
Midterm Review
Hartmut Kaiser

https://teaching.hkaiser.org/spring2024/csc3380/

3
/1

9
/2

0
2

4
C

S
C

3
3

8
0

, 
S

p
ri

n
g
 2

0
2

4
, 
M

id
te

rm
 E

x
a

m

1



Equivalence vs. Equality
• Equational reasoning must be applied:

 Equivalence is reflexive, symmetric, and transitive:
𝑎 ≅ 𝑎

𝑎 ≅ 𝑏֞𝑏 ≅ 𝑎

𝑎 ≅ 𝑏 ∧ 𝑏 ≅ 𝑐 ֞(𝑎 ≅ 𝑐)

 Equality implies substitutability:

for any function f on T, a == 𝑏 ֜ 𝑓 𝑎 == 𝑓(𝑏)

 Inequality must be the negation of equality:

𝑎 ≠ 𝑏 ֞¬(𝑎 == 𝑏)

3
/1

9
/2

0
2

4
C

S
C

3
3

8
0

, 
S

p
ri

n
g
 2

0
2

4
, 
M

id
te

rm
 E

x
a

m

2



StrictWeak and Total Ordering
• A StrictWeakOrdering is a Binary Predicate that compares two objects, 

returning true if the first precedes the second
 Applying TotalOrdering to equivalence classes

 Invoke function on an element and totally order what it returns

• StrictWeakOrdering
 Partial ordering:

 Irreflexivity: !f(x, x)
 Antisymmetry: f(x, y)  !f(y, x)
 Transitivity: f(x, y) && f(y, z)  f(x, z)

 Transitivity of equivalence
 if x ≅ 𝑦 and y ≅ 𝑧, then x ≅ 𝑧

• TotallyOrdered
 Additionally connectedness: !f(a, b) && !f(b, a)  a == b

 Transitivity of equality
 if x == 𝑦 and y == 𝑧, then x == 𝑧

3
/1

9
/2

0
2

4
C

S
C

3
3

8
0

, 
S

p
ri

n
g
 2

0
2

4
, 
M

id
te

rm
 E

x
a

m

3



Object Oriented Programming
• The four pillars of object-oriented 

programming are:

• Encapsulation: containing 
information in an object, exposing 
only selected information

• Abstraction: only exposing high-
level public methods for accessing 
an object

• Inheritance: child classes inherit 
data and behaviors from the 
parent class

• Polymorphism: many methods can 
do the same task

3
/1

9
/2

0
2

4
C

S
C

3
3

8
0

, 
S

p
ri

n
g
 2

0
2

4
, 
M

id
te

rm
 E

x
a

m

4See also: What is object-oriented programming? OOP explained in depth

https://www.educative.io/blog/object-oriented-programming


What is a ‘type’?
• A ‘type’ (of an object) defines the following things:

 The amount of memory required to store all the data that is needed to 
support the operations valid for a type

 The rules of how to interpret the bits in that memory as values in order to 
be able to make sense of the bit-salad

 The set of values that are valid

 The set of operations that are valid on those values

• Examples of types:

 int, double, float (built-in types)

 token, token_stream, std::vector, etc. (user-defined types)

3
/1

9
/2

0
2

4
C

S
C

3
3

8
0

, 
S

p
ri

n
g
 2

0
2

4
, 
M

id
te

rm
 E

x
a

m

5



What is an ’object’?
• An object is an instance of a type

 Occupies memory

 Has an optional name (is a variable)

 Has a lifetime

• Objects in C++ don’t change their type

 C++ is a type-safe language

 C++ checks types and type compatibility at compile time

• Examples of objects:

 int i = 0;

 token t('+');

 std::vector<int> v = {1, 2, 3, 4, 5};

3
/1

9
/2

0
2

4
C

S
C

3
3

8
0

, 
S

p
ri

n
g
 2

0
2

4
, 
M

id
te

rm
 E

x
a

m

6



3
/1

9
/2

0
2

4
C

S
C

3
3

8
0

, 
S

p
ri

n
g
 2

0
2

4
, 
M

id
te

rm
 E

x
a

m

7


