Completing a
Program

Lecture 7
Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

L, ©INY9T ‘FZ0G/CT/% werdord e sunerdwo)) $z0g sutidg ‘o

Development Notes

O
o
Ay
>
&S
S,
p.

—
{

/15/2024, Lecture

The Four Tenets of OO Paradigm

Abstraction
- Hidden Data
- Implementation of Abstract Data Type (ADT) is irrelevant
- *** Interdependent class data members are not (NEVER) accessed directly

+ No public interdependent class data members
+ It’s fine to expose independent class data members

9

L

Encapsulation
+ Data and methods on that data are bundled together

+ A class defines the data implementation, access to the data elements, and methods that act
on the data

Inheritance
+ A class can take on the properties of another class
- Creates the is-a relationship between the base type and the super-type (derived type)

Polymorphism
- Derived objects (those of a class inherited from another) can behave differently
+ Interface of inherited methods remain the same, but may function differently

(=)
=i
]
o0
o
-
[a®
<
o0
=)
=
+
O
—_—
=
IS
S
o
<
N
)
(AN
on
=]
i
~
o8
N
S
o0
™D
o
©)
N
@)

2/15/2024, Lecture 7

The Five Principles of Type Design

- Single Responsibility Principle
- Open/Closed Principle

- Liskov Substitution Principle

- Interface Segregation Principle

- Dependency Inversion Principle

« Other OO Design Principles
* YAGNI
* Once & Only Once

(=)
=i
]
o0
o
-
[a®
<
o0
=)
=
+
O
—_—
=
IS
S
o
<
N
)
(AN
on
=]
i
~
o8
N
S
o0
™D
o
©)
N
@)

http://wiki.c2.com/?PrinciplesOfObjectOrientedDesign

—
{

/15/2024, Lecture

1. Single Responsibility Principle

- Each responsibility should be a separate type, because each
responsibility is an axis of change

9

- A type should have one, and only one, reason to change

- If a change to the business rules causes a type to change, then a
change to the GUI, report format, or any other derived segment of
the system should not force that type to change

(]
=t
[y}
an
o
Ll
ol
<
on
<
-
+
)
—
=)
g
Q
)
N
O
N
an
@
o
~
(o
N
o
Gle)
o
@)
N
(@)

http://wiki.c2.com/?SingleResponsibilityPrinciple

7

/15/2024, Lecture

2. Open/Closed Principle

- Software entities (classes, modules, functions, etc.) should be open
for extension, but closed for modification

9

- Types (their interfaces) should be designed as if they will persist
forever

- The motivation is to prevent the introduction of bugs

(=)
=i
(V]
a0
I
-
o
<
on
o
-
+
O
—
=)
=
S
(&
N
(@)
(o]
o0
o
O]
~
=
N
S
w
o
o
@)
o

http://wiki.c2.com/?OpenClosedPrinciple

2/15/2024, Lecture 7

3. The Liskov Substitution Principle

- “If for each object o1 of type S there 1s an object 02 of type T such
that for all programs P defined in terms of T, the behavior of P 1s
unchanged when o1 1s substituted for 02 then S is a subtype of T." —
Barbara Liskov, Data Abstraction and Hierarchy, SIGPLAN Notices,
23,5 (May, 1988).

- In other words, derived class objects must be substitutable for the
base class objects.

- That means objects of the derived class must behave in a manner
consistent with the promises made in the base class' contract.

- Types implementing an interface should not change the core
semantics of that interface

(=)
=
<
~
on
I
-
o
(ay]
an
=
=
+
|5}
—
=
g
Q
o
N
S
(A
on
=
O]
~
=3
S
(22
o
O
o

http://wiki.c2.com/?LiskovSubstitutionPrinciple

4. The Interface Segregation
Principle

- The dependency of one type to another one should depend on the
smallest possible interface

2/15/2024, Lecture 7

(=)
=)
[av]
a0
o
-
ol
on
o
=
+
(]
—
=)
=i
Q
(&
<
N
(@)
(o]

CSC3380, Spring

https://wiki.c2.com/?InterfaceSegregationPrinciple

2/15/2024, Lecture 7

5. Dependency Inversion Principle

- High level modules should not depend upon low level module
internals; both should depend upon abstractions (interfaces)

