The C++ Standard
Library (1)

Lecture 3

Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

1/30/2024, Lecture 3

Abstract

- We will look at the C++ Standard Library

« A vast collection of extremely useful containers, algorithms, and supporting
data structures

- This will be a whirlwind overview over certain aspects and facilities
- Date/time computation
* Filesystem operations
- Revisiting I/O (input/output)
+ Containers
+ Array containers
+ Vector, array
+ Associative container
* Unordered map/set, map/set
+ Specialized containers
- Lists, deque,
+ Container adaptors

>
~
[av]
~
=2
o=
—
el
=
o]
=
=)
fas]
e
4L
+
&)
)
<
E
<
N
S
N
on
=)
ok
~
(o
n
S
o0
@R
o
QO
N
O

1/30/2024, Lecture 3

Git & Github

Managing Source Code Histories

>
o
fay]
™
o)
o=
—
o)
=
<
xe}
=i
<
o
N
+
+
()
Q
<
E
<t
(&
=
(o]
o0
=]
or
=
o
n
o
a0
G
o
O
N
(@)

1/30/2024, Lecture 3

Git and GitHub

- Git and GitHub are common tools used 1in programming

- Help managing different versions of your code and collaborate with other
developers

- Git was developed 1n 2005 by Linus Torvalds

* Open source software for tracking changes in a distributed version control
system

- Git 1s made freely available for anyone to modify and use
 Available on all platforms, widely used

- Git tracks changes via a distributed version control system
+ Git can track the state of different versions of all files in your project

- It 1s distributed because you can access your code files from another
computer — and so can other developers.

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

1/30/2024, Lecture 3

Git and Github

- GitHub 1s a web-based platform where Git users build software
together

- GitHub 1s also an hosting provider and version control platform you
can use to collaborate on open source projects and share files

- When you're using GitHub, you're working with Git under the hood

. Git is the (command-line) tool that manages the files

- VSCode (and many other IDEs) have a graphical user interface that sits on
top of Git

. Github is (one of the existing and free) web-platforms you can use to
host your Git repositories

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

1/30/2024, Lecture 3

Git and Github

- Millions of people all over the world use these tools, and the numbers
just keep going up
* It 1s being used for any programming language

- More companies are requiring new hires to know how to use Git and

GitHub

+ So if you're looking for a developer job, these are essential skills to have

>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

Setting Things Up

- Install Git
- Comes preinstalled in some Macs and Linux-based systems
- Simple install for all platforms: https://git-scm.com/download

5+ Command Prompt

[Version 16.0.19644.1826]

orporation. All rights reserved.

- Create account on Github: https://github.com

1/30/2024, Lecture 3

>
~
®
~
Q
=
—
el
~
o]
o
=)
o]
+
N
+
+
@)
Q
e
IS
<
N
S
N
on
=
s
~
oF
N
(@)
Q0
Gl
o
QO
N
O

-]

https://git-scm.com/download
https://github.com/

1/30/2024, Lecture 3

Connect Git to Github

. Set Git user name and email address (do this once)

git config --global user.name "Hartmut Kaiser"
git config --global user.email "hartmut.kaiser@gmail.com"

- Use same email address as you used for registering on Github

>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

1/30/2024, Lecture 3

Github Classroom

- Website helping to manage assignments

- Based on starter codes 1n a repository
- Manages clones (copies) of this repository for each student
 All repositories are hosted on Github

- Enables automatic grading
- Enables individual feedback to each student

- Well integrated in VSCode

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
)
E
<
AN
=
(A
on
=]
o
~
[oR
N
oS
o0
™
o
©)
N
o

€ 9IN39T ‘$503/08/T Areaqr prepuels ++ Y], ‘F¢0g Surrdg ‘08¢€DSD

Development Notes

O
o
Ay
>
&S
S,
p.

The “natural” developnt prpce

Get project requirements

Disappear and start coding immediately
Abruptly stop coding and start testing
Emerge from cave to demo project

Haphazardly fix bugs as they emerge

1/30/2024, Lecture 3

CSC3380, Spring 2024, The C++ Standard Library

Waterfall:
A flawed Engineering Process

1/30/2024, Lecture 3

Product requirements document * Supposedly:

* Simple to understand and
manage

* Engineers can specify things
completely

» Fixing problems in earlier
phases is cheaper

Software architecture

Implementation

Softwars

Verification Waterfall is a generic term for the one-

way methods used by entirely too

; many of companies
‘ Maintenance |

s
~
V]
~

o]

=

5

e
~
(M)

=
S
<

=
0P
+
+

o
)]

4=

S

i

N

=)

N
o0
=

35
~
o,

»n

=

0

G

o0

O

95}

©

1/30/2024, Lecture 3

What’s Wrong?

