Writing a Program

Hartmut Kaiser

https://teaching.hkaiserorg/spring2024/csc3380/

Slides partially adapted from: Bjarne Stroustrup, Programming — Principles and Practice using C++

STEM Careers at the NSA and
Quantum Computing

- Event Details:

2/8/2024, Lecture 6

- Date: 02/08/2024 (today)

« Time: 2:00 pm CST

. Location: CCT-Digital Media Center (Theater)
- Speaker: Sean Nemetz-MA

- This talk i1s specially designed for students, professionals, and anyone interested
in the cutting-edge developments in STEM. We will discuss opportunities for a
STEM career at the agency. This will be followed by a more technical talk about
quantum computing, its immediate application in public key cryptography, and
the potential impact of quantum computing on the NSA's mission.

-
=)
<
~
)
o
<

o
<
o0
=}

o)

-

o

=

&

N

o

N
o0
=

o
~
o,

N

o

0

o

o

O

N

O

9 9IN39T ‘¥%0%/8/% weIsoIJ B SUNLIMN ‘FG0g SuLidg C

Development Notes

O
o
Ay
>
&S
S,
p.

2/8/2024, Lecture 6

The Design Process

- Software System Architect
- Postulates a solution
* Models it in a design framework
- Establishes and maintains the vision for the solution
- Evaluates design against original requirements

- Primary responsibility of the Software System Architect

- Specify a solution to a given problem (usually expressed as a functional
specification)

- Implementation independent

—
&
®
oy
an
o
o
o
©
on
=}
e
-
.-
=
<
N
)
N
on
o
o
.
o,
N
o
0
o
&
Q
N
@)

2/8/2024, Lecture 6

The Design Process

- Software Designer
« Designs the internal working of system components
* Defines subsystems
 Crafts process logic

 Details data flow between and within system components and external sources
and interfaces

- Produces a specification of the design, detailed enough that
* A programmer can implement it
- Atester can test it
« A technical writer can document it

—
&
®
oy
an
o
o
o
©
on
=}
e
-
.-
=
<
N
)
N
on
o
o
.
o,
N
o
0
o
&
Q
N
@)

2/8/2024, Lecture 6

Objectives of the Design Process

- Primary responsibility of the Software Designer

* Produce a set of specifications that describe the intended form of the
1mplementation for the software system

- The design specifications
* Describe
- The form (structure) of the solution
* The way that the components are to fit together
+ Act as a set of “blueprints” that show how the system 1is to be constructed

—
&
@
oy
an
o
o
o
®
on
=}
e
-
.-
=
<
N
)
N
on
o
o
o
o,
N
o
0
o
&
Q
N
@)

2/8/2024, Lecture 6

Desirable Features...

- Fitness for purpose
* The system must work, and work correctly
* It should
 perform the required tasks
* in the specified manner and
- within the specified constraints
- of the specified resources

- Robustness

* The design should be stable against changes such as file and data
structures, user interface, etc.

—
&
@
oy
an
o
o
o
®
on
=}
e
-
.-
=
<
N
)
N
on
o
o
o
o,
N
o
0
o
&
Q
N
@)

2/8/2024, Lecture 6

Desirable Design Features

- Simplicity
* The design should be as simple as possible, but no simpler

- Separation of concerns
- The different concepts and components should be separated out (modular)

- Information hiding

« Information about the detailed form of objects such as data structures and
device interfaces should

* be kept local to a module or unit
* Not be directly “visible” outside that unit

—
&
®
oy
an
o
o
o
©
on
=}
e
-
.-
=
<
N
)
N
on
o
o
.
o,
N
o
0
o
&
Q
N
@)

2/8/2024, Lecture 6

Undesirable Features

- Having too much retained state information spread around the
system

- Using interfaces that are too complex
- Containing excessively complex control structures

- Involving needless replication

—
&
@
oy
an
o
o
o
®
on
=}
e
-
.-
=
<
N
)
N
on
o
-
~
o,
N
o
0
o
&
Q
N
@)

