The C++ Standard
Library (2)

Lecture 4
Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

¥ 9IN3997T ‘§Z03%/1/% (3) A1RIqUT pIRpURIS ++0) oY, ‘7303 SuLidg

]
o
=

<+
-
o

@,
-
o

"W
o

—

2/1/2024, Lecture 4

What 1s Version Control?

- A database that keeps track of all changes to files over time
- Allows for collaborative development
- Allows to track who made what changes and when

- Allows to revert changes and go back to previous state

—~
N
>
~
(o]
S
O
o=
—
el
g
]
=
g
<
S
n
+
+
O
)
)
E
=i
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
QO
N
o

2/1/2024, Lecture 4

What 1s Git

- Distributed version control system

- Entire code and history is kept on user’s machine
« Changes can be made without internet access
- (Except pushing and pulling from a remote server)

« One of many different version control systems
* Subversion, Perforce, Mercurial
* Git one of the most widely used ones

=
N
>
~
©
~
o
o=
—
el
=
<
=
=)
@
3
n
+
+
35
o)
)
E
i
N
S
N
on
=]
=
~
[oR
N
oS
0
o
GR
O
N
o

2/1/2024, Lecture 4

How does Git work?

- Can be complicated at first, but it 1s based on a few key concepts

- Based on Snapshots
+ All history is based on snapshots
* Records what all files look like at a given point in time
« User decides when to take snapshots and of what files

« Can go back to any previous snapshot
- Later snapshots are still available

—
N
>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
e
~
Q
n
o
0
g
(@)
N
O

2/1/2024, Lecture 4

How does Git work?

- Key concept: Commit

- The act of taking a snapshot
* Verb: the user commaitted the code
* Noun: the user made a new commit

- Every project is made of many commits
* List of commits defines the timeline of changes applied to files

- Three pieces of information:
« How did files changes from previous state
« A reference of the commit that came before it
« Parent commit
* A unique hash code 1dentifying the commit
* Something like: c374126626038f020dd12f842d4dc5d67d02f59d

—~
N
>
~
(o]
=
o)
o=
—
el
o
]
=
=)
fas]
S
n
+
+
&)
)
<
S
=
N
S
N
on
=]
O]
~
[oR
N
S
o0
™
[ap)
QO
N
<

2/1/2024, Lecture 4

How does Git work?

- Key concept: Repositories
+ Often shortened to repo

- A collection of all files and their history for a project
* Consists of all commits
+ Place were all the work 1is stored

. Can live on a local machine or on a remote server (Github)

- Copying a remote repository to your local machine is called cloning
+ Allows for teams to work collaboratively

- Downloading commits from remote repository: pulling changes

—
N
>
~
<
=
o
o=
—
el
S
<
=
g
fas]
i
wn
+
+
-
o
<
S
<
N
S
N
on
=)
-
~
(o
N
S
0
on
o
@)
N
O

- Adding local changes to a remote repository: pushing changes

2/1/2024, Lecture 4

How does Git work?

Key concept: Branches

All commits live on a branch
- Each branch 1s a sequence of commits

There can be many branches

The main branch i1s often called main or master branch

=
N
>
~
©
~
o
o=
—
el
=
<
=
=)
@
3
n
+
+
35
o)
)
E
N
S
N
on
=]
=
~
[oR
N
oS
0
o
O
N
o

2/1/2024, Lecture 4

Typical Structure of a Project

reference to current branch

/

child points to parent - HEAD
- current branch
j master
ad7c3 | b325c ' c10b9 | da985 - ed489
\ 4 c

—~
N

)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A

on

CSC3380, Sprin

—

Time going forward

2/1/2024, Lecture 4

Typical Structure of a Project

- HEAD: Reference to the most recent commit

- MASTER: The main branch in a project

« Sometimes called ‘main’

- Key concept: branching off master branch
« Start off a branch from a specific commit
« Any changes to a project should start with a new branch