Software engineering is not like other disciplines

Requirements specification is never complete (or unambiguous)

Stakeholders change their minds often

Nearly infinite complexity in software

Causing software that is: -
+ Heavily delayed o
+ Significantly over budget \ OUKE NUKEW:

* Does not meet the need

s
~
V]
~

o]

=

5

e
~
(M)

=
S
<

=
0P
+
+

o
)]

4=

S

i

N

S

(o]
o0
=

35
~
o,

»n

=

Q0

G

GR

QO

95}

©

Alternative Lifecycle:
Modified Waterfall Lifecycle

Analysis ;
\ Requiremen ts
Specification
N
\ System &
Software
\ Design) b
\ Implementation
\ />;\
\ Testing
\ />;\
elive

Alternative Lifecycle:
Rapid Prototyping

Analysis ;

Requirements

Specification i
A ‘\ s

1/30/2024, Lecture 3

ystem &

Software
Design Y
‘\ Implementation
\ />;\
\ 4 v \
Testing
Prototyping i

Delivery

.

N

>
~
©
~
o]
=
=
e
~
<
=
=
<
5
»n
+
+
o
)]
<
S
<
o
o
N
ap
=
=
~
o,
n
S
0
o
GR
O
N
©

Maintenance

1/30/2024, Lecture 3

Phased Development

- Incremental
* Initial release has limited functionality
- Each release adds new subsystem

- Iterative
- Each release delivers full system
* Subsystem changes with new release

Requirements S &
Analysis quireme Software |Implementation Testing Delivery
Specification .
Design
Requirements Sy &
Analysis quireme Software |Implementation Testing Delivery
Specification Design

Requirements SyEiEm &
Analysis quireme Software |Implementation Testing
Specification .
Design
Delivery Maintenance

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

1/30/2024, Lecture 3

An Iterative Development Lifecycle

Iteration Detail
Detailed‘
Requirements

(Deployment)

. Vision is established |\
- Development cycles ~‘ “'U‘ ~‘ "~‘ \\ »
! : Vision i =
through iterations \ W \ W \ W \ W Continue J E
lteration 1 lteration 2 Iteration 3 Iteration 4 / =
- Frequent deployment | E
° U ser- focus Implementation & Developer Testing / jf
AE;SI;: & QA Acceptance Z']
Y Testing S
@)

Evaluation /
Prioritization

€ 9IN39T ‘$503/08/T Areaqr prepuels ++ Y], ‘F¢0g Surrdg ‘08¢€DSD

+
+
O
o
=
v
o
-
v
+2
).
D
-
-

Library

€ 2an399 ‘FZ03/0E/T Areiqry paepuels ++) oY, ‘¥g0g suridg

O
k=
=
O
-
Ay
3
S
-

1/30/2024, Lecture 3

Date and Time

- C++ offers a full featured time and date manipulation library
+ Fairly complex, so we will give a light overview

- All date/time types are defined in namespace std: :chrono

- There are two primary clocks to consider for obtaining time
- The system clock (std: :chrono: :system_clock)
» The steady clock (std: :chrono: :steady clock)

- The system clock matches the system time and should be used when working
with the actual time (UTC).

+ Not guaranteed to be contiguous
« Use steady clock for benchmarking

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

1/30/2024, Lecture 3

Date and Time

// Get current time from system clock, returns a time point
auto tpl = std::chrono::system clock::now();
std::cout << "The current UTC time is: "

<< tpl << "\n";

// The current UTC time is: 2023-06-22 20:51:41.278848 +0000

// Difference of two time points is a duration

auto tp2 = std::chrono::system clock::now();

auto duration = tp2 - tpl;

std::cout << "Time elapsed between calls:
<< duration << "\n";

>
~
<
~
=2
o
S|
e
~
<
=
=)
<
3
mn
+
+
O
Q
<
S
<
o
=
N
on
=
2
~
2,
)
S
oS
oA
o0
QO
D)
<

// Time elapsed between calls: 21587 [1/10000000]s

The system and the steady clock

- The system clock’s problem is that it can be externally adjusted
(when synchronizing the system’s clock with time servers).

