
Scheduling 2:
Starvation
Lecture 10

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Evaluating Schedulers
• Response Time (ideally low)

 What user sees: from keypress to character on screen

 Or completion time for non-interactive

• Throughput (ideally high)

 Total operations (jobs) per second

 Overhead (e.g. context switching), artificial blockers

• Fairness

 Fraction of resources provided to each

 May conflict with best avg. throughput, resp. time

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

3

Recall: Classic Scheduling Policies
• First-Come First-Served: Simple, vulnerable to convoy effect

• Round-Robin: Fixed CPU time quantum, cycle between ready
threads

• Priority: Respect differences in importance

• Shortest Job/Remaining Time First: Optimal for average response
time, but unrealistic

• Multi-Level Feedback Queue: Use past behavior to approximate
SRTF and mitigate overhead

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

4

Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

11

Multi-Level Feedback Queue (MLFQ)

• Intuition: approximate SRTF by setting priority level proportional to
burst length

• Job Exceeds Quantum: Drop to lower queue

• Job Doesn't Exceed Quantum: Raise to higher queue

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

12

Long-Running Compute
Tasks Demoted to

Low Priority

How to Implement MLFQ in the
Kernel?
• We could explicitly build the queue data structures

• Or, we can leverage priority-based scheduling!

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

13

Recall: Policy Based on Priority
Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

14

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Linux O(1) Scheduler

• MLFQ-Like Scheduler with 140 Priority Levels
 40 for user tasks, 100 “realtime” tasks

 All algorithms O(1) complexity – low overhead

 Timeslices/priorities/interactivity credits all computed when job finishes time slice

• Active and expired queues at each priority
 Once active is empty, swap them (pointers)

 Round Robin within each queue (varying quanta)

• Timeslice depends on priority – linearly mapped onto timeslice range

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

15

Kernel/Realtime Tasks User Tasks

0 100 139

Linux O(1) Scheduler

• Lots of ad-hoc heuristics

 Try to boost priority of
I/O-bound tasks

 Try to boost priority of
starved tasks

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

16

https://www.ibm.com/developerworks/library/l-scheduler/index.html

So, Does the OS Schedule Processes
or Threads?
• Many textbooks use the “old model”—one thread per process

• Usually it's really: threads (e.g., in Linux)

• One point to notice: switching threads vs. switching processes incurs
different costs:

 Switch threads: Save/restore registers

 Switch processes: Change active address space too!

 Expensive

 Disrupts caching

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

17

Multi-Core Scheduling
• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data
structures

 Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

 Cache reuse

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

18

Recall: Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
 When might this be preferable?

• For multiprocessor cache coherence: every test&set() is a write,
which makes value ping-pong around in cache (using lots of memory
BW)

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

19

Gang Scheduling and Parallel
Applications
• When multiple threads work together on a multi-core system, try to

schedule them together

 Makes spin-waiting more efficient (inefficient to spin-wait for a thread
that’s suspended)

• Alternative: OS informs a parallel program how many processors its
threads are scheduled on (Scheduler Activations)

 Application adapts to number of cores that it has scheduled

 “Space sharing” with other parallel programs can be more efficient,
because parallel speedup is often sublinear with the number of cores

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

20

Real-Time Scheduling
• Goal: Guaranteed Performance

 Meet deadlines even if it means being unfair or slow

 Limit how bad the worst case is

• Hard real-time

 Meet all deadlines (if possible)

 Ideally: determine in advance if this is possible

 Earliest Deadline First (EDF), Least Laxity First (LLF)

• Soft real-time

 Attempt to meet deadlines with high probability

 Constant Bandwidth Server (CBS)

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

21

Real-Time Example
• Preemptible tasks with known deadlines (D) and known burst times

(C)

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

22

What if we try Round-Robin?

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

23

Earliest Deadline First (EDF)
• Priority scheduling with preemption

• Prefer task with earliest deadline

 Priority (inverse) proportional to time until deadline

• Example with periodic tasks:

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

24

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T

EDF Feasibility Testing
• Even EDF won’t work if you have too many tasks

• For 𝑛 tasks with computation time 𝐶𝑖 and deadline 𝐷𝑖, a feasible
schedule exists if:

෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

25

Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of

time

• Causes of starvation:

 Scheduling policy never runs a particular thread on the CPU

 Threads wait for each other or are spinning in a way that will never be
resolved

• Let’s explore what sorts of problems we might fall into and how to
avoid them…

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

26

Today: Schedulers Prone to
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation
entirely?