- Abstractions should not depend upon details; details should depend
upon abstractions

(=)
=i
(V]
a0
I
-
o
on
o
-
+
O
—
=)
=
S
(&
N
(@)
(o]
o0
o
O]
~
=
N
S
w
o
o
o

http://wiki.c2.com/?DependencylnversionPrinciple

7

/15/2024, Lecture

9

The YAGNI Principle

- “You aren’t gonna need 1t”

- Avoid developing unless you have to:
* The cheapest code 1s the code you don’t write

- If it’s in the requirements you probably do need it

(]
=t
[av]
a0
o
Ll
ol
<
on
<
-
+
)
—
=)
=i
Q
)
N
O
(o]
o0
@
o
~
(o
N
S
w
o
GE
(@)

http://c2.com/xp/YouArentGonnaNeedIt.html

7

/15/2024, Lecture

9

Once and Only Once

- We never want to duplicate code

- What if there’s an error in the code?
« Now you have to change it everywhere
* There 1s no way to ensure that code remains in sync

(]
=t
[av]
a0
o
Ll
ol
<
on
<
-
+
)
—
=)
=i
Q
)
N
O
(o]
o0
@
o
~
(o
N
S
w
o
GE
(@)

—
{

/15/2024, Lecture

Best Practices

- Separate what changes from what stays the same
- If something stays the same, you won’t break it

9

+ Keeping change limited reduces the amount of analysis

- Coupling vs. Cohesion
« Coupling 1s bad, cohesion 1s good
+ Classes should work together in small, cohesive clusters

* You should have high cohesion within modules and low coupling between
modules

- Program to an interface, not an implementation
- Depend on an interface where practical (instead of a concrete type)
- Allows types to be swapped out later

(=)
=i
]
o0
o
-
[a®
<
o0
=)
=
+
O
—_—
=
IS
S
o
<
N
)
(AN
on
=]
=
~
o8
N
S
o0
™D
o
©)
N
@)

- Even more pragmatic with duck-typing

L 9INI9T FG0G/ST/6 wersord e sunerdwo)) ‘70z surdg ‘o

S
-
+
v
—
-
=
v
O
v
o0
-
o r=f
o
r—
-
an

7

/15/2024, Lecture

Abstract

- Tokens and token streams
- Structs and classes

9

- Cleaning up the code
* Prompts
* Program organization

* constants

Recovering from errors

Commenting

Code review

Testing

- A word on complexity and difficulty
* Variables

(=)
=i
(V]
a0
I
-
[a®
<
on
<
.=
+
)
=
=)
=
Q
(&
<
N
(@)
(o]
o0
@
=
~
(o
N
S
o
o
O
(@)

7

/15/2024, Lecture

Token

- We want a type that can hold a “kind” and a value:

A

// Token stuff

struct token // define a type called Token
{ -
char kind; // what kind of token g
double value; // used for numbers (only): a value £
¥
token t; ’é
t.kind = '8'; // . (dot) is used to access members 3
// (use '8' to mean "number") S
t.value = 2.3; .g
%)
token u = t; // a token behaves much like a built-in type, such as int g
// so u becomes a copy of t ?
O

std::cout << u.value << "\n"; // will print 2.3

—
{

/15/2024, Lecture

9

User defined Type: token

// user-defined type called ‘token’
struct token

{

// data members
// function members

s

A struct is the simplest form of a class (type)

“class” 1s C++’s term for “user-defined type”

Defining types is the crucial mechanism for organizing programs in C++
+ as in most other modern languages

a class (including structs) can have
- Data members (to hold information), and
- Function members (providing operations on the data)
* Member functions have implicit access to other members

=)
=i
<
on
o
~
[a®
<
o0
=)
o
+
O
—
=
<]
Q
o
il
N
&)
(o]
on
=]
O]
~
o8
N
S
(22
o
©)
N
o

2/15/2024, Lecture 7

User defined Type: token

struct token

{
char kind; // what kind of token
double value; // for numbers: a value
// constructors
token(char ch) : kind(ch), value(©) {}
token(double val) : kind('8'), value(val) {}
}s