 This poses a problem when we try to make accurate measurements by
capturing specific time points.

- The steady clock 1s a monotonic clock that 1s not externally adjusted

+ It 1s meant for measuring time periods, for example, performance metrics.

- It is unrelated to system time (it can be the time since the last system
reboot).

1/30/2024, Lecture 3

>
~
&
~
o
o=
—
]
~
<
e
=
o
5
+
+
&5
b
<
S
<
(N
o
N
o0
=
-
~
2,
n
o
oo
o)
Re)
(@)
N
©

1/30/2024, Lecture 3

The steady clock

// Bring in literals from std::chrono
using namespace std::literals;

// Same interface as system clock:

auto tpl = std::chrono::steady clock::now();
std::this_thread::sleep_for(lms); // millisecond literal
auto tp2 = std::chrono::steady clock::now();

auto duration = tp2 - tpl;
std::cout << "Slept for " << duration << "\n";
std::cout << "Which is " << (duration - 1ms)

<< " more than the requested duration.\n";

// Slept for 8867900ns
// Which is 7867900ns more than the requested duration.

s
~
V]
~

o]

=

5

e
~
(M)

=
S
<

=
0P
+
+

o
)]

4=

S

i

N

=)

N
o0
=

35
~
o,

»n

=

0

G

o0

O

95}

©

1/30/2024, Lecture 3

Timepoints and Durations

- The supported arithmetic operations follow the expected semantics
- Time literals represent durations
- Durations can be added together or multiplied with scalars

- Adding a duration to a time point produces a new time point with the
desired offset

- A difference of two time points is a duration

- Negative durations are supported as well

>
~
(o]
S
O
o=
—
el
g
]
=
g
<
S
n
+
+
O
)
<
S
<
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
QO
N
<

1/30/2024, Lecture 3

Date Manipulations

// Day in a year can be specified using literals and operator/
std::cout << "Christmas 2024 is on a "
<< weekday(2024y / December / 24d) << "\n"; // Christmas 2024 is on a Tue

// Last day for February 2020
std::cout << "Leap day in 2020:
<< year_month _day(2020y / February / last) << "\n"; // Leap day in 2020: 2020-02-29

// Last Sunday of 2024
year_month_weekday last last sunday = 2024y / December / Sunday[last];
std::cout << "Last Sunday in 2024: "
<< year_month_day(last sunday) << "\n"; // Last Sunday in 2024: 2024-12-29

// US Thanksgiving in 2024
auto thanksgiving = November / Thursday[4];
std::cout << "Thanksgiving in 2024: "
<< year_month_day(thanksgiving / 2024y) << "\n"; // Thanksgiving in 2024: 202

s
~
V]
~

o]

=

5

e
~
(M)

=
S
<

=
0P
+
+

o
)]

4=

S

i

N

=)

N
o0
=

35
~
o,

»n

=

0

G

o0

O

95}

©

-28

Timezones

// Monthly meeting each first Wednesday 15:00, as un-zoned time
auto meeting = local days(2023y / June / Wednesday[1l]) + 15h;

// local _time -> zoned time: the time is local to this zone
auto prague = locate_zone("Europe/Prague");
auto new_york = locate_zone("America/New_York");

zoned_time<seconds> local(prague, meeting);
zoned_time<seconds> remote(new_york, local);
<< local << "\n";

std::cout << "Prague time:
std::cout << "New York time: << remote << "\n";

// Next week's meeting

zoned_time<seconds> next local(prague, meeting + weeks(1l));
zoned_time<seconds> next_remote(new_york, next_local);

std::cout << "Prague next time: << next_local << "\n";

std::cout << "New York next time: " << next_remote << "\n";

// time zone conversion
// Prague time: 2023-06-07 15:00:00 GMT+2
// New York time: 2023-06-07 09:00:00 EDT

// Prague time: 2023-06-14 15:00:00 GMT+2
// New York time: 2023-06-14 09:00:00 ED

1/30/2024, Lecture 3

s
~
V]
~

o]

=

5

e
~
(M)

=
S
o

=
0P
+
+

o
)]

4=

S

i

N

=)

(o]
o0
=

35
~
o,

»n

=

D0

G

o0

O

95}

©

€ 2an399 ‘FZ03/0E/T Areiqry paepuels ++) oY, ‘¥g0g suridg

s
D
42
)
P
).
D
r—
[

1/30/2024, Lecture 3

Filesystem Operations

- The std: :filesystem library offers file-system exploration,
manipulation and querying tools

- Files and directories are identified by their paths, which are, by
default, relative.

