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1/23/2024, Lecture 1

Compilation and Linking

C++ source code

Library Object code

Object code
You write C++ source code Executable program

- Source code is (in principle) human readable

The compiler translates what you wrote into object code (sometimes called machine code)
* Object code is simple enough for a computer to “understand”

The linker links your code to system code needed to execute
- E.g. input/output libraries, operating system code, and windowing code

The result 1s an executable program
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- E.g. a .exe file on windows or an a.out file on Unix

See: Decoding C++ Compilation Process: From Source Code to Binary



https://hackthedeveloper.com/c-program-compilation-process/
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CMake

- CMake 1s a family of tools
* Building software
* Testing software
- Packaging software

- We will use 1t for building and testing

- CMake generates build systems files (Makefiles and or workspaces)
* Those can be used to automatically build and test your code

- The user writes a single set of descriptive scripts
* Define Targets and their inter-dependencies

- CMake 1s well integrated with many IDEs
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1/23/2024, Lecture 1

Simplest Example

CMakelLists.txt:

cmake minimum required (VERSION 3.0)
project (Demol)
add executable (Demol demol.cpp)

In source build:

5 cd demol
1s
CMakelists.txt demol.cpp
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Simplest Example

% cmake .

—— The C compiler identification is GNU 7.3.0

-- The CXX compiler identificaticn is GNU 7.3.0

-- Check for working C compiler: /fusr/bin/cc

—— Check for working C compiler: /usr/bin/cc -- works
-- Detecting C ccmpiler ABI info

-- Detecting C compiler ART
-- Detecting C compile fe
—— Detecting C compile fe
-=- Check feor working CXX
-—- Check for working CXX
—— Detecting CXX compiler
—— Detecting CXX compiler
-- Detecting CXX compile
-- Detecting CXX compile
—-—- Configuring done

-- Generating done

-- Build files have been

nfAa o Annce

% make

Scanning dependencies of target Demol
[ 50%] Building CXX object
CMakeFiles/Demol.dir/demol.cpp.o
[100%] Linking CXX executable Demol
[100%] Built target Demol

% ./Demol
Hello, world!

1/23/2024, Lecture 1
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1/25/2024, Lecture 2

Challenges of Software Development

- Complexity
« Software systems today are typically very large and very complex

- Longevity and Evolution
« Systems are often in service for long periods of time
- Being used for applications for which it was never intended

- High user expectations
+ Diversity of needs
- Expectation for quality and security
* Voodoo magic
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1/25/2024, Lecture 2

Qualities of Software Systems

- Usefulness
+ Adequately address needs

- Timeliness
* Quickly developed and deployed
Continuous integration/continuous deployment
- Reliability
Perform as expected
- Maintainability
Can easily make corrections, adaptations and extensions
Flexibility - Easily changeable
Simplicity - Anticipate and deal effectively with human error
Readability - Clarity and simplicity of design
- Reusability
Components can be repurposed for other applications

« User Friendliness
Intuitive use and access

- Efficiency
- Efficient use of processing time, memory, and disk space
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The Tenets of Object-Oriented (O0)
Paradigm

1/25/2024, Lecture 2

- Abstraction
- Hidden Data
- Implementation of Abstract Data Type (ADT) is irrelevant
+ Interdependent class members are not accessed directly . .

+ This means no public class members

Encapsulation
- Data and methods on that data are bundled together

+ Aclass defines the data implementation, access to the data elements, and methods
that act on the data

Inheritance
- A class (type) can take on the properties of another class
+ Creates the is-a relationship between the base class and the superclass

Polymorphism
- Derived objects (those of a class inherited from another) can behave differently
+ Interface of inherited methods remain the same, but may function differently

CSC3380, Spring 2024, Egyptian Multiplication



Structured Programming vs.
OO Programming

- Structured Programming
* Focus on logic and process flow

1/25/2024, Lecture 2

* Defines operations on data manipulation
* “Do something to data”

« OO Programming
* Focus on data abstraction
+ Hides how data manipulation operations are performed
« “Tell data to do something”
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1/25/2024, Lecture 2

OO Development Activities

Conceptualization
Establish a vision and core system requirements

OO Analysis and Modeling

Build models the system’s desired behavior
- Unified Modeling Language (UML)

- OO0 Design

Create an architecture for implementation

Implementation
« Coding, debugging, and unit testing
+ Integration and integration testing
+ Regression and system testing
+ Deployment and deployment testing

Maintenance
Fixing issues
Enhance functionality
+ Adapting the system to evolving needs and environments
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Jia, Xiaoping. Object Oriented Software Development Using Java: Principles, Patterns, and Frameworks. Addison
Wesley, 2003.