2/8/2024, Lecture 6

Design Strategies

Top-down
+ Functional decomposition
« Stepwise refinement at the component level

Bottom up
+ Composition
* Design pieces in isolation before deciding how they will fit together as a whole

Stylized
- Pattern (re)use
* Good solution already exists, in part or in whole

There 1s a place for all of these strategies in software and software system design
« Start with top-down architecture design
- Components are handed off to development team for bottom-up software design

- Patterns are reused at both the architecture and software design levels, where
appropriate

o
=
[ay]
~
an
O
e

¥
<
o0
=

.=

-

o

=

<

N

(@)

(&
o0
(@]

o
~
Q

N

o

Q0

o)

(an)

O

N

(@)

9 9IN39T ‘¥%0%/8/% wersord B SUNLIAN ‘F30g SuLIdg

]
-
<+
v
—
-
=
v
@,
v
o0
-
o r=f
o
-
-
an

2/8/2024, Lecture 6

Building a program

- Analysis
* Refine our understanding of the problem
* Think of the final use of our program

- Design

- Create an overall structure for the program

- Implementation
- Write code
* Debug
- Test

- Go through these stages repeatedly e

-
=i
[ay]
&
an
o
<

[a®
®
o0
=i

o=

-

O

=

(&

(@)

(&
o0

380, Sprin

CSC 3

Writing a program: Strategy

- What 1s the problem to be solved?
* Is the problem statement clear?
- Is the problem manageable, given the time, skills, and tools available?

- Try breaking it into manageable parts
* Do we know of any tools, libraries, etc. that might help?
* Yes, even this early: iostreams, vector, etc.

- Build a small, limited version solving a key part of the problem
* To bring out problems in our understanding, ideas, or tools

* Possibly lfange the details of the problem statement to make it
manageable

- If that doesn’t work
* Throw away the first version and make another limited version
« Keep doing that until we find a version that we’re happy with

 Build a full scale solution
* Ideally by using part of our initial version

2/8/2024, Lecture 6

=
&
<
=
on
o
o
A
®
on
d
.=
-
o=
=
AN
&)
(A
on
=}
o
~
N
N
o
0
(9p)
(Am)
O
D]
<

re 6

=)
=

Q

O
=
<
o]
o
X
oA
o0
~~
N

Writing a program: Example

- I'll build a program in stages, making lot of
“typical mistakes” along the way
- Even experienced programmers make mistakes
- Lots of mistakes; it’s a necessary part of learning
- Designing a good program is genuinely difficult
- It’s often faster to let the compiler detect gross mistakes
than to try to get every detail right the first time

* Concentrate on the important design choices

- Building a simple, incomplete version allows us to
experiment and get feedback

* Good programs are “grown” e

g 2024, Writing a Program

380, Sprin

CSC 3

2/8/2024, Lecture 6

A simple calculator

- G1ven expressions as input from the keyboard,
evaluate them and write out the resulting value

- For example
- Expression: 2+2
- Result: 4
- Expression: 2+2*3
- Result: 8
- Expression: 2+3-25/5
- Result: 0

=l
=i
(o]
~
on
o
=
[a ¥
(o]
on
g
O
-
o=
=
(o]
(@)
N
on
=)
O]
~
(o
N
=)
o0
@n)
(Am)
&)
N
<

- Let’s refine this a bit more ...

2/8/2024, Lecture 6

Pseudo Code

- A first idea:

int main()

{
variables // pseudo code
while (get a line) { // what's a line?
analyze the expression // what does that mean?
evaluate the expression
print the result
}
}

- How do we represent 45+5/7 as data?
- Howdowe find45 + 5 / and 7 1in an input string?
- How do we make sure that 45+5/7 means 45+(5/7) rather than (45+5)/7?

- Should we allow floating-point numbers (sure!)

—
&
®
oy
an
o
o
o
©
on
=}
e
-
.-
=
<
N
)
N
on
o
o
.
o,
N
o
0
o
&
Q
N
@)

- Can we have variables? v=7; m=9; v*m (later)

2/8/2024, Lecture 6

A simple Calculator
- Wait!

- We are just about to reinvent the wheel!
* Read Chapter 6 for more examples of dead-end approaches!