« A constructor has the same name as 1ts class and has no return value

- A constructor defines how an object of a class is initialized
+ Here kind is initialized with ch, and
value is initialized with val or @
* token t1('+'); // make a token tl1 of “kind” '+’
* token t2(4.5); // make a token t2 of “kind” '8' and value 4.5

(=)
=
<
~
on
I
-
o
(ay]
an
=
=
+
|5}
—
=
g
Q
o
<
N
&)
(A
on
=
O]
~
=3
S
(22
o
O
o

2/15/2024, Lecture 7

User defined Type: token

class token

{
char kind_; // what kind of token
double value_; // for numbers: a value
public:
// constructors
token(char ch) : kind (ch), value (©) {}
token(double val) : kind ('8'), value (val) {}
char kind() const { return kind_; }
double value() const { return value ; }
}s

- A constructor has the same name as its class and has no return value

- A constructor defines how an object of a class is initialized
« Here kind_ is initialized with ch, and value_ is initialized with val or ©
- token t1('+'); // make a token tl1l of “kind” '+'
- token t2(4.5); // make a token t2 of “kind” '8' and value 4.5

(=)
=
<
&
on
I
-
o
<
an
=
=
+
O
—
=
g
S
o
<
N
&)
(A
on
=
=
~
=3
S
(22
o
©)
o

token stream

- A token_stream reads characters, producing tokens on demand
- We can put a token ‘back’into a token_stream for later use

- A token_stream uses a “buffer” to hold tokens we put back into it

token_stream buffer: _
Input stream: | 142%3; |

For 1+2*3;, expression() calls term() which reads 1, then reads +,

decides that + 1s a job for “someone else” and puts + back in the
token_stream (where expression() will find it)

token_stream buffer: _

Input stream:

7

/15/2024, Lecture

2

(]
=t
[av]
=
on
o
Ll
ol
(av]
on
<
-
+
)
—
=)
=i
o
)
<t
N
O
(o]
o0
@
o
~
(o
—
)
o
GE
(@)

—
{

/15/2024, Lecture

9

token stream

- A token_stream reads characters, producing token’s
- We can put back a token

class token_stream {
// representation: not directly accessible to users (private):
bool full; // is there a token in the buffer?
token buffer; // here is where we keep a token put back using putback()

public:
// user interface:
token get(); // get a token
void putback(token); // put a token back into the token_stream

token_stream(); // constructor: make a token_stream
¥
- A constructor

- defines how an object of a class i1s 1initialized
- has the same name as its class, and no return type

(]
=i
o]
on
o
P~
A
<
ol)
=i
.=
+
]
—
=y
&
S
o
<
N
S
N
on
=i
=
~
oF
N
oS
o0
5p)
(22
@)
N
@)

—
{

/15/2024, Lecture

9

token_stream Implementation

class token_stream {

// representation: not directly accessible to users:

bool full; // is there a token in the buffer?

token buffer; // here is where we keep a Token put back using putback()
public:

// user interface:

token get(); // get a token

void putback(token); // put a token back into the token_stream

// constructor: make a token_stream, the buffer starts empty
token_stream() : full(false), buffer('\0') {}

}s

void token_stream::putback(token t) {
if (full) throw std::runtime_error("putback() into a full buffer");
buffer = t;
full = true;

(=)
=
<
on
o
-
o
<
o0
=
=
+
O
—
=
g
Q
o
<
N
&)
(A
on
=
o=
~
=3
N
=
o

7

=
¢

5/2024, Lecture

2/1

token_stream Implementation

token token_stream::get() { // read a token from the token_stream
if (full) { // check if we already have a Token ready

full = false; return buffer;

}
char ch;
std::cin >> ch; // note that >> skips whitespace (space, newline, tab, etc.)

switch (ch) {

case '(': case ')': case ';': case 'q': case '+': case '-': case '*': case '/':
return token(ch); // let each character represent itself

case '.': case '@': case 'l': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': {
std::cin.putback(ch); // put digit back into the input stream

double val;

