, f(x)) for values of x in some range [r1,r2)

- Let’s graph three simple functions
/ly =1
double one(double) { return 1; }

/]y == x/2
double slope(double x) { return x / 2; }

/]y == X*X
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double square(double x) { return x * x; }




Functions

B Function graphing

//y::
double one(double) { return 1; }

/]y == x/2
double slope(double x) { return x / 2; }

/]y == X*x

double square(double x) { return x * x; }




How do we write code to do this?

Function to be graphed

4/18/2024, Lecture 19

// make a window

Simple window win(Point (100, 100 ymax, "Function graphing");

Function s(one, -10, 11, orig, n_points, x_scale, y scale);
Function s2(slope, -10, 11, orig, n_points, x_scale, y scale);
Function s3(square, -10, 11, orig, n_points, x_scale, y scale);

win.attach(s); // attach es X to Window win
win.attach(s2); // attach Lines>_to Window win

win.attach(s3); // attach Lines x to~Window win

stu make the graph fit into the window
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win.wait for_ button(); // Draw!
Range in which to graph




We need some Constants

const
const

const
const
const

const
const

const

const
const

int xmax

int ymax

int x_orig
int y orig
Point orig(

int r_min

int r_max
int n_point

int x_scale
int y_scale

600; // window size

400;

= xmax / 2;

= ymax / 2;

x_orig, y orig); // position of (@, ©) in window
-10; // range [-10:11) == [-10:10] of X
11;

s = 400; // number of points used in range
= 20; // scaling factors (one unit == 20 pixels)
= 20;

// Choosing a center (@, @), scales, and number of points can be fiddly

// The range usually comes from the definition of what you are doing

4/18/2024, Lecture 19
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Functions — but what does 1t mean?

EBX

—

- What’s wrong with this?
+ No axes (no scale)
« No labels




Label the Functions

M Function graphing: label functions

Text ts(Point(100, y orig - 30), "one");
Text ts2(Point(100, y orig + y_orig / 2 - 10), "x/2");
Text ts3(Point(x_orig - 90, 20), "x*x");




Add x-axis and y-axis

B Function graphing: use axis

- We can use axes to show (0,0) and the scale:
Axis x(Axis::x, Point(20, y_orig),
xlength, xlength / x_scale, "1 == 20 pixels");
Axis y(Axis::y, Point(x_orig, ymax - 20),
ylength, ylength / y _scale, "1 == 20 pixels");




Use color (in moderation)

s.set_color(Graph_lib::Color::green);
ts.set_color(Graph_lib::Color::green);

x.set color(Graph_lib::Color::red);
y.set color(Graph_lib::Color::red);




The Implementation of Function

- We need a type for the argument specifying the function to graph
* using can be used to declare a new name for a type

using color = int; // now color means int

* Define the type of our desired argument, Fct
using Fct = std::function<double(double)>; // now Fct means function
// taking a double argument

// and returning a double

- Examples of functions of type double(double):
double one(double x) { return 1; } // y==1
double slope(double x) { return x / 2; } // y==x/2

double square(double x) { return x * x; } // y==x*X

4/18/2024, Lecture 19
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4/18/2024, Lecture 19

Now Define “Function”

struct Function : Shape // Function is derived from Shape
{

// all it needs is a constructor:

Function(Fct f, // f is a Fct (takes a double, returns a double)
double ri, // the range of x values (arguments to f) [rl:r2)
double r2,

Point orig, // the screen location of (0, 9)
int count, // number of points used to draw the function

// (number of line segments used is count-1)
double xscale, // the location (x, f(x)) is (xscale*x, yscale*f(x))
double yscale);

}s
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4/18/2024, Lecture 19

Implementation of Function

Function::Function(Fct f, double rl, double r2,
Point xy, int count, double xscale, double yscale)

if (r2 - rl <= 0)
throw std::runtime_error("bad graphing range");
if (count <= 0)
throw std::runtime_error("non-positive graphing count");

double dist = (r2 - rl) / count;

double r = ri;

for (int i = 9; i < count; ++i)

{
add(Point(xy.x + int(r * xscale), xy.y - int(f(r) * yscale)));
r += dist;
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Default Arguments

- Seven arguments are too many!
- Many too many
« We're just asking for confusion and errors
- Provide defaults for some (trailing) arguments
+ Default arguments are often useful for constructors

struct Function : Shape

Function f4(sqgrt, -10, 11, Point(@, 0)); // ok: exactly the same as f1

g

{
Function(Fct f, double rl1, double r2, Point xy, int count = 100, 8
double xscale = 25, double yscale = 25); §

=

}s g
S

Function f1(sgqrt, -10, 11, Point(@, @), 100, 25, 25); // ok (obviously) E
Function f2(sqrt, -10, 11, Point(@, ©0), 100, 25); // ok: exactly the same as fl )
Function f3(sqrt, -10, 11, Point(@, @), 100); // ok: exactly the same as fl %
o




4/18/2024, Lecture 19

Function

- Is Function a “pretty class”?
* No
* Why not?
« What could you do with all of those position and scaling arguments?