- What would the experts do?
- Computers have been evaluating expressions for 50+ years

« There has to be a solution!

- What did the experts do?
- Reading 1s good for you

- Asking more experienced friends/colleagues can be far more effective,
pleasant, and time-effective than slogging along on your own

=
&
<
=
on
o
o
A
®
on
d
.=
-
o=
=
AN
&)
(A
on
=}
o
~
N
N
=)
0
(9p)
(Am)
O
D]
<

1 Bjarne Stroustrup, Programming — Principles and Practice using C++

2/8/2024, Lecture 6

A side trip: Grammars

- What’s a grammar?
- A set of (syntax) rules for expressions.
- The rules say how to analyze (“parse”) an expression.
* Some seem hard-wired into our brains
- Example, you know what this means:
« 2*¥3+4/2
* “birds fly but fish swim”
* You know that this is wrong:
« 2 * +34/2
* “fly birds fish but swim”
* Why i1s it right/wrong?
* How do we know?

—
&
®
oy
an
o
o
o
©
on
=}
e
-
.-
=
<
N
)
N
on
o
o
.
o,
N
o
0
o
&
Q
N
@)

* How can we teach what we know to a computer?

Grammars — “English”

Parsing a simple English sentence

“fsh" k A
=+

"l:lllll:a'II “birds™ “fly™ “but”™ “fish"™ “swim’”
“fly”

2/8/2024, Lecture 6

(=]
=}
[ay]
~
on
g
~
ol
(ay]
on
=)
o
-
=
=
Tﬁ'\
(o]
(@)
N
on
=}
s
~
o
N
=)
(e 0]
(Ap)
Gle)
QO
)
<

Expression Grammar

- This 1s what the experts usually do — write a grammar:

Expression :
Term
Expression ‘+’ Term
Expression ‘-’ Term

Term :
Primary
Term *° Primary
Term €/’ Primary
Term ‘%’ Primary

Primary :
Number
‘(° Expression €)’

Number :
floating-point literal

e.g.
e.g.

e.g.

°)

J

J

1+2, (1-2)+43, 2%3+41

1*2, (1-2)*3.5

1, 3.5
(1+2*3)

3.14, 0.274el1, or 42 — as defined for C++

- An expression is built out of Tokens (e.g., numbers and operators).

2/8/2024, Lecture 6

—
&
®
oy
an
o
o
o
©
o
=}
e
-
.-
=
<
N
)
N
on
o
o
.
o,
N
o
0
o
&
Q
N
@)

Grammars - Expression

Parsing the number 2

Enpﬁaim:

Expression *+" Term

Expression “—" Term
Term:

Primary

Term “*" Primary

Term “/ Primary

Term “%" Primary
Primary:

MMumber

“(" Expression)"
Mumber:

Expression

|

Term

2/8/2024, Lecture 6

I
=
[av]
~
an
o
<

[a®
(ay]
on
=i

o=

-
i3
=

(o]

o

N
on
o

e
~
oF

n

S

o0

@R

Gle)

O

n

(@)

Nej
&
=

5
O
)

—

<

N

@

N

~

oe)

S~

N

Grammars - Expression

Parsing the expression 2 + 3

o o
Enpreasion “+" "Term T
Expression “-" Term Temm Term

foarine-nointlieral

2

Term: T 1’ Oo;f
Primary P Pg g
Term “*” Primary i i 2
Term “™ Primary ¥
Term “%" Primary S
Mumber 4 4 =
“(" Expression =" S
O

N

O

Grammars - Expression

Parsing the expression 45 + 11.5 % 7
F-rpnfﬁﬂn

B _— o

Expression “+" Term

Term:
Primary PuITm Primary T
“Term **" Primary i 2
Term /" Primary
Term “%" Primary
Primary: MNumber Mumber
MNumber 4 4
“(" Expression *)"
Mumber:
floatng-point-literal

Expression “=" Term Term Term

45 + 11.5 =

2/8/2024, Lecture 6

(=]
=}
[ay]
~
on
g
~
ol
(ay]
on
=)
o
-
=
=
V\f““
(o]
(@)
N
on
=}
s
~
o
N
=)
(e 0]
(Ap)
Gle)
QO
)
<

Functions for Parsing

- We need functions to match the grammar rules:

get() //
//
expression() //
//
term() //
//

primary() //
//

read characters and compose tokens
calls cin for input

deal with + and -

calls term() and get()

deal with *, /, and %

calls primary() and get()

deal with numbers and parentheses
calls expression() and get()

- Note: each function deals with a specific part of an expression and leaves
everything else to other functions — this radically simplifies each function.

