Working with Types

Lecture 8
Hartmut Kaiser
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2/20/2024, Lecture 8

Software Architecture

- Software system architecture 1s the overall shared vision of the
software system

* The high level design of a software system

- The fundamental organization of a system, embodied in its major
components

- Each component represents a broad category of functionality
- Components represent possibly many classes that work together as one

- Their relationships to each other and the environment
« Components are linked with connections
- Each connection represents potentially numerous communication channels
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- The principles governing its design and evolution




Important Properties of
Software Architecture

- High-enough level of abstraction that the system can be viewed as a
whole

2/20/2024, Lecture 8

- Structure must support the functionality required of the system

. Structure must conform to the system qualities (e.g. performance,
security, reliability, flexibility, and extensibility )

- At the architectural level, all implementation details are hidden

- Keep your architecture as small as it possibly can be, while still
meeting your architectural objectives
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Software System Architecture
Example

‘ Uil \ Report |||
Data

{

Report
Generator

Data
Cleansing

Dimension
Aggregation

Data
Sampling

Feature
Extraction

Model
Validation

Training Data
Rt Partition

Training Model
Data Creation

Deep Analysis/

http://horicky.blogspot.com/2012/08/big-data-analytics.html

Best Practice: A]S)prommately 7
components (+ 2

Curved rectangles represent
components

Like-colored components
represent coupled components
Cylinders represent data
repositories (u {D sually
databases)

Waved bottom rectangles
represent files

Dog-eared rectangles
represent data sets or files
Arcs indicate direction of data
flow
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Data Flow Diagrams

- Start with the Architecture Diagram

- Add data that is exchanged between components to all diagram
edges

- Refine diagrams sufficiently to hand off to development team
* Level O
« Software system 1is a black box
- Data flow is between software system and external entities
* Level 1
« Software System Architecture Diagram
+ Add data flow between system components

« Level 2

« Component Design Diagrams
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- Add data flow between subcomponents
* etc.




Data Flow Diagram Example:
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Data Flow Diagram Example:
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Data Flow Diagram Example:
evel 2
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2/20/2024, Lecture 8

Abstract

- What are types? What are objects?

- A pattern for regular types: singleton
- Semi-regular singleton
* Regular singleton
* Totally ordered singleton

- Another useful regular type: instrumented
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What is a ‘type’?

. A ‘type’ (of an object) defines the following things:

* The amount of memory required to store all the data that is needed to
support the operations valid for a type

* The rules of how to interpret the bits in that memory as values in order to
be able to make sense of the bit-salad

* The set of values that are valid
* The set of operations that are valid on those values

- Examples of types:
- int, double, float (built-in types)
- token, token_stream, std: :vector, etc. (user-defined types)
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2/20/2024, Lecture 8

What 1s an ’object’

- An object 1s an instance of a type
* Occupies memory
- Has an optional name (is a variable)
- Has a lifetime

« Objects in C++ don’t change their type
« C++1s a type-safe language
* C++ checks types and type compatibility at compile time

- Examples of objects:
«int 1 = 0;
- token t('+');
- std::vector<int> v = {1, 2, 3, 4, 5};

w0
)
o8
>
=
<
+
=
=
o0
=
o
~
B~
=
<
N
&)
(A
o0
=]
Of]
~
o8
N
=)
-]
o
o
©)
)




8 9IN3997T ‘$308/0%/5 sodAT, U3m SUIOM ‘F30g Sutrdg

2>
'S
5
B0
Q
=
Q
Q)
=




2/20/2024, Lecture 8

Regular Types

- Let’s informally define what it means for a type to be ‘Regular’
- It behaves like an int (or any other built-in type)

- Regularity defines a set of properties a type should have

- Understanding regularity is important as 1t will allow us to understand
what algorithms are allowed to do

+ Use only operations allowed for regular types

. Regular types are those that can be stored in standard containers (like
std: :vector<T>)

- What properties must T have to be regular?