 Arguably more relevant now than when CPU scheduling was first
developed…

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

27

Non-Work-Conserving Scheduler
• A work-conserving scheduler is one that does not leave the CPU idle

when there is work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving
(unless stated otherwise)

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

28

Last-Come, First-Served (LCFS)
• Stack (LIFO) as a scheduling data structure

• Late arrivals get fastest service

• Early ones wait – extremely unfair

• In the worst case – starvation

• When would this occur?

 When arrival rate (offered load) exceeds service rate (delivered load)

 Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

29

Today: Schedulers Prone to
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation
entirely?

 Arguably more relevant now than when CPU scheduling was first
developed…

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

30

Is FCFS Prone to Starvation?

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

31

• If a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run

• Problem with all non-preemptive schedulers…

time

S
ch

e
d

u
li

n
g
 Q

u
e
u

e
Scheduled Task (process, thread)

arrivals

Is Round Robin (RR) Prone to
Starvation?
• Each of N processes gets ~1/N of CPU (in window)

 With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

 So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time

 Not necessarily in terms of throughput…

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

32

Is Priority Scheduling Prone to
Starvation?
• Always run the ready thread with highest priority

 Low priority thread might never run!

 Starvation

• But there are more serious problems as well…

 Priority inversion: even high priority threads might become starved

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

33

Priority Inversion

• Job 1 holds lock and suspends

 At this point, which job does the scheduler choose?

• Job 3 (Highest priority)

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

34

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

Priority Inversion

• Job 3 attempts to acquire lock held by Job 1

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

35

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

Priority Inversion

• At this point, which job does the scheduler choose?

• Job 2 (Medium Priority)

• Priority Inversion!

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

36

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire

Priority Inversion
• Where high priority task is blocked waiting on low priority task

• Low priority one must run for high priority to make progress

• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

37

lock.acquire(…)
…
lock.release(…)

Low Priority

while (try_lock) {
…
}

High Priority

One Solution: Priority Donation

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

38

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

One Solution: Priority Donation

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

39

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()

One Solution: Priority Donation

• Job 1 completes critical section and releases lock

• Job 3 acquires lock, runs again

• How does the scheduler know?

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

40

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

Project 2:

Scheduling

Are SRTF and MLFQ Prone to
Starvation?

• In SRTF, long jobs are starved in favor of short ones
 Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same
problem

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

41

Long-Running Compute
Tasks Demoted to

Low Priority

Announcements
• Project 1: deadline extended to Monday, March 31

• Assignment 2: due Monday, April 7

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

43

Cause for Starvation: Priorities?
• The policies we’ve studied so far:

 Always prefer to give the CPU to a prioritized job

 Non-prioritized jobs may never get to run

• But priorities were a means, not an end

• Our end goal was to serve a mix of CPU-bound, I/O bound, and
Interactive jobs effectively on common hardware

 Give the I/O bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

 Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

 Let the CPU bound ones grind away without too much disturbance

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

44

Recall: Changing Landscape…

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

45

Bell’s Law: New

computer class

every 10 years
years

Computers

Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Mote!

The Internet of

Things!

Number

crunching,

Data Storage,

Massive Inet

Services,

ML, …

Productivity,

Interactive

Streaming

from/to the

physical world

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8

Changing Landscape of Scheduling
• Priority-based scheduling rooted in “time-sharing”

 Allocating precious, limited resources across a diverse workload

 CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on
networks

 Different machines of different types for different purposes

 Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

 Server consolidation, massive clustered services, huge flashcrowds

 It’s about predictability, 95th percentile performance guarantees

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

46

Does prioritizing some jobs necessarily
starve those that aren’t prioritized?

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

47

Key Idea: Proportional-Share
Scheduling
• The policies we’ve studied so far:

 Always prefer to give the CPU to a prioritized job

 Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally

 Give each job a share of the CPU according to its priority

 Low-priority jobs get to run less often

 But all jobs can at least make progress (no starvation)

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

48

Today: Schedulers Prone to
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation
entirely?