- Analogy: a group of people can deal with a complex problem by each person

handling only problems in his/her own specialty, leaving the rest for colleagues.

2/8/2024, Lecture 6

=
&
<
=
on
o
o
A
®
on
d
.=
-
o=
=
AN
&)
(A
on
=}
o
~
N
N
=)
0
(9p)
(Am)
O
D]
<

2/8/2024, Lecture 6

Function Return Types

- What should the parser functions return?
- How about the result?

token get(); // read characters and compose tokens
double expression(); // deal with + and -
// return the sum (or difference)
double term(); // deal with *, /, and %
// return the product (or ..)
double primary(); // deal with numbers and parentheses
// return the value

- What 1s a ‘token’?

=
&
<
=
on
o
o
A
®
on
d
.=
-
o=
=
AN
&)
(A
on
=}
o
~
N
N
=)
0
(9p)
(Am)
O
D]
<

2/8/2024, Lecture 6

What 1s a token?

- We want to see input as a stream of tokens
- We read characters 1 + 4*(4.5-6) (That’s 13 characters incl. 2 spaces)

- 9 tokens in that expression:l1 + 4 * (4.5 - 6)
* 6 kinds of tokens in that expression: number + * (-)

- We want each token to have two parts
- A “kind”; e.g., number
- Avalue; e.g., 4

- We need a type to represent this “token” idea
- We'll build that later, but for now:
-t = get() gives us the next token from input
* t.kind gives us the kind of the token
- t.value gives us the value of the token

(=]
=
<
S~
on
o
=~
¥
<
on
=)
o
-
o
=
<
AN
&)
(A
on
=]
o
~
[oR
N
=)
0
(Ap)
(Am)
@)
N
o

©
Qv
S~
=}
=
O
[}
—
N
S
[\
=
o0
~~
A

Dealing with + and -

Expression :
Term
Expression ‘+’ Term e.g., 1+2, (1-2)+3, 2*%3+1
Expression €-’ Term

// read and evaluate: 1, 1+2.5, 1+2+43.14 etc., return the sum (or difference)
double expression()

double left = term(); // get the Term H
while (true) oo
{ :
token t = get(); // get the next token ... z
switch (t.kind) { // ... and do the right thing with it =
case '+': left += term(); break; .g
case '-': left -= term(); break; f?
default: return left; // return the value of the expression %
) .

©

S~

=}
=

O

[}
—
N
S
[\
=
o0
~~
A

Dealing with *, /, and %

Term :
Primary
Term “*’ Primary e.g., 1*2, (1-2)*3.5
Term ¢/’ Primary
Term %’ Primary

// exactly like expression(), but for *, /, and %

double term() §
OCD
{ &l
double left = primary(); // get the Primary o~
while (true) { é
token t = get(); // get the next Token ... 5_
switch (t.kind) { R
(o]
case '*': left *= primary(); break; 2P
case '/': left /= primary(); break; :;
case '%': left %= primary(); break; <
default: returnfleft; // return the value ?
)
} O
}
¥ Oops: doesn’t compile

% 1sn’t defined for floating-point numbers

Dealing with * and /

Term :
Primary
Term “*’ Primary e.g., 1*2, (1-2)*3.5
Term ¢/’ Primary

// exactly like expression(), but for * and /
double term()
{
double left = primary(); // get the Primary
while (true) {

token t = get(); // get the next Token ...

switch (t.kind) {

case '*': left *= primary(); break;

case '/': left /= primary(); break;

default: return left; // return the value

}

2/8/2024, Lecture 6

=l
=i
(o]
~
on
o
=
[a ¥
(o]
on
g
O
-
o=
=
(o]
(@)
N
on
=)
O]
~
(o
N
S
o0
@n)
(Am)
&)
N
<