- IOW, what properties must T have in order for it to be stored 1n a
std::vector<T>

- We should be able to rely on std: :vector<T> being regular if T is regular

- We will use concepts to describe those properties
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2/20/2024, Lecture 8

Semiregular Types: Copy constructor

- Semiregular is a bit weaker than Regular

- We should be able to write:

- Copy constructor (initializes a)
* T a(b);
T a=Db;
- Both are equivalent, even the same, if b is of type T

- What are the semantics of this operation?
- After this operation a should be equivalent to b

- What is equivalence?
- Arelation R(a, b) = true is equivalence, if it satisfies
- symmetric: R(a, b) <=> R(b, a)
- reflexive: R(a, a)
- transitive: R(a, b) and R(b, c) => R(a, c)
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2/20/2024, Lecture 8

Semiregular Types

- We actually want something way stronger. We want equality

- A copy 1s something which 1s equal to the original, but not identical to 1t

- After a is copy constructed from b then a == b, whatever the meaning of
equality

- After a is copy constructed from b they have distinct identity markers.

+ In C++ the identity marker is usually the object’s address: & != &b (location in
memory)

- All copy constructors must behave this way.

- If somebody clever comes and says, “oh we’re going to have semantics where
we're going to have this shared thing”.

« Will it work? No. Copy has to construct a different thing.
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Semiregular Types: Assignment

- Assignment operator:
T a; a = b;

Construction (initialization) and assignment must be equivalent (lead to
the same results):

T a(b) <=> T a; a = b;

Initialization creates an initial state for a new object

Assignment first cleans up old state of an existing object and then
Initializes its new state

In order for these operations to have correct semantics, the types
involved have to have equality defined (operator==())

* How would you know otherwise if two instances are equal?

2/20/2024, Lecture 8
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2/20/2024, Lecture 8

Semiregular Types: Destructor

. Even if you don’t call destructors directly (the compiler does, though):
*~T(O)s

- Ends the lifetime of an object
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2/20/2024, Lecture 8

Regular Types

- The concept Regular extends Semiregular with equality operators
which are == and !=

- We should define == so that after constructing a copy, the original
and the copy are equal

- I=should always behave like: ! (a == b)

- Fundamentally equal 1is a symmetric function. It compares two
things

« We will implement it as a friend function, not as a member function
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Total orderings

- The concept TotallyOrdered extends Regular by adding a
comparison operator <

. operator < must obey the following mathematical properties:
- Axiom 1: Anti-reflexive: ! (a < a)
- Axiom 2: Transitive: If a < bandb < cthena < c
- Axiom 3: Anti-symmetric: If a < bthen ! (b < a)
- Axiom 4: If a != bthena < borb > a

- The semantics of < must be totally bound to the semantics of
equality and related operations

* The following should always be true, otherwise the world perishes.

ca>b -->1(a < b)
a>b -->b < a
ca<=b -->1(b < a)

2/20/2024, Lecture 8
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2/20/2024, Lecture 8

A Pattern for Regular Types

- We'll develop the simplest possible Regular (even totally ordered)
type: singleton

- The dictionary says: singleton, pair, triple, quadruple, etc.
« A pair has two things, well a singleton has just one thing

. Can be used as a pattern (or “template”) for any types you will want
to create
« It 1s the most simple class possible
- It will have no (functionality oriented) code whatsoever
* It 1s the most complete class possible
- It will have all the language details about type creation that you need to know

+ It 1s a ‘pure’ regular type
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2/20/2024, Lecture 8

Template type functions

- Singleton:
template <typename T>
struct singleton

{

T value;
}s

- template <typename T>
* Why template?
- We want to write something which takes one type and returns another type, i.e. a ‘type function’
* In C++ the template mechanism is just that

- Simplest type function example
« int*!1.e. get an int and return an int*
* Transform one type into another type
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- Singleton is a type function that takes a T and gives us a singleton<T>
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Compiler Generated Functions