1/25/2024, Lecture 2

OO Analysis and Modeling

- Vague understanding of the problem 1s transformed into a precise
description of the tasks that the software system needs to carry out

- The result 1s a detailed textual description, commonly called a
functional specification, which:

« Completely defines the tasks to be performed.
* Is free from internal contradictions.

- Is readable both by experts in the problem domain and by software
developers.

- Is reviewable by diverse interested parties.
« Can be tested against reality.
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OO Design Phase

- Structure the programming tasks into a set of interrelated types

- Each type is specified precisely, listing both its responsibilities and its
relationships

+ Usually language independent

- Result consists of a number of artifacts:

A textual description of the classes and their most important
responsibilities

Diagrams of the relationships among the classes

Diagrams of important usage scenarios

State diagrams of objects whose behavior is highly state-dependent

1/25/2024, Lecture 2
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1/25/2024, Lecture 2

Implementation Phase

- Types and methods are coded, tested, and deployed

- Often a prototype is built first
* Reduced functionality
+ Helps verifying and correcting Analysis and Design

- Types (objects) are characterized by
- State
* Behavior
 Identity
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1/25/2024, Lecture 2

Abstract

- Today, we’ll will develop our first algorithm called ‘Egyptian
Multiplication’.

- An algorithm is a terminating sequence of steps for accomplishing a
computational task.

- The first known algorithms have been documented 4000 years ago by
the ancient Egyptian mathematicians.

- We will also talk about how to convert any recursive algorithm into
an 1terative one.
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1/25/2024, Lecture 2

Multiplication

- We define multiplication as ‘adding a number to itself a number of times

9

- Formally:
* Multiply something by one: 1a = a (1)
- Multiply something one more time: (n + 1)a = na + a, i.e. by induction  (2)

- We start with using a recursive implementation (both, n and a must be
positive):

// version ©

int multiplye(int n, int a)

{
if (n == 1) return aj; // (1)
return multiplye(n - 1, a) + a; // (2)
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1/25/2024, Lecture 2

Egyptian Multiplication

- Also known as ‘Russian Peasant’ Multiplication, first described by
Ahmes

- It relies on the insight:

4a=((a+a)+a)+a
4a=(a+a)+ (a+a)

- Depends on law of associativity:

a+b+c)=(a+b)+c

- The 1dea 1s to keep halving n and doubling a while constructing a
sum of power-of-2 multiples
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1/25/2024, Lecture 2

Egyptian Multiplication

- Example n = 41 and a = 59:

41 x 59 =(1x59)+ (8x%x59)+ (32x59)=2419

1 * 59
2 118
4 236
8 * 472
16 944

32 * 1888

- Each of the products 1s computed by doubling 59 the right number of
times
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1/25/2024, Lecture 2

Egyptian Multiplication

- Observation: coefficients needed for products represent the bits set in
the binary representation of n:

- Another observation: the algorithm relies on determining whether a
number is odd or even:

_n_l_nz> )
n—z > even(n
n—-1 n-1
n= + + 1 = odd(n)
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Egyptian Multiplication

// version 1
bool odd(int n) { return n & 1; }
int half(int n) { return n >> 1; }

int multiplyl(int n, int a) %
if (n == 1) return aj; E
int result = multiplyl(half(n), a + a); S
if (odd(n)) result = result + a; .
return result; g




1/25/2024, Lecture 2

Egyptian Multiplication

- Number of operations:
- We half and recurse, so we need log, n additions

- We need another addition sometimes (whenever the bit is set in the binary
representation), i.e. the pop count: v(n)