(=)
=
]
on
o
-
o
<
o0
=
=
+
O
—
=
=
Q
o
il
N
&)
(A
an
o
Of]
~
=3
N
S
w

std::cin >> val; // read a floating-point number
return token(val); // let €8’ represent “a number”
}
default:
throw std::runtime_error("Bad token");
}

7

/15/2024, Lecture

Streams

- Note that the notion of a stream of data is extremely general and
very widely used
« Most I/O systems
- E.g., C++ standard I/O streams
« With or without a putback/unget operation

9

+ We used putback for both token_stream and cin

(=)
=i
(V]
a0
o
-
[a®
<
on
<
.=
+
)
=
=)
=
Q
(&
<f
N
(@)
(o]
o0
@
O]
~
(o
N
S
w
o
a8
O
o

7

/15/2024, Lecture

9

The calculator 1s primitive

- We can improve it 1n stages
+ Style — clarity of code
« Comments
- Naming
+ Use of functions

* Functionality — what it can do
- Better prompts
- Recovery after error
« Negative numbers
- % (remainder/modulo)
* Pre-defined symbolic values
+ Variables

(]
=t
[av]
a0
o
Ll
ol
<
on
<
-
+
)
—
=)
=i
Q
)
N
O
(o]
o0
@
o
~
(o
N
S
w
o
GE
(@)

7

/15/2024, Lecture

Prompting

- Initially we said we wanted
Expression: 2+3; 5*7; 2+49;
Result : 5
Expression: Result: 35
Expression: Result: 11
Expression:

2

- But this i1s what we implemented
2+3; 5*%7; 2+9;
5
35
11

- What do we really want?
2+3;

5

5*7;

35

(=)
=)
[av]
a0
o
-
ol
on
<
o
+
)
—
=)
=i
Q
O
<
N
o
(o]
o0
@
o
~
(o
N
d
w
o
GE
O
o

v I v Il v

—
{

/15/2024, Lecture

A

Adding prompts and output indicators

double val = 09;
std::cout << "> "; // print prompt
while (std::cin)

{

token t = ts.get();
if (t.kind == 'q") .
break; // check for “quit” a
©
if (t.kind == ";") £
std::cout << "= " << val << "\n > "; // print “= result” and prompt -
o
else £
ts.putback(t); 2
o
val = expression(); // read and evaluate expression ©
}
I
ap
=
> 243; 5%7; 249; <-- the program doesn’t see input before you hit “enter/return” 2
4]
=5 :
> = 35 3
&
> =11 2
O

7

/15/2024, Lecture

The code 1s getting messy

- Bugs thrive in messy corners

2

- Time to clean up!
* Read through all of the code carefully
- Try to be systematic (“have you looked at all the code?”)

* Improve comments

Replace obscure names with better ones
« Improve use of functions
+ Add functions to simplify messy code

- Remove “magic constants”
- E.g. '8 ('8 what could that mean? Why '8'?)

- Once you have cleaned up, let a friend/colleague review the code
(“code review”)

(=)
=i
(V]
a0
I
-
o
on
o
-
+
O
—
=)
=
S
(&
N
(@)
(o]
o0
o
O]
~
=
N
S
w
o
o
o

Remove “magic constants”

// Token “kind” values:

char const number = '8'; // a floating-point number
char const quit = 'q’; // an exit command
char const print = ';'; // a print command

// User interaction strings:

std::string const prompt = "> ";

std::string const result = "= "; // indicate that a result follows

2/15/2024, Lecture 7

(=)
=i
<
=
on
o
S
A
<
an
=
.=
+
)
—
=
g
S
@)
<
N
&)
(A
on
=]
g
~
o8
N
S
Q0
(22
©)
@)

o~

o

-

=
-

O

<)
—
<
N
S
N
~
O
—
~
(2]

Remove “magic constants”

// In token::token():
token(double val)

: kind_(number) // let 8’ represent “a number?”
, value (val) .
;
// In primary(): S
case number: // rather than case '8': %
return t.value(); // return the number’s value 2
§
2

2

Remove “magic constants

// In main():
while (std::cin)
{

std: :cout << prompt; // rather than "> "
token t = ts.get();

while (t.kind == print) // rather than == "';'
t = ts.get();

if (t.kind == quit) // rather than =='q'
break;

ts.putback(t);
cout << result << expression() << endl;

—
{

/15/2024, Lecture

9

(]
=]
<
an
o
Ll
[a ¥
an
o
o
+
5}
2
=
g
Q
(@)
<
[N
o
N
o0
o
-
=
o
N
o
w
o
@)
N
O

Remove “magic constants”

But what’s wrong with “magic constants”?