« In C++, each user defined type has 6 special functions
* Those are being generated by the compiler, if not explicitly provided
« These functions are a/ways available

- Here are the 6 functions
* Default constructor
+ Destructor
+ Copy constructor
« Copy assignment
+ Move constructor
« Move assignment

- The special functions are being automatically used in certain
situations
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2/20/2024, Lecture 8

Compiler Generated Functions

- Constructors are automatically used whenever a new instance of a
user defined type is created (start lifetime of object)

« Default constructor is used when no additional arguments are supplied:

singleton<int> s;

« Destructor 1s automatically called whenever an instance of a user defined
type goes out of scope (ends the lifetime of an object)

« Copy constructor is used whenever a new instance of a user defined type 1s
created and initialized from another instance:

singleton<int> sl = s;

« Copy assignment 1s used whenever an existing instance of a user defined
type 1s assigned to another instance:
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Compiler Generated Functions

- Any compiler generated special function by default invokes the
corresponding special functions for all member data of the user
defined type

+ Default constructor invokes default constructor of all members (in order of
their definition)

+ Destructor invokes destructors of all members (in reverse order)
- Etc.
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Semi-regular singleton

- Let’s implement support to make singleton Semiregular

// Semiregular:
singleton() {} // default constructor: could be implicitly declared sometimes
~singleton() {} // destructor: could be implicitly declared

singleton(singleton const& x) // copy constructor: could be implicitly declared
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singleton& operator=(singleton const& x) // copy assignment operator: could be implicitly declared o
N

{ S
o

value = x.value; -2
return *this; -

} z
o




2/20/2024, Lecture 8

Semi-regular singleton

- Let’s implement support to make singleton
Semiregular

// Semiregular:

singleton() = default; // default constructor
~singleton() = default; // destructor

// copy constructor
singleton(singleton const& x) = default;

// copy assignment
singleton& operator=(singleton const& x) = default;
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2/20/2024, Lecture 8

Semi-regular singleton

- What are the semantics of the default constructor?

* In this case you want whatever the default value of T 1s, to be constructed.
The compiler will do this for us.

- The default constructor will always be synthesized by the compiler
unless you have another constructor.

- Always add it to avoid surprises!
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2/20/2024, Lecture 8

Semi-regular singleton

- Should the destructor be virtual?
* No! Why should it be?

* Some people say ‘all destructors have to be virtual’ — they couldn’t be more
wrong than that!

- Feel free to make singleton final to prevent people from deriving
from 1t

* There 1s no point in ever deriving from it anyways:

template <typename T>
struct singleton final

{
/] ...
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2/20/2024, Lecture 8

Regular singleton

// Regular
friend bool operator==(singleton const& x, singleton const& y)
{
return x.value == y.value;
}
friend bool operator!=(singleton const& x, singleton const& y)
{
return 1(x == y);
}

- Recall that we decided not to define these as member functions
* they are symmetric
* friend functions inside the class declaration are not member functions

« but still have all the access to all the members

- More importantly this signature is nice. If you put it outside you
discover you have to write an ugly thing
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Equality and the three laws of
thought

 The law of identity: a == a
- Popeye the Sailor used to say, “I am, what I am”

2/20/2024, Lecture 8

 The law of non-contradiction:
* You cannot have a predicate P be true and !P be true at the same time.

- The law of excluded middle:

- Every predicate P must be either true, or false.

Exercise: Figure out a type that
violates the law of identity
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Totally ordered singleton

// TotallyOrdered
friend bool operator<(singleton const& x, singleton const& y)

{
return x.value < y.value;
}
friend bool operator>(singleton const& x, singleton const& y) "
(o))
(
return y < x; S
z
} o
friend bool operator<=(singleton const& x, singleton const& y) %
{ =
return !(y < x); %
friend bool operator>=(singleton const& x, singleton const& y) [%
{ 2
return 1(x < y); §
Z
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Concepts 1n C++

- What requirements do we have apply to T in order for singleton<T> to
be valid?

