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Evaluating Schedulers
• Response Time (ideally low)

 What user sees: from keypress to character on screen

 Or completion time for non-interactive

• Throughput (ideally high)

 Total operations (jobs) per second

 Overhead (e.g. context switching), artificial blockers

• Fairness

 Fraction of resources provided to each

 May conflict with best avg. throughput, resp. time
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Recall: Classic Scheduling Policies
• First-Come First-Served: Simple, vulnerable to convoy effect

• Round-Robin: Fixed CPU time quantum, cycle between ready 
threads

• Priority: Respect differences in importance

• Shortest Job/Remaining Time First: Optimal for average response 
time, but unrealistic

• Multi-Level Feedback Queue: Use past behavior to approximate 
SRTF and mitigate overhead
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Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past 

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.
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Multi-Level Feedback Queue (MLFQ)

• Intuition: approximate SRTF by setting priority level proportional to 
burst length

• Job Exceeds Quantum: Drop to lower queue

• Job Doesn't Exceed Quantum: Raise to higher queue
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How to Implement MLFQ in the 
Kernel?
• We could explicitly build the queue data structures

• Or, we can leverage priority-based scheduling!
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Recall: Policy Based on Priority 
Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU 
time (ad-hoc, bad if system overload)
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Linux O(1) Scheduler

• MLFQ-Like Scheduler with 140 Priority Levels
 40 for user tasks, 100 “realtime” tasks

 All algorithms O(1) complexity – low overhead

 Timeslices/priorities/interactivity credits all computed when job finishes time slice

• Active and expired queues at each priority
 Once active is empty, swap them (pointers)

 Round Robin within each queue (varying quanta)

• Timeslice depends on priority – linearly mapped onto timeslice range
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Linux O(1) Scheduler

• Lots of ad-hoc heuristics

 Try to boost priority of 
I/O-bound tasks

 Try to boost priority of 
starved tasks
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So, Does the OS Schedule Processes 
or Threads?
• Many textbooks use the “old model”—one thread per process

• Usually it's really: threads (e.g., in Linux)

• One point to notice: switching threads vs. switching processes incurs 
different costs:

 Switch threads: Save/restore registers

 Switch processes: Change active address space too!

 Expensive

 Disrupts caching
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Multi-Core Scheduling
• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data 
structures

 Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to 
reschedule it on the same CPU

 Cache reuse
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Recall: Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0;                  // atomic store

}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
 When might this be preferable?

• For multiprocessor cache coherence: every test&set() is a write, 
which makes value ping-pong around in cache (using lots of memory 
BW)
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Gang Scheduling and Parallel 
Applications
• When multiple threads work together on a multi-core system, try to 

schedule them together

 Makes spin-waiting more efficient (inefficient to spin-wait for a thread 
that’s suspended)

• Alternative: OS informs a parallel program how many processors its 
threads are scheduled on (Scheduler Activations)

 Application adapts to number of cores that it has scheduled

 “Space sharing” with other parallel programs can be more efficient, 
because parallel speedup is often sublinear with the number of cores
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Real-Time Scheduling
• Goal: Guaranteed Performance

 Meet deadlines even if it means being unfair or slow

 Limit how bad the worst case is

• Hard real-time

 Meet all deadlines (if possible)

 Ideally: determine in advance if this is possible

 Earliest Deadline First (EDF), Least Laxity First (LLF)

• Soft real-time

 Attempt to meet deadlines with high probability

 Constant Bandwidth Server (CBS)
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Real-Time Example
• Preemptible tasks with known deadlines (D) and known burst times 

(C)
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What if we try Round-Robin?
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Earliest Deadline First (EDF)
• Priority scheduling with preemption

• Prefer task with earliest deadline

 Priority (inverse) proportional to time until deadline

• Example with periodic tasks:
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EDF Feasibility Testing
• Even EDF won’t work if you have too many tasks

• For 𝑛 tasks with computation time 𝐶𝑖 and deadline 𝐷𝑖, a feasible 
schedule exists if:



𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1
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Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of 

time

• Causes of starvation:

 Scheduling policy never runs a particular thread on the CPU

 Threads wait for each other or are spinning in a way that will never be 
resolved

• Let’s explore what sorts of problems we might fall into and how to 
avoid them…
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Today: Schedulers Prone to 
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to 
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation 
entirely?