—
N
>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

2/1/2024, Lecture 4

Branching off master

master

iss53

—
N
>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

Time going forward

2/1/2024, Lecture 4

Typical Structure of a Project

- Key concept: Merging

- Once done with a feature the branch will be merged back to master

master

(o)))= —=

—
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
)
E
<
AN
=
(A
on

CSC3380, Sprin

Time going forward

2/1/2024, Lecture 4

Making a Commit

- Files can be a 1n a lot of states and places

- Files are being edited in your local file system
* The working directory

. A file that is ready to be committed needs to be staged (added to the
index)

« Use 'git add ...' command to define the set of files that should be part
of a commit

* Use '"git commit ...

command to create actual commit

—
N
>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

2/1/2024, Lecture 4

Making a Commit

reference to current branch

another branch /

\ child points to parent | HEAD

maint) B current branch

a47¢3 b325¢ j c10b9 - da985 - ed4s9

T\

commit objects,
Stage (Index) identified by SHA-1 hash

files to go in next commit
e —

files that you “see” -
T ——

Working Directory

—~
N
)
~
©
"
s
o=
—
e
L
&
=
g
<
s
wn
+
+
-
b
==
E
<
N
=
N
on
=i
-
~
oF
N
S
D0
P,
®)
N
|

Time going forward

2/1/2024, Lecture 4

Making a Commit

git commit

.*'";,)
HEAD | HEAD

master
X

ad7c3 b325¢c c10b9 da985 ed489 fOcec

Stage (Index)

Working Directory

-

Time going forward

—
N
>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

¥ 0In300T ‘$303%/1/% (3) A1RIqUT pIRpURIS ++0) oY, ‘7303 SuLidg

Template Library

o
=
v
o
-
v
+2
).
D
-
-

2/1/2024, Lecture 4

Abstract

- We will look at the C++ Standard Template Library

+ A vast collection of extremely useful containers, algorithms, and
supporting data structures

- This will be a whirlwind overview over certain aspects and facilities
« Containers, Algorithms & Iterators

—
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
)
E
<
AN
=
(A
on
=]
o
~
[oR
N
oS
o0
™
o
©)
N
o

re 4

The STL
(Standard Template Library)

- Designed by Alex Stepanov

=}
=

O

5}
|
(o]
S
N
<
—
=~
N

- General aim: The most general, most
efficient, most flexible representation
of concepts (ideas, algorithms)

- Represent separate concepts separately in code
- Combine concepts freely wherever meaningful

(2)

- General aim to make programming “like math”
- or even “Good programming zs math”

- works for integers, for floating-point numbers, for
polynomaials, for ...

g 2024, The C++ Standard Library

CSC3380, Sprin

2/1/2024, Lecture 4

Basic Model

- Algorithms - Separation of concerns

sort, find, search, copy, ... + Algorithms manipulate data, but
don’t know about containers

+ Containers store data, but don’t know
about algorithms
+ Algorithms and containers interact
through iterators
- Each container has its own iterator
/ types

t « Iterators know about internal container

structure and data

- Iterators expose uniform interface for
algorithms

: !
- Containers '

vector, list, map,
unordered_map, ...

—~
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

The STL

- An ISO C++ standard framework of about a
dozen containers and over 100 algorithms
connected by 1terators

- Other organizations provide more containers and
algorithms in the style of the STL

- Boost.org, Microsoft, SGI, ...

- Probably the currently best known and most
widely used example of generic programming

=
N
s
~
fay]
=
i)
o
—
]
o
<
=
=
<
o
+
+
(@)
o)
=<
Sy
<
(&
=
(o]
o0

2/1/2024, Lecture 4

CSC3380, Sprin

2/1/2024, Lecture 4

The STL

- If you know the basic concepts and a few
examples you can use the rest

« Documentation

- Cpp-Reference: https://en.cppreference.com
* Draft C++ Standard: https://eel.is/c++draft/

—~
N
=
~
I
~
e}
o
3
=
B~
&
=
g
<
&
0
+
-+
@)
(D]
==
Sy
<
o]
S
N
o0
o
-
~
o,
wn
o
0
0
(ap]
(@)
N
O

https://en.cppreference.com/
https://eel.is/c++draft/

2/1/2024, Lecture 4

Basic Model

- A pair of iterators defines a sequence (a range)
- The beginning (points to the first element — if any)
- The end (points to the one-beyond-the-last element)

end:

- An 1terator is a type that supports the “iterator operations”
* ++ Go to next element
« * Get value of element
« == Does this iterator point to the same element as that iterator?