* The std::filesystem: :absolute() function turn any relative path into
an absolute one based on the current working directory

* The std: :filesystem::canonical() function turn any relative path into
an absolute one that has no dot, dot-dot elements, or symbolic links

* The std: :filesystem::equivalent comparator can be used to check
whether two paths refer to the same file-system entity

- Even taking into account symbolic links, etc.

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

1/30/2024, Lecture 3

Filesystem Operations

// Construct a path for the current directory
std::filesystem::path local(".");

std::cout << "local == << local << "\n"; // local == "."

// Get the absolute path, i.e. a path from root
absolute(local);
std::cout << "from_root == " << from_root << "\n"; // from_root == "/some/path/."

std::filesystem::path from _root

// Get the canonical (normalized) full path
std::filesystem::path unique = canonical(local);

std::cout << "unique == << from_root << "\n"; // unique == "/some/path"

bool eql = std::filesystem::equivalent(local, from_root);
bool eq2 = std::filesystem::equivalent(local, unique);
std::cout << std::boolalpha << "eql == " << eql << ", eq2 == " << eq2 << "\n";

// eql == true, eq2 == true

s
~
V]
~

o]

=

5

e
~
(M)

=
S
<

=
0P
+
+

o
)]

4=

S

i

N

=)

N
o0
=

35
~
o,

»n

=

0

G

o0

O

95}

©

1/30/2024, Lecture 3

Filesystem Operations

- Directory content can be enumerated using .
directory iterator or recursive directory_ iterator

std::filesystem: :path local(".");

// iterate over entries in directory specified by path
for (auto const& entry : std::filesystem::directory iterator(local))

{

print_file size(entry);

}

// recursively iterate over entries in directory specified by path
for (auto const& entry : std::filesystem::recursive directory iterator(local))

{

print_file_size(entry);

>
~
©
~
o]
=
=
e
~
<
=
=
<
5
»n
+
+
o
)]
<
S
<
o
o
N
ap
=
=
~
o,
n
S
0
o
GR
O
N
©

(An)
o
=
=]

+~
(5]
<)

—

AN

(e}

N

~

)

(92)

~

—

Filesystem Operations

- Print the size of a file

// process each std::filesystem::directory_entry

void print file size(std::filesystem::directory entry const& entry) g
—

t g
if (entry.is _regular_ file()) // Type of object =

{ i

&

// Filename can be extracted from the path 2

S

auto filename = entry.path().filename(); N
std::cout << filename << ": " << file_size(entry) << "\n"; E

// size, permissions, etc... z%

=

) 3

1/30/2024, Lecture 3

Filesystem Operations

// Create a file with the content: "Current content\n"
std::filesystem::path file = "current file";

{
// canonical path must exists, however, since we are just
// about to create the file, we need to use weakly canonical
std::ofstream f(weakly canonical(file));
f << "Current content\n";
}

// Create a directory if it doesn't exist

std::filesystem: :path backup folder = "./backup";

if (lexists(backup_folder))
create_directory(backup_folder);

s
~
V]
~

o]

=

5

e
~
(M)

=
S
<

=
0P
+
+

o
)]

4=

S

i

N

=)

N
o0
=

35
~
o,

»n

=

0

G

o0

O

95}

©

1/30/2024, Lecture 3

Filesystem Operations

// Check for sufficient space
if (space(backup_folder).available < file size(file))
throw std::runtime_error("Not enough space for backup.");

// Create a "unique" filename in the backup folder
std::filesystem: :path backup file = backup_folder / file.filename();

// Copy the file to backup
copy(file, backup file);

// Update the symlink to point to this backup
std::filesystem::path symlink = file.parent_path() / "current backup";
if (exists(symlink))
remove(symlink);
create _symlink(backup file, symlink);

s
~
V]
~

o]

=

5

e
~
(M)

=
S
o

=
0P
+
+

o
)]

4=

S

i

N

=)

(o]
o0
=

35
~
o,

»n

=

D0

G

o0

O

95}

©

€ 2an399 ‘FZ03/0E/T Areiqry paepuels ++) oY, ‘¥g0g suridg

ting I/0

V1Sl

Q
a=

1/30/2024, Lecture 3

Revisiting I/O

- In the previous example, we used a new type of stream, std: :ofstream.
Similar to std: :cin and std: :cout, files are also represented by
streams.