. Ever%body knows 3.14159265358979323846264, 12, -1, 365, 24, 2.7182818284590,
292(917 4254'58, 2.54, 1.61, -273.15, 6.6260693e-34, 0.5291772108e-10, 6.0221415e23
an !

* No; they don’t.

“Magic” is detrimental to your (mental) health!
* It causes you to stay up all night searching for bugs
- It causes space probes to self destruct (well ... it can ... sometimes ...)

If a “constant” could change (during program maintenance) or if someone might
not recognize it, use a symbolic constant.

- Note that a change in precision is often a significant change
3.14 1= 3.14159265

- 0 and 1 are usually fine without explanation, -1 and 2 sometimes (but rarely) are.
- 12 can be okay (the number of months in a year rarely changes), but probably is not

If a constant 1s used twice, it should probably be symbolic. That way, you can
change it in one place

2/15/2024, Lecture 7

=)
=i
<
&
on
I
~
A
<
an
=)
o
+
O
—
=
<]
S
(&
<
N
(@)
(A
on
=]
O]
~
o8
S
(22
(22
@)
o

7

/15/2024, Lecture

So why did we use “magic constants”?

- To make a point
* Now you see how ugly that first code was

9

* just look back to see

. Because we forget (get busy, etc.) and write ugly code
* “Cleaning up code” is a real and important activity
« Not just for students
- Re-test the program whenever you have made a change

- Ever so often, stop adding functionality and “go back” and review code

« It saves time

(]
=t
[av]
a0
o
Ll
ol
<
on
<
-
+
)
—
=)
=i
Q
)
N
O
(o]
o0
@
o
~
(o
N
S
w
o
GE
(@)

7

/15/2024, Lecture

Recover from errors

- Any user error terminates the program
+ That’s not ideal

« Structure of code

9

int main()
try {
// ... do “everything” ...
}
catch (std::exception const& e) {
// catch errors we understand something about
/] ...
}
catch (...) {
// catch all other errors

/] ...

(]
=t
[av]
a0
o
Ll
ol
<
on
<
-
+
)
—
=)
=i
Q
)
N
O
(o]
o0
@
o
~
(o
N
S
w
o
GE
(@)

—
{

/15/2024, Lecture

Recover from errors

- Move code that actually does something out of main()
- leave main() for initialization and cleanup only

9

int main() // step 1

try

{
calculate();
return 0;

}

catch (std::exception const& e)
{ // errors we understand something about

std::cerr << e.what() << std::endl;

return 1;
}
catch (...)
{ // other errors

std::cerr << "exception \n";

return 2;

(=)
=i
]
o0
o
-
[a®
<
o0
=)
=
+
O
—_—
=
IS
S
o
<
N
)
(AN
on
=]
i
~
o8
N
S
o0
™D
o
©)
N
@)

2/15/2024, Lecture 7

Recover from errors

- Separating the read and evaluate loop out into calculate()
allows us to simplify it

void calculate() {
while (std::cin) {
std: :cout << prompt;
token t = ts.get();
while (t.kind == print)
t = ts.get(); // first discard all “prints”
if (t.kind == quit)
return; // quit
ts.putback(t);
std::cout << result << expression() << std::endl;

(=)
=
<
~
on
o
-
o
(ay]
an
=)
=
+
O
-~
=)
g
Q
(&
N
>
(o]
on
=]
O]
~
o8
S
(22
o
O
o

7

/15/2024, Lecture

Recover from errors

- Move code that handles exceptions from which we can recover from
main() to calculate()

9

int main() // step 2
try
{
calculate();
return 0;
}
catch (...)
{ // other errors (don’t try to recover)
std::cerr << "exception \n";
return 2;

(=)
=i
<
o0
o
-
[a®
<
o0
=)
o
+
O
—
=
=
Q
o
<
N
&)
N
o0
=]
25!
~
o8
N
S
™D
o
©)
N
o

2/15/2024, Lecture 7

Recover from errors

void calculate() {
while (std::cin) {
try {

std::cout << prompt;

token t = ts.get();

while (t.kind == print)
t = ts.get(); // first discard all “prints”

if (t.kind == quit)
return; // quit

ts.putback(t);

std::cout << result << expression() << std::endl;

}

catch (std::exception const& e) {
std::cerr << e.what() << std::endl; // write error message
clean_up_mess(); // <<< The tricky part!