« C++20 introduced concepts allowing to constrain use of singleton

template <typename T>

« In C++ templates, things don’t have to be defined unless they are used

< If T hlats no equality, singleton<T> will have copy constructor and assignment but no
equality.

requires(std::regular<T> || std::semiregular<T> || std::totally ordered<T>) 7

struct singleton final S

{ Exercise: Copy the file for singleton =
ZAREE and modify it to write pair £

}s :

. . . . . =

- You might wonder how == will work, if you plug-in only a semiregular ¥
type T S
n

o

« If T has an equality, then singleton<T> will have equality
- Ktc.
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Pattern: Composite

- Context:
« 1. Primitive objects can be combined into composite objects
« 2. Programs treat a composite object as a primitive object

- Solution:
* 1. Define an interface that i1s an abstraction for the primitive objects
+ 2. A composite object contains a collection of primitive objects
+ 3. Both primitive classes and composite classes implement that interface

* 4. When implementing a method from the interface, the composite class
applies the method to its primitive objects and combines the results
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2/20/2024, Lecture 8

Instrumented

A performance measuring tool
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instrumented<T>

- We will write a wrapper (adapter, decorator) class instrumented<T>
which will take a type T and behave exactly like T

2/20/2024, Lecture 8

- We will be able to use instrumented<T> for any algorithm or container
It will behave normally, just likea T
 In addition it will count all the operations that are applied to it

- Which operations should we count?
« The ones specified by our concepts!

- T will be SemiRegular, Regular, or TotallyOrdered

- Redefine all the operations: copy constructor, assignment, operator<, etc,
adding code to count them
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instrumented<T>

- For example:
std: :vector<double> vec;
my func(vec.begin(), vec.end());

2/20/2024, Lecture 8

- Could be replaced by:
std: :vector<instrumented<double>> vec;
my_ func(vec.begin(), vec.end());

- And 1t will count all operations

- Writing this particular class will teach to write Regular
classes right.
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instrumented<T>

- What to do with all the counts? Where do they get stored?

2/20/2024, Lecture 8

- We will define a base class to hold this data:

struct instrumented_base
{
enum operations {
n =0, copy, assignment, destructor, default constructor,
equality, comparison, construction

}s

static constexpr size t number_ops = 8;

static constexpr char const* counter_names[number_ops] = {
"n", "copy", "assignment", "destructor", "default_constructor",
"equality", "comparison", "construction"

}s

static double counts[number_ops];
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2/20/2024, Lecture 8

instrumented<T>

- Use this base class as:

template <typename T>
requires(std::semiregular<T> || std::regular<T> || std::totally ordered<T>)
struct instrumented : instrumented_base
{
/] ...
}s

- Note that the base class does not change the size of instrumented<T>, 1.e.
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instrumented<T>

- Copy and paste the singleton.hpp file we created
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- Replace the string singleton with instrumented

- In addition to existing operations, we’ll add counting, e.g.:

instrumented(instrumented const& x) // copy constructor é
=

: value(x.value) =

&

{ o
++counts[copy]; // €‘copy’ is a constant index g

o

} =
<

E

S

ap

instrumented() // default constructor i
{ )
++counts[default_constructor]; // ‘default_constructor’ is another constant index %

} 7
&




Pattern: Decorator

- Context:
+ 1. You want to enhance the behavior of a class. We'll call it the component class

2/20/2024, Lecture 8

+ 2. A decorated component can be used in the same way as a plain component.

+ 3. The component class does not want to take on the responsibility of the
decoration.

* 4. There may be an open-ended set of possible decorations.