{

// Open for writing or create if file doesn't exist.
std::ofstream out("data.txt");
out << "Hello World!\n";

} // out closes

// Open for reading.
std::ifstream in("data.txt");

std::string line;
std::getline(in, line);

std::cout << "line == " << line << "\n"; // line == "Hello World!"

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

(An)
o
=
=)

=
Q
<)

—

AN

(e}

N

=

)

(92)

~

—

Revisiting I/0

- It 1s also possible to use an output stream that fills a std: :string

std::string line; >
E

t E
std::stringstream strm; =

&

strm << "Hello world!"; +

&

line = strm.str(); é

) :
f’,:]

S

;oqL

std::cout << "line == " << line << "\n"; // line == "Hello World!" g
N

2

i

N

<

1/30/2024, Lecture 3

I/0O for your own Types

struct X
{
int64 _t value;
}s5
std::ostream& operator<<(std::ostream& out, X const& el)
{
return out << el.value;
}

std::istream& operator>>(std::istream& in, X& el)

{

return in >> el.value;

=
~
I
~
e}
o
3
=
B~
&
=
g
5
&
0
+
-+
@)
(D]
==
Sy
<
o]
S
N
o0
o
-
~
o,
wn
o
0
0
(ap]
(@)
N
O

1/30/2024, Lecture 3

I/0O for your own Types

{
std::ofstream out("data.txt");
X a{42};
X b{7};
out << a << " " << b;

} // out closes

std::ifstream in("data.txt");

X a{@};
X b{@};
in >> a >> b;

std::cout << "a.value == " << a << ", b.value == " << b

<< "\n"; // a.value == 42, b.value ==

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

Containers,
Algorithms &
Iterators

1/30/2024, Lecture 3

Containers, Algorithms & Iterators

- The Standard Template Library 1s an extensible framework dealing
with data in a C++ program.

- First, I will present the general idea, then the fundamental concepts,
and finally examples of containers and algorithms.

- The key notions of sequence and iterator used to tie data together
with algorithms (for general processing) are also presented.

- We can (already) write programs that are very similar independent
of the data type used
« Using an int isn’t that different from using a double

« Using a std: :vector<int> isn’t that different from using a std::
vector<string>

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

1/30/2024, Lecture 3

Common Tasks

Collect data into containers

Organize data
« For printing
 For fast access

Retrieve data items
* By index (e.g., get the Nth element)
* By value (e.g., get the first element with the value "Chocolate")
* By properties (e.g., get the first elements where “age < 64”)

Add data

Remove data

Sorting and searching

Simple numeric operations

>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

1/30/2024, Lecture 3

Ideals

- We'd like to write common programming tasks so
that we don’t have to re-do the work each time we
find a new way of storing the data or a slightly
different way of interpreting the data

- Finding a value in a std: :vector isn’t all that different from
finding a value in a std::1ist or an array

* Looking for a std: :string ignoring case isn't all that
different from looking at a std: :string not ignoring case

- Graphing experimental data with exact values 1sn’t all that
different from graphing data with rounded values

- Copying a file 1sn’t all that different from copying a vector

>
~
©
~
o]
=
=
e
~
<
=
=
<
5
»n
+
+
o
)]
<
S
<
o
o
N
ap
=
=
~
o,
n
S
0
o
GR
O
N
©

1/30/2024, Lecture 3

Ideals (continued)

- Code that’s
- Easy to read
- Easy to modify
- Regular
* Short
- Fast

- Uniform access to data
* Independently of how it is stored
* Independently of its type

>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

1/30/2024, Lecture 3

Ideals (continued)

- Type-safe access to data
- Easy traversal of data

- Compact storage of data
- Fast

- Retrieval of data

- Addition of data
« Deletion of data

- Standard versions of the most common algorithms
- Copy, find, search, sort, sum, ...