—
N
N
>
o
fay]
™
o)
o=
—
o)
=
<
xe}
=i
<
o
N
+
+
()
Q
<
E
<t
(&
=
(o]
o0
=]
or
=
o
n
o
a0
lap)
O
N
(@)

- Some iterators support more operations (e.g. --, +, and [])

2/1/2024, Lecture 4

Pattern: Iterator

- Context:

- 1. An object (which we’ll call the container) contains other objects (which we’ll call
elements).

- 2. Algorithms (that is, methods that use the container) need access to the elements.
* 3. The container should not expose its internal structure.
* 4. There may be multiple algorithms that need simultaneous access.

- Solution:
+ 1. Define an iterator class that refers to one element at a time.
- 2. Each iterator type needs to be able to keep track of the position of the current element
- 3. Each iterator knows how to navigate the container to find next/previous element
* 4. There are several variations of containers
+ Each exposes its own iterator classes
+ All iterators implement common interfaces
* The algorithm only needs to know the interface, not the concrete classes.

—~
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

¥ 0In300T ‘$303%/1/% (3) A1RIqUT pIRpURIS ++0) oY, ‘7303 SuLidg

),
=
D
-
o r=f
v
<+
-
-
@,

2/1/2024, Lecture 4

Containers

- Containers are special data structures that help storing one or more
1items of the same type

+ Collections of items

- Manages the storage space for its elements and provides functions to
access them

- Containers replicate structures very commonly used in programming:
- Arrays: dynamic (std: :vector), static (std: :array)

Linked lists (std::1ist, std::forward_list)

Trees (std: :set, std::multi_set, std::unordered_set)

Associative arrays (std: :map, std: :multi_map, std: :unordered_map)

Various adaptors:
- Queues (std: :queue, std: :priority queue), stacks (std: :stack)

—~
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

- Associative interfaces for arrays (std::flat_map, std::flat_set)

Containers
(hold sequences in difference ways)

-\h “““ 4

« std::1list

2/1/2024, Lecture 4

(2)

"
)
2
fay]
&
(@)

el

3

el
=
<

o]
o]
<

j—d'

wn

+

-+
<]

:G

=

<

N

([a»)

)

- std: :set

CSC3380, Spring 2

Dynamic arrays (std::vector)

- All containers are generic types (templates) so they can be used to
store items of arbitrary types

- Dynamic arrays are the first choice container type
« Rule: use std: :vector by default

 If you can’t use std: :vector, think again and change your approach such
that you can use std: :vector

- Rely on contiguous memory
« Makes them 0(1) in terms of access time
- Insertion and deletion is O(N), however (except at the end)

—~
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

2/1/2024, Lecture 4

Dynamic arrays (std::vector)

// An array of integers, initialized with five elements:
std::vector<std::int64_t> data = {1, 2, 3, 4, 5};

// Elements can be accessed using the operator []
std::cout << "data[3] == " << data[3] << "\n"; // data[3] == 4

// An array of arrays of integers follows the same pattern
std::vector<std::vector<std::int64 t>> data2d = {{1, 2, 3}, {2, 3}, {4, 5, 6}, {7}};

// Same logic for accessing elements

std::cout << "data2d[1][@] == " << data2d[1][@] << "\n"; // data2d[1][@] == 2

std::cout << "data2d[2][2] == " << data2d[2][2] << "\n"; // data2d[2][2] == 6

// We can use element access to mutate the array

data2d[3] = {1, 2, 3, 4, 5};

std::cout << "data2d[3][2] == " << data2d[3][2] << "\n"; // data2d[3][2] == 3

data2d[1][0@] = 42;

std::cout << "data2d[1][@] == " << data2d[1][@] << "\n"; // data2d[1][@] == 42

2/1/2024, Lecture 4

—
S
N’
>
~
©
~
o]
ord
=
e
~
<
=
=
<
5
»n
+
+
o
)]
<
S
<
o
o
N
ap
=
=
~
o,
n
S
0
o
o
O
N
©