(=)
=
<
&
on
I
-
o
<
an
=
=
+
O
—
=
g
S
o
<
N
&)
(A
on
=
=
~
=3
S
(22
o
©)
o

—
{

/15/2024, Lecture

Recover from errors
- First try

void clean_up mess()

9

{
while (true) { // skip until we find a print (';")
token t = ts.get();
if (t.kind == print)
return;
}
}

- Unfortunately, that doesn’t work all that well. Why not? Consider the
input 1@$z; 1+3;

- When you try to clean_up_mess(Q from the bad token @, you get a “Bad token”
error trying to get rid ofg

« We always try not to get errors while handling errors

(]
=i
o]
on
o
P~
A
<
ol)
=i
.=
+
]
—
=y
&
S
o
<
N
S
N
on
=i
=
~
oF
N
oS
o0
5p)
(22
@)
N
@)

o~

o

-

=
-

O

<)
—
<
N
S
N
~
O
—
~
(2]

Recover from errors

- Classic problem: the higher levels of a program can’t recover well from low-
level errors (i1.e., errors with bad tokens).

* Only token_st ream knows about characters

« We must drop down to the level of characters
* The solution must be a modification of token_stream:

class token_stream {

[a®

bool full; // 1is there a Token in the buffer? .g
token buffer; // here is where we keep a Token put back using '%

// putback() é

public: N
token get(); // get a Token e
void putback(Token t); // put back a Token ;%
token_stream(); // make a token_stream that reads from std::cin %
void ignore(char c); // <<< discard tokens up to and including a c ;

2

}s

Recover from errors

// skip characters until we find a c; also discard that c
void token_stream::ignore(char c)

{

—
{

/15/2024, Lecture

9

// first look in buffer:

if (full && c == buffer.kind()) { // && means €‘and’
full = false;
return;

¥
full = false; // discard the contents of buffer

// now search input:
char ch = 0;
while (std::cin >> ch) {
if (ch == ¢)
break;

(=)
=i
]
o0
o
-
[a®
<
o0
=)
=
+
O
—_—
=
IS
S
o
<
N
)
(AN
on
=]
i
~
o8
N
S
o0
™D
o
©)
N
@)

—
{

/15/2024, Lecture

Recover from errors

- clean_up_mess() now is trivial
« and 1t works

9

void clean up_mess()

{

ts.ignore(print);
}

- Note the distinction between what we do and how we do 1t:
- clean_up_mess() is what users see; it cleans up messes
« The users are not interested in exactly how it cleans up messes
- ts.ignore(print) is the way we implement clean_up_mess(

* We can change/improve the way we clean up messes without affecting users

(=)
=i
<
on
o
-
[a®
<
ol)
=)
o
+
O
=
=
&
S
o
<
N
&)
N
on
=]
25!
~
o8
N
S
5p)
o
©)
N
@)

—
{

/15/2024, Lecture

Features

. We did not (yet) add

+ Negative numbers

9

% (remainder/modulo)

Exercise: implement any (or all) of those

Pre-defined symbolic values

Variables

- Major Point

- Providing “extra features” early causes major problems, delays, bugs, and
confusion

« “Grow” your programs

+ First get a simple working version
* Then, add features that seem worth the effort

=)
=i
<
on
o
~
A
<
o0
=)
.=
+
O
—
=
<]
S
(&
<
N
(@)
(A
on
=]
O]
~
o8
N
S
(22
(22
@)
N
o

CENTER FOR COMPUTATION
& TECHNOLOGY

2/15/2024, Lecture 7

CSC3380, Spring 2024, Completing a Program

N
N