 Arguably more relevant now than when CPU scheduling was first
developed…

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

49

• Given a set of jobs (the mix), provide each with a share of a resource

 e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for

• Idea: Give out tickets according to the proportion each should receive

• Every quantum (tick): draw one at random, schedule that job
(thread) to run

Lottery Scheduling

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

50

time
Q i Q i+1

Job C

Lottery Scheduling: Simple
Mechanism

• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 = σN 𝑖

• Pick a number 𝑑 in
1 . . 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the random
“dart”

• Jobs record their Ni of
allocated tickets

• Order them by Ni

• Select the first j such that
σNi up to j exceeds d.

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

51

1

10

Unfairness

• E.g., Given two jobs A and B of same run
time (# Qs) that are each supposed to
receive 50%

• U = finish time of first / finish time of last

• As a function of run time

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

52

Stride Scheduling
• Achieve proportional share scheduling without resorting to

randomness, and overcome the “law of small numbers” problem.

• “Stride” of each job is
𝑏𝑖𝑔#𝑊

𝑁𝑖

 The larger your share of tickets, the smaller your stride

 Ex: W = 10,000, A=100 tickets, B=50, C=250

 A stride: 100, B: 200, C: 40

• Each job has a “pass” counter

• Scheduler: pick job with lowest pass, runs it, add its stride to its pass

• Low-stride jobs (lots of tickets) run more often
 Job with twice the tickets gets to run twice as often

• Some messiness of counter wrap-around, new jobs, …

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

53

Linux Completely Fair Scheduler
(CFS)

• Goal: Each process gets an
equal share of CPU

• N threads “simultaneously”
execute on 1/Nth of CPU

• Can’t do this with real
hardware

 OS needs to give out full CPU in
time slices

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

54

At any time t we

would observe:

CPU

Time

T1 T2 T3

t/N

Linux Completely Fair Scheduler
(CFS)

• Instead: track CPU time given
to a thread so far

• Scheduling Decision:

 “Repair” illusion of complete
fairness

 Choose thread with minimum
CPU time

• Reset CPU time if thread goes
to sleep and wakes back up

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

55

CPU

Time T1

T2

T3

t/N

Linux CFS: Responsiveness
• In addition to fairness, we want low response time

• Constraint 1: Target Latency

 Period of time over which every process gets service

 Quanta = Target_Latency / n

• Target Latency: 20 ms, 4 Processes

 Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes

 Each process gets 0.1ms time slice (!!!)

 Recall Round-Robin: large context switching overhead if slice gets to small

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

56

Linux CFS: Throughput
• Goal: Throughput

 Avoid excessive overhead

• Constraint 2: Minimum Granularity

 Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms,
200 processes

 Each process gets 1 ms time slice

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

57

Aside: Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70’s provided

priority to enforced desired usage policies.

• When it was being developed at Berkeley, instead it provided ways to
“be nice”.

• nice values range from -20 to 19

 Negative values are “not nice”

 If you wanted to let your friends get more time, you would nice up your job

• Schedule puts higher nice (lower priority) to sleep more …

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

58

Linux CFS: Proportional Shares
• What if we want to give more CPU to some and less to others

(proportional share) ?

• Reuse nice value to reflect share, rather than priority

• Key Idea: Assign a weight wi to each process i

• Basic equal share: 𝑄 = Target Latency ⋅
1

𝑁

• Weighted Share:

𝑄𝑖 = Target Latency ⋅ ൗ
𝑤𝑖

σ𝑝𝑤𝑝

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

59

Linux CFS: Proportional Shares
• Target Latency = 20ms

• Minimum Granularity = 1ms

• Two CPU-Bound Threads

 Thread A has weight 1

 Thread B has weight 4

• Time slice for A? 4 ms

• Time slice for B? 16 ms

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

60

Linux CFS: Proportional Shares

• Track a thread's virtual
runtime rather than its true
physical runtime

• Higher weight: Virtual runtime
increases more slowly

• Lower weight: Virtual runtime
increases more quickly

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

61

Physical

CPU Time B

A

16

4

Linux CFS: Proportional Shares

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

62

Virtual

CPU Time

B A

Scheduler’s Decisions are

based on Virtual CPU Time

• Track a thread's virtual
runtime rather than its true
physical runtime

• Higher weight: Virtual runtime
increases more slowly

• Lower weight: Virtual runtime
increases more quickly

Summary: Choosing the Right
Scheduler

If You Care About: Then Choose:

CPU Throughput FCFS

Average Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness (Wait Time to Get CPU) Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

63

3
/2

5
/2

0
2

5
,
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 2

:
S

ta
rv

a
ti

o
n

64