Ny = |logzn| + (v(n) = 1)
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1/25/2024, Lecture 2

Egyptian Multiplication

- Is our algorithm optimal?
« As it turns out, no — not always:

N,(15)=3+4—-1=6
« But we can multiply by 15 using 5 additions:

// optimal multiply by 15
int multiply by 15(int a)

{ int b = (a + a) + a; // 3 * a
int ¢ = b + b; // 6 * a
return (c + c) + b; // 12 * a + 3 * a
}
Exercise:

o
o
O
<+
<
O
-
—
(oF
o
2
=
=
-
=
o
fay]
0=l
2
I
P>
a0
€2
<t
N
S
(o]
o0
o
or
&
(=F
N
(@)
a0
G
o
O
(@)

* This 1s called an ‘addition chain’, btw.

Find addition chains for
all numbers 1 <n <100
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1/25/2024, Lecture 2

Iterative Multiplication

- Algorithm does |log, n| recursion calls

- Let’s convert the recursive version into an equivalent iterative
version

+ Side note: any recursive algorithm can be converted into an equivalent
1terative version using the technique that will be shown

- Note: It’s often easier to do more work rather than less

- We’re going to compute r + na, with r being the running result that
accumulates the partial results na
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Multiply-Accumulate

// Multiply-accumulate, version ©
int mult _acco(int r, int n, int a)

{ .
if (n == 1) return r + a; E
if (odd(n)) 5

E

{ g
return mult_accO(r + a, half(n), a + a); >

=

} 3
return mult _accO(r, half(n), a + a); o
:

<




1/25/2024, Lecture 2

Multiply-Accumulate

- Simplify recursion: branches differ in first argument only

// Multiply-accumulate, version 1
int mult accl(int r, int n, int a)

{

if (n == 1) return r + a;

if (odd(n)) r = r + a;

return mult _accl(r, half(n), a + a);
}

. This makes the function tail-recursive (the recursion happens on
return statement of the function)
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1/25/2024, Lecture 2

Multiply-Accumulate (tail recursive)

- Further observations:
* n 1s rarely equal to one
* There 1s no point in checking for equality with one if n is even

// Multiply-accumulate, version 2
int mult _acc2(int r, int n, int a)

%f (odd(n))

r=r + a;
if (n == 1) return r;

}

return mult _acc2(r, half(n), a + a);

}

. fDon’t assume that the compiler 1s performing this kind of optimizations
or you!
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1/25/2024, Lecture 2

Multiply-Accumulate

- A strictly tail-recursive function is one in which all the tail-recursive
calls are done with the formal parameters of the function being the
corresponding arguments

// Multiply-accumulate, version 3
int mult _acc3(int r, int n, int a)

if (odd(n))

{
r=r + a;
if (n == 1) return r;
}
n = half(n);
a =a+ a;
return mult _acc3(r, n, a);
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1/25/2024, Lecture 2

Iterative Multiplication

.- Now it’s trivial to turn this into an iteration (replace tail recursion with
while(true)):

// Multiply-accumulate, version 4
int mult _acc4(int r, int n, int a)

while(true)
if (odd(n))
{

r=r + aj;

if (n == 1) return r;
}
n = half(n);
a =a+ a;
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Iterative Multiplication

- Use this for a new version of our multiply function:

// version 2
int multiply2(int n, int a)

{
if (n == 1) return aj;
// Note: skip one iteration
return mult _acc4(a, n - 1, a);
}

1/25/2024, Lecture 2
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Iterative Multiplication

- If n 1s a power of 2, then we first subtract one
« This creates a number with all bits set in i1ts binary representation
* This 1s the worst case for our algorithm, so make sure n is odd

// version 3
int multiply3(int n, int a)

while (!odd(n)) E
{
a =a+ a; j

n = half(n); S

U}'

if (n == 1) return a; z
2

N

©

return mult_acc4(a, n - 1, a);
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Iterative Multiplication

- Last, but not least, we now have a superficial test for odd(n) in
mult_acc4:

// final version 4
int multiply4(int n, int a)

while (lodd(n))
{

a =a+ a;
n = half(n);

}

if (n == 1) return a;