 Arguably more relevant now than when CPU scheduling was first 
developed…
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Non-Work-Conserving Scheduler
• A work-conserving scheduler is one that does not leave the CPU idle 

when there is work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving 
(unless stated otherwise)

3
/2

5
/2

0
2

5
, 
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
S

ch
e
d

u
li

n
g
 2

: 
S

ta
rv

a
ti

o
n

28



Last-Come, First-Served (LCFS)
• Stack (LIFO) as a scheduling data structure 

• Late arrivals get fastest service

• Early ones wait – extremely unfair

• In the worst case – starvation

• When would this occur?

 When arrival rate (offered load) exceeds service rate (delivered load)

 Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…
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Today: Schedulers Prone to 
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to 
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation 
entirely?

 Arguably more relevant now than when CPU scheduling was first 
developed…
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Is FCFS Prone to Starvation?
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• If a task never yields (e.g., goes into an infinite loop), then other tasks 
don’t get to run

• Problem with all non-preemptive schedulers…
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Is Round Robin (RR) Prone to 
Starvation?
• Each of N processes gets ~1/N of CPU (in window)

 With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

 So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time

 Not necessarily in terms of throughput…
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Is Priority Scheduling Prone to 
Starvation?
• Always run the ready thread with highest priority

 Low priority thread might never run!

 Starvation

• But there are more serious problems as well…

 Priority inversion: even high priority threads might become starved
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Priority Inversion

• Job 1 holds lock and suspends

 At this point, which job does the scheduler choose?

• Job 3 (Highest priority)
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Priority Inversion

• Job 3 attempts to acquire lock held by Job 1
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Priority Inversion

• At this point, which job does the scheduler choose?

• Job 2 (Medium Priority)

• Priority Inversion!
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Priority Inversion
• Where high priority task is blocked waiting on low priority task

• Low priority one must run for high priority to make progress

• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?
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lock.acquire(…)
…
lock.release(…)

Low Priority

while (try_lock) {
…
}

High Priority



One Solution: Priority Donation

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation

• Job 1 completes critical section and releases lock

• Job 3 acquires lock, runs again

• How does the scheduler know?
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Are SRTF and MLFQ Prone to 
Starvation?

• In SRTF, long jobs are starved in favor of short ones
 Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same 
problem
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Announcements
• Project 1: deadline extended to Monday, March 31

• Assignment 2: due Monday, April 7
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Cause for Starvation: Priorities?
• The policies we’ve studied so far:

 Always prefer to give the CPU to a prioritized job

 Non-prioritized jobs may never get to run

• But priorities were a means, not an end

• Our end goal was to serve a mix of CPU-bound, I/O bound, and 
Interactive jobs effectively on common hardware

 Give the I/O bound ones enough CPU to issue their next file operation and 
wait (on those slow discs)

 Give the interactive ones enough CPU to respond to an input and wait (on 
those slow humans)

 Let the CPU bound ones grind away without too much disturbance
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Recall: Changing Landscape…
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Bell’s Law: New 

computer class 

every 10 years
years

Computers

Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Mote!

The Internet of 

Things!

Number 

crunching, 

Data Storage, 

Massive Inet

Services,

ML, …

Productivity,

Interactive

Streaming 

from/to the 

physical world

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8


Changing Landscape of Scheduling
• Priority-based scheduling rooted in “time-sharing”

 Allocating precious, limited resources across a diverse workload

 CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on 
networks

 Different machines of different types for different purposes

 Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

 Server consolidation, massive clustered services, huge flashcrowds

 It’s about predictability, 95th percentile performance guarantees

3
/2

5
/2

0
2

5
, 
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
S

ch
e
d

u
li

n
g
 2

: 
S

ta
rv

a
ti

o
n

46



Does prioritizing some jobs necessarily 
starve those that aren’t prioritized?
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Key Idea: Proportional-Share 
Scheduling
• The policies we’ve studied so far:

 Always prefer to give the CPU to a prioritized job

 Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally

 Give each job a share of the CPU according to its priority

 Low-priority jobs get to run less often

 But all jobs can at least make progress (no starvation)
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Today: Schedulers Prone to 
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to 
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation 
entirely?