Dealing with divide by O

// exactly like expression(), but for * and /
double term()
{
double left = primary(); // get the Primary
while (true) {
token t = get(); // get the next Token ...
switch (t.kind) {
case '*': left *= primary(); break;
case '/': {

double d = primary();

if (d == @) throw std::runtime_error("divide by zero");
left /= d;
break;

}

default: return left; // return the value

}

2/8/2024, Lecture 6

=l
=i
(o]
~
on
o
=
[a ¥
(o]
on
g
O
-
o=
=
(o]
(@)
N
on
=)
O]
~
(o
N
=)
o0
@n)
(Am)
&)
N
<

Dealing with numbers, ‘‘and ‘)

double primary() // Number or ¢(¢ Expression ¢)’
{
token t = get();
switch (t.kind) {
case "(': { // handle €(’ expression ¢)’

double d = expression();

t = get();
if (t.kind != ")') throw std::runtime_error("')' expected");
return d;
}
case '8': // we use ‘8’ to represent the “kind” of a number
return t.value; // return the number’s value
default:
throw std::runtime_error("primary expected");
}

2/8/2024, Lecture 6

=l
=i
(o]
~
on
o
=
[a ¥
(o]
on
g
O
-
o=
=
(o]
(@)
N
on
=)
O]
~
(o
N
=)
o0
@n)
(Am)
&)
N
<

2/8/2024, Lecture 6

Program Organization

- Who calls who? (note the loop)

=)
=
(o]
=
jely)
©)
ﬁ?—4
!
(V]
on
=)
o
45
=
=
<
AN
P
=
(A

CSC 3380, Spring

2/8/2024, Lecture 6

The program

#tinclude <iostream>
#include <string>

// Token stuff (explained in next lecture)

// declaration so that primary() can call expression()
double expression();

double primary() { /* .. */ } // deal with numbers and parentheses
double term() { /* .. */ } // deal with * and / (pity about %)
double expression() { /* .. */ } // deal with + and -

-
=i
[ay]
&
an
e
<

[a®
(o]
o0
]

o=

-
o=
=

N

(@)

(o]
o0
o

o
~
(=F

N

S

a0

@R

Gle)

&)

N

(@)

int main() { /* .. */ } // on next slide

2/8/2024, Lecture 6

The Program — main()

int main() {

try {

while (std::cin)
std::cout << expression() << '\n';

return 0;

}

catch (std::runtime_error& e) {
std::cerr << e.what() << std::endl;
return 1;

}

catch (...) {
std::cerr << "exception\n";
return 2;

o
=i
[ay]
~
an
e
<

¥
<
o0
g

o=
-

o

=

(&

(@)

(&
o0
(@]

o
~
Q

N

S

a0

@R

Gle)

&)

N

(@)

2/8/2024, Lecture 6

. 2 an answer

¢« D an answer

=]
=i
(o]
~
on
o
=
[a ¥
(V]
on
g
=
-
o=
=
<
(o]
(@)
N
on
=)
O]
~
(o
N
=)
o0
o
o
&)
N
O

Bad token an answer (finally, an expected answer)

2/8/2024, Lecture 6

A mystery

-« 1234+56+78+9 1011 12

- 1 an answer
- 4 an answer
- 6 an answer
- 8 an answer
- 10 an answer

- Aha! Our program “eats” two out of three inputs
- How come?
- Let’s have a look at expression()

—
&
®
oy
an
o
o
o
©
on
=}
o)
-
o=
=
<
N
)
N
on
o
-
~
o,
N
o
0
o
&
Q
N
@)

©

S~

=}
=

O

[}
—
N
S
[\
=
o0
~~
A

Dealing with + and -

Expression :
Term
Expression ‘+’ Term e.g., 1+2, (1-2)+3, 2*%3+1
Expression €-’ Term