// even(n - 1) ==>n -1 I=1
return mult _acc4(a, half(n - 1), a + a);
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1/25/2024, Lecture 2

Sifting Primes

- Go through all numbers
- Sifting out non-primes
- Remaining numbers are prime

- Account for odd numbers only (starting at 3)

3 5 7 9 1113151719 21 23 25 27
29 31 33 35 37 3941 43 45 47 49 51 53

. In each iteration we take the first number (which is a prime) and
cross out all multiples

- Repeat as long as number is smaller than |ym| (where m is largest
considered number)
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1/25/2024, Lecture 2

Sifting Primes
- Start with 3
3 5 79|11 13|15[17 19|21|23 25|27

29 31|33|35 37(39(41 43|45|47 49|51|53
- Next 1s 5:

3 5 7 9 11 13 15 17 19 21 23|25|27

29 31 33|35(37 39 41 43 45 47 49 51 53
- Lasti1s 7:

3 5 7 9 11 131517 19 21 23 25 27
29 31 33 35 37 39 41 43 45 47|49|51 53
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Observations
O 1 2 3 45 6 7 8 9 1011 12 13 14 15

index:
values:

3 5 7 9 1113151719 21 23

25

27 29 31 33

- Step size (number of entries between two crossed out numbers) is
equal to factor

« Number of index between two crossed out numbers i1s equal to factor

- Difference between two values 1s twice the value of the factor

- The first number crossed out is the square of the factor
+ All other multiples were already considered before

1/25/2024, Lecture 2
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1/25/2024, Lecture 2

Implementing the Sieve

One could assume that we need two arrays to implement the
algorithm

« Array of Booleans representing whether a number is a prime

« Array of actual numbers

However values don’t need to be stored

We can compute a value from an index:
value = 2 * index + 3

Let’s use an array of Booleans
* true means prime
« false means non-prime
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1/25/2024, Lecture 2

Implementing the Sieve

template <typename I, typename N>
requires(std::random_access_iterator<I> && std::integral<N>)
void mark sieve(I first, I last, N factor)
{
// precondition: range [first, last) is not empty
// assert(first != last)

*first = false; // cross out first non-prime
while (last - first > factor)
{

first = first + factor;
*first = false; // cross out next non-prime
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1/25/2024, Lecture 2

Implementing the Sieve

- Template
template <typename I, typename N>

- Use of concepts
* requires(std::random_access iterator<I> && std::integral<N>)

* Defines requirements on type properties of arguments

- Iterators:
* Think of them as ‘pointers’ to an element inside a sequence of values
- ‘dereference’ iterator means “access the value of element it ‘points’ to”
+ *first = false;
- ‘difference’ of iterators means “get the number of elements between them”
- while (last - first > factor)

- ‘adding’ (subtracting) N to iterator means “move to the Nth next (previous)
element”
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- first = first + factor;
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More Observations

- When sifting by p we will start at p?
- When sifting numbers up to m stop at p? > m

- Value at index can be computed as:
value(i) = 2i + 3

- Index for value can be computed as:
v—3

2

index(v) =

- The index of the square of a value at i obviously 1s:
(2i +3)% -3

= 2i* + 61 + 3
5 l l

index(value(i)?) =
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Implementing the Sieve

template <typename I, typename N>
requires(std::random_access_iterator<I> && std::integral<N>)
void sift(I first, N n)

{
std::fill(first, first + n, true); 2
N i =0, index _square = 3; %
while (index_square < n) { // invariant: index square = 2 * i”"2 + 6*i + 3 E
if (first[i]) { // candidate is prime E
mark_sieve(first + index_square, first + n, 1 + i + 3); L
} S
++1; E
index_square = 2 * i * (i + 3) + 3; &
Exercise: S
} z

Improve further!
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Conclusions

- Rewriting code 1s an important and constant process
* Good code 1s never written in the first attempt

- Why is it important to pay attention to even smaller details?
* This code 1n particular is used very widely in cryptography and other fields

- Doing many iterations enables deep understanding of the algorithm
* This leads to more efficient implementations

- We repeatedly will come back to the Egyptian Multiplication
algorithm over course of this semester
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