- Solution:
+ 1. Define an interface that is an abstraction for the component
+ 2. Concrete component classes implement this interface
+ 3. Decorator classes also implement this interface
* 4. A decorator object manages the component object that it decorates

« 5. When implementing a method from the component interface, the decorator
class applies the method to the decorated component and combines the result
with the effect of the decoration.
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Number of unique elements

« Counting operations and measuring execution time:
« Using std: :set

std::vector<instrumented<int>> v = {...};

std: :set<instrumented<int>> set_of_ints(v.begin(), v.end());
std::cout << set of ints.size() << std::endl;

* Using std: :sort and std: :unique:

std::sort(v.begin(), v.end());
std::cout << std::unique(v.begin(), v.end()) - v.begin() << std::endl;
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Using std: :set

¢
p4

n copy assign destruct default equal less construct time
16 30 44 62 12 n 1N1 12 E ANE_N&
32 57 82 121 Set sort
64 123 182 251
350 16
128 252 376 508 1 §
256 506 756 1018 E 200 14
512 1021 1530 2045 5
1024 2038 3052 4086 10 550 12 .
2048 4090 6132 8186 20 = 0= 2
4096 8181 12266 16373 40 E 500 2 =
8192 16375 24558 32759 81 < s = =
16384 32756 49128 65524 163 B 150 = =
32768 65522 98276 131058 327 é; 6 g ;E
65536 131061 196586 262133 655 100 3
131072 262130 393188 524274 1310 4 E%
262144 524283 786422 1048571 2621 50 5 g
524288 1048560 1572832 2097136 5242 o
1048576 2097134 3145692 4194286 10485 0 0 %
2097152 4194292 6291432 8388596 20971 0 2 4 6 8 10 )
4194304 8388590 12582876 16777198 41943 Array size Millions %
8388608 16777197 25165786 33554413 83886 5
copy assign destruct default equal less construct time 8
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Using std: :sort and std: :unique

¢
p4

n copy assign destruct default equal less construct time
16 29 125 61 1cC 1C 1CH 1C A N1C NC
32 61 421 125 Sort and Unique
64 157 651 285
500 2
128 404 1614 660 §
256 856 3190 1368 = 450 18
512 2200 7000 3224 ! = 200 16
1024 4895 14949 6943 1
2048 10202 31452 14298 2 _ — g
4096 23809 69595 32001 4 2 300 12 g =
8192 54365 151993 70749 8 £ 550 - r;
16384 104148 294590 136916 16 © 5 9
32768 227532 630928 293068 32 g %% 8 8 £
65536 512780 1374424 643852 65! 150 0.6 S
131072 1051039 2805207 1313183 131 100 0.4 E
262144 2329354 6063902 2853642 262 =
524288 4619934 12041526 5668510 524. 20 02 2}
1048576 10067973 25735953 12165125 1048! 0 0 %
2097152 21256236 53714098 25450540 2097: 0 2 4 6 8 10 %)
4194304 44364666 111139688 52753274 4194: Array size Millions %
8388608 93613867 232055273 110391083 8388! 5
copy assign destruct default equal less construct time 8
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Conclusions

- Even if the number of operations is larger, the code may run faster
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- Textbook solutions are often outdated
* They are based on the understanding of how computers worked 15 years ago

- Understanding computer architecture is critically important in order
to write efficient software

. Understanding Big-O complexity characteristics of algorithms (and
data structure functionalities) is equally important

- All depends on the used data structures and how well those are
aligned with how computers work

- Always use std: :vector<T>
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« If you think you can’t use it, try again and find a way so you can
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Exercise

- Measure and compare the amount of operations and the overall
execution time for
- std::sort

- std::stable sort

- Explain what you’re seeing
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Summary

- We know that singleton<T> and instrumented<T> conform to the type
requirements (concepts) that all standard algorithms and containers expect
* They can be used anywhere it would be valid to use T

- This guarantees that these types can be used with all algorithms and
containers

* This will not change the semantics of the algorithms

- The understanding of what concepts are assumed to apply for a given
function or data structure is important

+ Allows to formalize in what contexts a function or data structure 1s guaranteed to
produce correct results

- If a function or data structure works with a type that conforms to a set of
concepts

* We know that it will work with any other type that conforms to those concepts as
well
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