// read and evaluate: 1, 1+2.5, 1+2+3.14 etc., return the sum (or difference)

double expression()

double left = term(); // get the Term %
while (true) %
{ a0
token t = get(); // get the next token ... é
switch (t.kind) { // ... and do the right thing with it 3
case '+': left += term(); break; E;
case '-': left -= term(); break; '5
default: return left; // <<< doesn’t use “next token”, discards it f

} z

O

N

O

2/8/2024, Lecture 6

Dealing with + and -

- S0, we need a way to “put back” a token!
* Back into what?
« “the 1input,” of course; that 1s, we need an input stream of tokens

// read and evaluate: 1, 1+2.5, 1+2+3.14 etc., return the sum (or difference)

double expression()

{
double left = term(); // get the Term
while (true)
{
token t = ts.get(); // get the next token ...
switch (t.kind) { // ... and do the right thing with it

case '+': left += term(); break;
case '-': left -= term(); break;
default: ts.putback(t); // <<< put the unused token back into the token stream

return left;

=l
=i
(o]
~
on
o
=
[a ¥
(o]
on
g
O
-
o=
=
(o]
(@)
N
on
=)
O]
~
(o
N
=)
o0
@n)
(Am)
&)
N
<

©

S~

=}
=

O

[}
—
N
S
[\
=
o0
~~
A

Dealing with * and /

- Now make the same change to term()

// exactly like expression(), but for * and /
double term()

{
double left = primary(); // get the Primary g
while (true) { %
token t = ts.get(); // get the next Token ... %
switch (t.kind) { &
case '*': left *= primary(); break; E
case '/': left /= primary(); break; N
default: ts.putback(t); // <<< put the unused token back %3
return left; // return the value 5
} “
}

2/8/2024, Lecture 6

The program

- It “sort of works”

- That’s not bad for a first try
- Well, second try
« Well, really, the fourth try; see the book

- But “sort of works” 1s not good enough

* When the program “sort of works” 1s when the work
(and fun) really start

- Now we can get feedback!

-
=i
[ay]
&
an
o
<

[a®
®
o0
=i

o=

-

o

=

(&

(@)

(&
o0
o

o
~
(=F

N

S

a0

@R

™

&)

N

(@)

Another mystery

234 2+3 2*3

2 an answer
3 an answer
4 an answer
5 an answer

What! No “67 ?
* The program looks ahead one token
- It’s waiting for the user
* So, we Introduce a “print result” command
- While we’re at 1t, we also introduce a “quit” command

2/8/2024, Lecture 6

—
&
®
oy
an
o
o
o
©
on
=}
=
-
o=
=
<
N
)
N
on
o
ot
.
o,
N
o
0
o
&
Q
N
@)

The main() program

int main()

{
double val = 0;
while (std::cin)

{
token t = ts.get();
if (t.kind == 'q")
break; // q’ for “quit”
if (t.kind == ";") // €¢;° for “print now”
std::cout << val << '\n'; // print result
else
ts.putback(t);
val = expression(); // evaluate
}
return 0;

}
// exception handling ...

2/8/2024, Lecture 6

=l
=i
(o]
~
on
o
=
[a ¥
(o]
on
g
O
-
o=
=
(o]
(@)
N
on
=)
O]
~
(o
N
=)
o0
@n)
(Am)
&)
N
<

o
o
~
=}

=
Q
D)

—

<

(o]

S

[\

~

Q0

S~

(o]

Now the calculator 1s minimally useful

. 25
. 2 an answer
. 2+3;

¢« D an answer

g a Program

- 3+4%5;

- 23 an answer

g 2024, Writin

80, Sprin

CSC 33

2/8/2024, Lecture 6

Next Lecture

- Completing a program
- Tokens and token stream

Recovering from errors

Cleaning up the code

Code review

Testing

=]
=i
(o]
~
on
o
=
[a ¥
(V]
on
g
.=
-
o=
=
<
(o]
(@)
N
on
=)
O]
~
(o
N
=)
o0
(Ap)
(Am)
&)
N
O

CENTER FOR COMPUTATION
& TECHNOLOGY

2/8/2024, Lecture 6

CSC 3380, Spring 2024, Writing a Program

N
O