>
~
(o]
~
=2
o=
—
el
~
]
=
=
fas]
e
L
+
&)
)
<
=
<
N
S
(o]
on
=}
O]
~
oF
N
S
o0
)
o
QO
N
|

1/30/2024, Lecture 3

Examples

- Sort a vector of strings - What is the largest amount seen?

- Find an number in a phone book, - Find the first difference between
given a name two sequences

- Find the highest temperature - Compute the pair wise product of

the elements of two sequences

- Find all values larger than 800 .
- What’s the highest temperatures for

- Find the first occurrence of the each day in a month?

value 17
_ - What’s the top 10 best-sellers?
- Sort the telemetry records by unit .
number - What's the entry for “C++” (say, in
Google)?

- Sort the telemetry records by time
stamp - What’s the sum of the elements?

- Find the first value larger than
“Petersen”?

=
~
fay]
~
o]
o=
5
e
~
<
=
=
<
E
w0
+
x
&)
b}
2=
S
<
(&
=
(o]
o0
o
o
~
o,
n
o
a0
G
GR
O
(@)

1/30/2024, Lecture 3

Generic Programming

- Generalize algorithms
* Sometimes called “lifting an algorithm”

. The aim (for the end user) is
° Increased correctness
* Through better specification

- Greater range of uses
« Possibilities for re-use

- Better performance
* Through wider use of tuned libraries
* Unnecessarily slow code will eventually be thrown away

- Go from the concrete to the more abstract
* The other way most often leads to bloat

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

1/30/2024, Lecture 3

Lifting example (concrete algorithms)

// one concrete algorithm (doubles in array)
double sum(double array[], int n) {
double s = 0;
for (int i = 0; i < n; ++1i)
S = s + array[i];
return s;

}

struct Node {
Node* next; int data;

}s

// another concrete algorithm (int’s in list)
int sum(Node* first) {

int s = 0;
while (first != 0)
{

s += first->data;
first = first->next;

}

return s;

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

Lifting Example
(abstract the Data Structure)

// somehow parameterize with the data structure

1/30/2024, Lecture 3

int sum(data)

{
int s = 0; // initialize
while (not-at-end)
{ // loop through all elements
s = s + get-value; // compute sum
get-to-next-data-element;
}
return s; // return result
}

- We need three operations (on the data structure):
* not at end

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

- get value
-+ get to next data element

1/30/2024, Lecture 3

Lifting Example (STL version)

// Concrete STL-style code for a more general version of both algorithms
template <typename Iter, typename T>
T sum(Iter first, Iter last, T s) {
while (first != last) {
s = s + *first;
++first;

}

return s;

// 'Iter' should be an Input_iterator (supports ==, ++, *)
// 'T" should be something we can + and =, is the accumulator type

- Let the user 1nitialize the accumulator:
float a[] = {1, 2, 3, 4, 5, 6, 7, 8};
double d = sum(a, a + std::size(a), 0.0);

=
~
fay]
~
o]
o=
5
e
~
<
=
=
<
E
w0
+
x
&)
b}
2=
S
<
(&
=
(o]
o0
o
o
~
o,
n
o
a0
G
GR
O
(@)

1/30/2024, Lecture 3

Lifting Example

- Almost the standard library accumulate
* Simplified a b1t for terseness

- Works for

« C arrays
- std::vector’s
« std::1lists’s
* std::istream’s

-« Runs as fast as “hand-crafted” code
* Given decent inlining

- The code’s requirements on its data has become explicit
- We understand the code better

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

1/30/2024, Lecture 3

Pattern: Iterator

- Context:

- 1. An object (which we’ll call the container) contains other objects (which
we'll call elements).

- 2. Clients (that is, methods that use the container) need access to the
elements.

3. The container should not expose its internal structure.
* 4. There may be multiple clients that need simultaneous access.

- Solution:
« 1. Define an iterator class that refers to one element at a time.

-+ 2. Each iterator type needs to be able to keep track of the position of the
previous and/or next element

* 3. There are several variations of containers
- Each exposes its own iterator classes
« All iterators implement common interfaces
* The client only needs to know the interface, not the concrete classes.

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

CENTER FOR COMPUTATION
& TECHNOLOGY

1/30/2024, Lecture 3

CSC3380, Spring 2024, The C++ Standard Library

Ot
DO