 If you can’t do something genuinely clever, do something simple, so that
the user can do anything needed

* Such as adding parameters so that the caller can have control
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Some more Functions

4/18/2024, Lecture 19

#include <cmath> // standard mathematical functions

// You can combine functions (e.g., by addition):

double sloping cos(double x)
{

return std::cos(x) + slope(x);

Graph_lib::Function s4(std::cos, -10, 11, orig, 400, 20, 20);
s4.set color(Graph_lib::Color::blue);

Graph_lib::Function s5(sloping cos, -10, 11, orig, 400, 20, 20);
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Cos and sloping-cos

EEX

—




Standard mathematical Functions
(header <cmath>)

double abs(double); // absolute value

4/18/2024, Lecture 19

double ceil(double d); // smallest integer >= d
double floor(double d); // largest integer <= d

double sqrt(double d); // d must be non-negative

double cos(double);

double sin(double);

double tan(double);

double acos(double); // result is non-negative; “a” for “arc”
double asin(double); // result nearest to © returned

double atan(double);

double sinh(double); // “h” for “hyperbolic”

double cosh(double);

double tanh(double);
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Standard mathematical functions
(header <cmath>)

4/18/2024, Lecture 19

double exp(double); // base e

double log(double d); // natural logarithm (base e)
// d must be positive

double logl@(double); // base 10 logarithm

double pow(double x, double y); // x to the power of y
double pow(double x, int y); // x to the power of y
double atan2(double x, double vy); // atan(x/y)

// floating-point remainder, same sign as d % m

double fmod(double d, double m);

double ldexp(double d, int 1i); // d*pow(2,1)
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Code for Axis

struct Axis : Shape {

4/18/2024, Lecture 19

enum Orientation { x, y, z };

Axis(Orientation d, Point xy, int length,
int number_of notches = 0, // default: no notches
string label = ""); // default: no label

void draw_lines() const;
void move(int dx, int dy);

void set color(Color); // in case we want to change the color
// of all parts at once

// line stored in (base) Shape

// orientation not stored (can be deduced from line)
Text label;

Lines notches;
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4/18/2024, Lecture 19

Axis Implementation

Axis::Axis(Orientation d, Point xy, int length, int n, string lab) : label(Point(@, @), lab)
{
if (length < @) throw std::runtime_error("bad axis length");
switch (d) {
case Axis::x:
{
Shape::add(xy); // axis line begin
Shape::add(Point(xy.x + length, xy.y)); // axis line end
if (n > 1) {
int dist = length / n;
int x = xy.x + dist;
for (int 1 = 9; 1 < n; ++i) {
notches.add(Point(x, xy.y), Point(x, xy.y - 5));

X += dist;

}
label.move(length / 3, xy.y + 20); // put label under the line

break;
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4/18/2024, Lecture 19

Axis Implementation

void Axis::draw lines() const

void Axis::set color(Color c)

{

// ... the obvious three lines

{
Shape::draw_lines(); // the line
notches.draw(); // the notches may have a difference color from the line
label.draw(); // the label may have a different color from the line
¥ g
S
void Axis::move(int dx, int dy) é
3
{ 2
Shape: :move(dx, dy); // the line %
notches.move(dx, dy); é
label.move(dx, dy); N
o
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Why Graphing?

- Because you can see things in a graph that are not obvious from a set
of numbers

- How would you understand a sine curve if you couldn’t (ever) see one?

- Visualization 1s
+ Key to understanding in many fields
« Used 1n most research and business areas

* Science, medicine, business, telecommunications, control of large systems
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4/18/2024, Lecture 19

An example: e*

X ——

+ x
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- Where ‘" Means factorial (e.g. 4! == 4*3%2*1)
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Simple algorithm to approximate e~

double fac(int n) { // factorial
if (n == 1) return 1;

return fac(n - 1) * n;

double term(double x, int n) { // x*n/n!

return std::pow(x, n) / fac(n);

double expe(double x, int n) { // sum of n terms of x
double sum = 09;
for (int i = 9; i < n; ++1)

sum += term(x, 1i);
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4/18/2024, Lecture 19

Simple algorithm to approximate e~

- But we can only graph functions of one arguments, so how can we get graph
expr(x, n) for various n?
auto expN = [n](double x) { return expe(x, n); };

- Equivalent to:

int expN_number of terms = 6; // nasty sneaky global argument to expN

double expN(double x)
{

return expe(x, expN_number_of_terms);
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“Animate” approximations to e*

Simple window win(Point (100, 100), xmax, ymax,

"Function graphing"); // make a window

Axis x(Axis::x, Point(20, y orig), xlength,
xlength / x_scale, "1 == 20 pixels");

x.set_color(Color::red);

Axis y(Axis::y, Point(x_orig, ymax - 20),
ylength, ylength / y scale, "1 == 20 pixels");

y.set_color(Color::red);

Function real exp(std::exp, -15, 15, orig, 400, 20, 20);

real _exp.set_color(Color::blue);
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“Animate” Approximations to e*

for (int n = 9; n < 40; ++n)

{

auto expN = [n](double x) { return expe(x, n); };

Graph_lib::Function f(expN, -15, 15, orig, 400, 20, 20);
f.set color(Graph_lib::Color::black);

win.set label("exp approximation, x ==

win.attach(f);

+ std::to_string(n));

win.wait for_ button(); // Draw!

win.detach(f);
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Demo

- The following screenshots are of the successive approximations of
exp(x) using
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auto expN = [n](double x) { return expe(x, n); };
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Demon=0

W7 exp approximation, x == 0




Demon=1

A exp approximation, x == 1




Demon =2




Demon=3




Demon=4

A exp approximation, x == 4




Demon=>5

W7 exp approximation, x == 5




Demon=6

W7 exp approximation, x == &




Demon="7

W7 exp approximation, x == 7




Demon=38

W7 exp approximation, x == 8




Demon=18

W7 exp approximation, x == 18




Demon=19

W7 exp approximation, x == 19




Demo n =20




Demon =21

W7 exp approximation, x == 21




Demo n = 22




Demo n =23
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Next Lecture

- Graphical user interfaces
- Windows and Widgets

- Buttons and dialog boxes
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CENTER FOR COMPUTATION
& TECHNOLOGY
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