2/1/2024, Lecture 4

Dynamic arrays (std::vector)

- Note that accessing nonexistent elements makes the program
malformed

- Always ensure the index is valid (is in range) when accessing elements by
index (l.e. @ <= index && index < size)

+ Various debugging tools help with identifying index-out-of range errors
- Windows (msvc): standard library in debug builds
- Linux, Mac (gcc, clang): address sanitizer, undefined behavior sanitizer

- If you want to be sure, use at() instead operator[]()

- at() performs index checking at runtime and throws an error if index is
out of bounds

—
N
>
~
(o]
~
=2
o=
—
el
~
]
=
=
fas]
e
L
+
&)
)
<
S
N
S
(o]
on
=}
O]
~
oF
N
S
o0
)
o
QO
N
<

¥ 0IN3997T ‘¥20%/1/% (%) A1RIqUT pIRpURIS ++0) Y, ‘F30g SuLidg ‘08€eDSD

Iterators

o
-
v
),
S

S
)

o p=i
=
o

<

2/1/2024, Lecture 4

The simplest Algorithm: std: : find

// Find the first element that is equal to a valus

(std::input_iterator<In> && ...)

template <typename In, typename T> requires
In find(In first, In last, T const& val)

{
whi firs@ast &@st I= val)
@rst;
ret
}

first;

// find an int in a given vector
void f(std::vector<int> const& v, int x) {
auto p = std::find(v.begin(), v.end(), Xx);
if (p !'= v.end()) {
// we found x
std::cout << *p << "\n";
} begin:;

CSC3380, Spring 2024, The C++ Standard Library (2)

std: : find: Generic for both, element
type and container type

// works for list of strings

2/1/2024, Lecture 4

void f(std::list<std::string> const& 1, std::string x)

{
auto p = std::find(l.begin(), l.end(), x); // <-- here
if (p !'= 1l.end()) // did we find x?
{
std::cout << "Found x: " << *p << "\n";
}
}

// works of set of doubles
void f(std::set<double> const& s, double x)

{
auto p = std::find(s.begin(), s.end(), x); // <-- here
if (p !'= s.end()) // did we find x?
{

std::cout << "Found x: << *p << "\n";

—~
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

Algorithms and Iterators

. An iterator points to (refers to, denotes) an element of a sequence

- The end of the sequence 1s “one past the last element”
* not “the last element”
- That’s necessary to elegantly represent an empty sequence
* One-past-the-last-element 1sn’t an element

* You can compare an iterator pointing to it
- You can’t dereference it (read its value)

- Returning the end of the sequence is the standard idiom for “not

found” or “unsuccessful” .
An empty sequence:

some iterator: the end:

2/1/2024, Lecture 4

—
N
N
>
o
fay]
&
o)
o=
—
o)
=
<
xe}
=i
<
o
N
+
+
()
Q
<
E
<t
(&
=
(o]
o0
=]
-
&
o
n
o
a0
o
o
O
N
(@)

2/1/2024, Lecture 4

Simple algorithm: find if

- Find the first element that matches a criteria (predicate)
- Here, a predicate takes one argument and returns a bool

template <typename In, typename Pred>
In find if(In first, In last, Pred pred) {
while (first != last && !pred(*first))
++first;
return first;

}

void f(std::vector<int> const& v) {
auto p = std::find _if(v.begin(), v.end(), odd);
if (p !'= v.end())
{

// we found an odd number

—~
N
=
~
I
~
e}
=
3
=
B~
&
=
g
<
&
n
+
+
35
(D]
==
Sy
<
o]
S
N
o0
o
-
~
o,
wn
o
0
0
(ap]
(@)
N
O

2/1/2024, Lecture 4

Predicates

A predicate (of one argument) is a function or a function object that takes an
argument and returns a bool

- A function:
bool odd(int i) { return i % 2; } // % is the remainder
odd(7); // call odd: is 7 odd?

A function object:
struct 0dd {
bool operator()(int i) const { return i % 2; }

}s
0dd odd; // make an object odd of type 0dd
odd(7); // call odd: is 7 odd?

A lambda function:

auto odd = [](int i) { return i % 2; }
odd(7); // call odd: is 7 odd?