 Arguably more relevant now than when CPU scheduling was first 
developed…
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• Given a set of jobs (the mix), provide each with a share of a resource

 e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for 

• Idea: Give out tickets according to the proportion each should receive 

• Every quantum (tick): draw one at random, schedule that job 
(thread) to run

Lottery Scheduling
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Lottery Scheduling: Simple 
Mechanism

• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 = σN 𝑖

• Pick a number 𝑑 in 
1 . . 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the random 
“dart”

• Jobs record their Ni of 
allocated tickets

• Order them by Ni

• Select the first j such that 
σNi up to j exceeds d.
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Unfairness

• E.g., Given two jobs A and B of same run 
time (# Qs) that are each supposed to 
receive 50% 

• U = finish time of first / finish time of last

• As a function of run time
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Stride Scheduling
• Achieve proportional share scheduling without resorting to 

randomness, and overcome the “law of small numbers” problem.

• “Stride” of each job is 
𝑏𝑖𝑔#𝑊

𝑁𝑖

 The larger your share of tickets, the smaller your stride

 Ex: W = 10,000,  A=100 tickets, B=50, C=250

 A stride: 100, B: 200, C: 40

• Each job has a “pass” counter 

• Scheduler: pick job with lowest pass, runs it, add its stride to its pass

• Low-stride jobs (lots of tickets) run more often
 Job with twice the tickets gets to run twice as often

• Some messiness of counter wrap-around, new jobs, …
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Linux Completely Fair Scheduler 
(CFS)

• Goal: Each process gets an 
equal share of CPU

• N threads “simultaneously” 
execute on 1/Nth of CPU

• Can’t do this with real 
hardware

 OS needs to give out full CPU in 
time slices
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Linux Completely Fair Scheduler 
(CFS)

• Instead: track CPU time given 
to a thread so far

• Scheduling Decision:

 “Repair” illusion of complete 
fairness

 Choose thread with minimum 
CPU time

• Reset CPU time if thread goes 
to sleep and wakes back up
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Linux CFS: Responsiveness
• In addition to fairness, we want low response time

• Constraint 1: Target Latency

 Period of time over which every process gets service

 Quanta = Target_Latency / n

• Target Latency: 20 ms, 4 Processes

 Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes

 Each process gets 0.1ms time slice  (!!!)

 Recall Round-Robin: large context switching overhead if slice gets to small
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Linux CFS: Throughput
• Goal: Throughput

 Avoid excessive overhead

• Constraint 2: Minimum Granularity

 Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms,
200 processes

 Each process gets 1 ms time slice
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Aside: Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70’s provided 

priority to enforced desired usage policies.

• When it was being developed at Berkeley, instead it provided ways to 
“be nice”.

• nice values range from -20 to 19

 Negative values are “not nice”

 If you wanted to let your friends get more time, you would nice up your job

• Schedule puts higher nice (lower priority) to sleep more …
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Linux CFS: Proportional Shares
• What if we want to give more CPU to some and less to others 

(proportional share) ?

• Reuse nice value to reflect share, rather than priority

• Key Idea: Assign a weight wi to each process i

• Basic equal share: 𝑄 = Target Latency ⋅
1

𝑁

• Weighted Share:

𝑄𝑖 = Target Latency ⋅ ൗ
𝑤𝑖

σ𝑝𝑤𝑝
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Linux CFS: Proportional Shares
• Target Latency = 20ms

• Minimum Granularity = 1ms

• Two CPU-Bound Threads

 Thread A has weight 1

 Thread B has weight 4

• Time slice for A? 4 ms

• Time slice for B? 16 ms
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Linux CFS: Proportional Shares

• Track a thread's virtual 
runtime rather than its true 
physical runtime

• Higher weight: Virtual runtime 
increases more slowly

• Lower weight: Virtual runtime 
increases more quickly
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Linux CFS: Proportional Shares
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Virtual

CPU Time

B A

Scheduler’s Decisions are 

based on Virtual CPU Time

• Track a thread's virtual 
runtime rather than its true 
physical runtime

• Higher weight: Virtual runtime 
increases more slowly

• Lower weight: Virtual runtime 
increases more quickly



Summary: Choosing the Right 
Scheduler

If You Care About: Then Choose:

CPU Throughput FCFS

Average Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness (Wait Time to Get CPU) Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority
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