—~
N
=
~
I
~
e}
=
3
=
B~
&
=
g
<
&
n
+
-+
@)
(D]
==
Sy
<
o]
S
N
o0
o
-
~
o,
wn
o
0
0
(ap]
(@)
N
O

2/1/2024, Lecture 4

Function objects
- A concrete example using state:

template <typename T>
struct less_than {

T val; // value to compare with

less _than(T x) : val(x) {}

bool operator()(T const& x) const {

return x < val;
s

// find x < 43 in std::vector<int>:
p = find_if(v.begin(), v.end(), less_than(43));

—~
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

// find x < “perfection” in std::list<std::string>:
q = find_if(1ls.begin(), ls.end(), less_than("perfection"));

2/1/2024, Lecture 4

Function objects

- A very efficient technique
* inlining very easy
- and effective with current compilers
+ Faster than equivalent function

- And sometimes you can’t write an equivalent function
- The main method of policy parameterization in the STL

- Key to emulating functional programming techniques in C++
« ‘Using code as data’

—
N
>
~
<
=
e
o=
—
]
S
<
=
=)
(o]
S
N
+
+
-
)
=
E
<
(o]
=
N
o0
(@}
-
~
Q
n
o
0
g
(@)
N
O

2/1/2024, Lecture 4

Lambda

- A concrete example:

// find x < 43 in std::vector<int>:
p = std::find_if(v.begin(), v.end(), [](auto x) { return x < 43; });

// find x < “perfection” in std::list<std::string>:

g = std::find_if(ls.begin(), ls.end(), [](auto x) { return x < "perfection"; });

—~
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

2/1/2024, Lecture 4

Policy Parameterization

- Whenever you have a useful algorithm, you eventually want to parameterize
1t by a “policy”.
- For example, we need to parameterize sort by the comparison criteria

struct record {

std::string name; // standard string for ease of use
char addr[24]; // old C-style string to match database layout
/] ...

}s

std::vector<record> vr = {
{"John Doe", "42 Main Street"},
{"Donald Duck", "123 3rd Avenue"},

}s

std::sort(vr.begin(), vr.end(), cmp_by name()); // sort by name

—~
N
=
~
I
~
e}
=
3
=
B~
&
=
g
<
&
n
+
-+
@)
(D]
==
Sy
<
o]
S
N
o0
o
-
~
o,
wn
o
0
0
(ap]
(@)
N
O

std::sort(vr.begin(), vr.end(), cmp_by addr()); // sort by addr

2/1/2024, Lecture 4

Comparisons

// Different comparisons for record objects:
struct cmp_by name {
bool operator()(record const& a, record const& b) const

{

return a.name < b.name; // look at the name field of Rec

}s

struct cmp_by_ addr {
bool operator()(record const& a, record const& b) const

{
return @ < std::strncmp(a.addr, b.addr, 24); // correct?

}s

// note how the comparison function objects are used to hide ugly

—~
N
=
~
I
~
e}
=
3
=
B~
&
=
g
<
&
n
+
-+
@)
(D]
==
Sy
<
o]
S
N
o0
o
-
~
o,
wn
o
0
0
(ap]
(@)
N
O

// and error-prone code

2/1/2024, Lecture 4

std: :vector

template <typename T>
class vector {
T* elements;
public:
//
using iterator = ...; // the type of an iterator is implementation defined
// and it (usefully) varies (e.g. range checked iterators)
// a vector iterator could be a pointer to an element
using const_iterator = ...;

iterator begin(); // points to first element
const_iterator begin() const;

iterator end(); // points one beyond the last element
const_iterator end() const;

iterator erase(iterator p); // remove element pointed to by p
iterator insert(iterator p, T const& v); // insert a new element v before p

—
S
>
~
@
~
o]
o
3
e
~
<
3
=
<
IS
wn
+
-+
@)
b}
<
S
i
N
=
N
oo
<]
=
~
o,
n
S
0
o
GR
O
9p)
©

}s

2/1/2024, Lecture 4

insert() into std: :vector

std::vector<int>::iterator p = v.begin(); ++p; ++p; ++p;
std::vector<int>::iterator q = p; ++q;

V.

p = v.insert(p, 99); // leaves p pointing at the inserted element

- Note: q is invalid after the insert(
= Note: Some elements moved; all elements could have moved

—
N
N
"
)
2
<
&
(@)
el
3
el
=
<
o]
o]
<
it
wn
+
+
)
(@)
b}
;G
=
<
N
o
)
(o]
o0
=]
o=
~
(oF
n
—
)
0
™
o
'
Q
N

2/1/2024, Lecture 4

erase() from std: :vector

// leaves p pointing at the element after the erased one
p = v.erase(p);

—
N
N
"
)
2
fay]
&
<)
3
el
=
<
o]
o]
<
it
wn
+
-+
<]
:G
=
<
N
=
)
(o]
o0
=]
o=
=
(oF
n
Py
)
a0

= vector elements move when you insert() or erase()
- Iterators into a vector are invalidated by insert() and erase()

CSC33

Link:

2/1/2024, Lecture 4

std::1list

template <typename T>
class list {
Link* elements;

public:
//
using iterator = ...; // the type of an iterator is implementation defined
// and it (usefully) varies (e.g. range checked iterators)
// a list iterator could be a pointer to a link node
using const_iterator = ...;
iterator begin(); // points to first element

const_iterator begin() const;
iterator end(); // points one beyond the last element
const_iterator end() const;

iterator erase(iterator p); // remove element pointed to by p
iterator insert(iterator p, const T& v); // insert a new element v before p

—~
N
)
~
(o]
~
=2
=
—
e
~
]
=
=)
<
)
+
+
&)
)
<
B
AN
=
(A
on
=]
O]
~
[oR
N
oS
o0
™
o
©)
N
@)

}s

<t
o
<
=
=
Q
Q
—
-
N
o
N
«
—
~~
N

insert() into std: :1ist

std::list<int>::iterator p = l.begin(); ++p; ++p; ++p;

P, *++Q,

std::list<int>::iterator g
|:

p = l.insert(p, 99); // leaves p pointing at the inserted element

P Q.

= Note: q 1s unaffected

CSC3380, Spring 2024, The C++ Standard Library (2)

= Note: No elements moved around

<t
L
¢
=}
=
Q
O
—
<
(o]
2
[\
~
—
~~
(o]

erase() from std: :1ist

// leaves p pointing at the element after the erased one

p = l.erase(p);
p:

CSC3380, Spring 2024, The C++ Standard Library (2)

- Note: list elements do not move when you insert() or erase()

2/1/2024, Lecture 4

std: :array

template <typename T, size_t N>
class array {
T elements[N];
public:
//
using iterator = ...; // the type of an iterator is implementation defined
// and it (usefully) varies (e.g. range checked iterators)
// a vector iterator could be a pointer to an element
using const_iterator = ...;

iterator begin(); // points to first element
const_iterator begin() const;

iterator end(); // points one beyond the last element
const_iterator end() const;

// no erase
// no insert

—~
N
=
~
I
~
e}
=
3
=
B~
&
=
g
<
&
n
+
-+
@)
(D]
==
Sy
<
o]
S
N
o0
o
-
~
o,
wn
o
0
0
(ap]
(@)
N
O

}s

2/1/2024, Lecture 4

Ways of traversing a container

for (int 1 = 9; i < v.size(); ++i) // why int?
// do something with v[i]

// longer but always correct
for (std::vector<int>::size type i = 0; 1 < v.size(); ++1i)
// do something with v[i]

for (std::vector<int>::iterator p = v.begin(); p != v.end(); ++p)
// do something with *p

for (auto p = v.begin(); p != v.end(); ++p)
// do something with *p

for (auto const& e : v)
// do something with e

~
N
N
B
~
V]
~
=2
ord
5
e
~
]
=
=
<
&
wm
+
+
O
Q
=
S
i
N
S
(o]
on
c
g
~
2,
4]
=)
o0
G
(an)]
QO
<

CENTER FOR COMPUTATION
& TECHNOLOGY

2/1/2024, Lecture 4

CS(C3380, Spring 2024, The C++ Standard Library (2)

N
e

