Scheduling 2:
Starvation

Lecture 10
Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

3/25/2025, Lecture 10

Evaluating Schedulers

- Response Time (ideally low)
- What user sees: from keypress to character on screen
* Or completion time for non-interactive

- Throughput (ideally high)
- Total operations (jobs) per second
- Overhead (e.g. context switching), artificial blockers

- Fairness
+ Fraction of resources provided to each
« May conflict with best avg. throughput, resp. time

g
)
0=
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O

Application

-~ -

Operating system
{1 -

Hardware

3/25/2025, Lecture 10

Recall: Classic Scheduling Policies

- First-Come First-Served: Simple, vulnerable to convoy effect

- Round-Robin: Fixed CPU time quantum, cycle between ready
threads

- Priority: Respect differences in importance

- Shortest Job/Remaining Time First: Optimal for average response
time, but unrealistic

- Multi-Level Feedback Queue: Use past behavior to approximate
SRTF and mitigate overhead

Application

g
)
=
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
<t
(@)
N
O

3/25/2025, Lecture 10

Adaptive Scheduling

- How can we adapt the scheduling algorithm based on threads’ past
behavior?

- Two steps:
- Based on past observations, predict what threads will do in the future.
- Make scheduling decisions based on those predictions.

Application

-~ -

Operating system
"=

Hardware

g
)
o
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O

3/25/2025, Lecture 10

Multi-Level Feedback Queue (MLFQ)

quantum = 8 b

Y

Long-Running Compute
Tasks Demoted to

quantum = 16 b—L/./ Low Priority

- Intuition: approximate SRTF by setting priority level proportional to
burst length

- Job Exceeds Quantum: Drop to lower queue

g
o
o
-
<
>
g
<
-
wn
N
o0
g
o=
—
[}
e
5
<=
O
wn
el
N
S
N
o0
g
=
~
o,
w0
o
S
—
<t
(@)
(2
O

- Job Doesn't Exceed Quantum: Raise to higher queue T hevicaton

How to Implement MLFQ in the
Kernel?

- We could explicitly build the queue data structures

3/25/2025, Lecture 10

- Or, we can leverage priority-based scheduling!

g
)
o
+~
S
"4
~
<
+
N
N
a0
=
o=
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
<t
(@)
N
O

Recall: Policy Based on Priority
Scheduling

3/25/2025, Lecture 10

Priority 3

Priority 2
Priority 1

Priority O

- Systems may try to set priorities according to some policy goal

- Example: Give interactive higher priority than long calculation
* Prefer jobs waiting on I/0 to those consuming lots of CPU

- Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)

=)
©
o
)
]
2
~
<
+—
N
N
on
=)
-
—
=]
e
)
<
QO
N
LO“
N
S
N
on
g
~
-~
N
C‘O'\
©
—
~
©)
)
<

3/25/2025, Lecture 10

Linux O(1) Scheduler
Kernel/Realtime Tasks -

0 100 139
- MLFQ-Like Scheduler with 140 Priority Levels

+ 40 for user tasks, 100 “realtime” tasks

- All algorithms O(1) complexity — low overhead
+ Timeslices/priorities/interactivity credits all computed when job finishes time slice

- Active and expired queues at each priority
- Once active is empty, swap them (pointers)
- Round Robin within each queue (varying quanta)

g
)
=
+~
<
>
g
<
+
N
N
a0
g
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
(@)
(@)

- Timeslice depends on priority — linearly mapped onto timeslice range [REE
=

Operating system
- -

Hardware

Linux O(1) Scheduler

CPU-X Expired CPU-X Active - Lots of ad-hoc heuristics
rungueue runguaue . .
* Try to boost priority of
- — > Priority 1 I/0-bound tasks
* Try to boost priority of
— =t Priority 2 starved tasks
i 'ﬁ Real-time task priorities
@ @
= | 4= = -
2 2
L (18 S
E, — z | = Priority 100 W
: g
S | =t Priority 101 x = Priority 101)
[45)
= u
= T User task priorities
=t Priority 140 =1 Priority 140 A ——

-~ -

Operating system
- -

Hardware

3/25/2025, Lecture 10

g
)
0=
+~
<
>
g
<
+
N
N
a0
g
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
<t
(@)
(@)

https://www.ibm.com/developerworks/library/l-scheduler/index.html

S0, Does the OS Schedule Processes
or Threads?

- Many textbooks use the “old model”—one thread per process
. Usually it's really: threads (e.g., in Linux)

- One point to notice: switching threads vs. switching processes incurs
different costs:
« Switch threads: Save/restore registers
« Switch processes: Change active address space too!
- Expensive
* Disrupts caching

Application

1 L°

Operating system
] [

Hardware

3/25/2025, Lecture 10

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<t
(@)
N
(@)

3/25/2025, Lecture 10

Multi-Core Scheduling

- Algorithmically, not a huge difference from single-core scheduling

- Implementation-wise, helpful to have per-core scheduling data
structures

« Cache coherence

- Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

« Cache reuse

Application

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<t
(@)
N
(@)

3/25/2025, Lecture 10

Recall: Spinlock

- Spinlock implementation:

int value = @; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

- Spinlock doesn’t put the calling thread to sleep—it just busy waits
* When might this be preferable?

. For multiprocessor cache coherence: every test&set() is a write,
whi;:h makes value ping-pong around in cache (using lots of memory _
BW Application

1 L°

Operating system
] [

Hardware

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<t
(@)
N
(@)

Gang Scheduling and Parallel
Applications

- When multiple threads work together on a multi-core system, try to
schedule them together

- Makes spin-waiting more efficient (inefficient to spin-wait for a thread
that’s suspended)

3/25/2025, Lecture 10

- Alternative: OS informs a parallel program how many processors its
threads are scheduled on (Scheduler Activations)

+ Application adapts to number of cores that it has scheduled

- “Space sharing” with other parallel programs can be more efficient,
because parallel speedup 1s often sublinear with the number of cores

Application

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
o=
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
~
(@)
N
(@)

3/25/2025, Lecture 10

Real-Time Scheduling

- Goal: Guaranteed Performance
* Meet deadlines even if it means being unfair or slow
« Limit how bad the worst case 1s

- Hard real-time
- Meet all deadlines (if possible)
* Ideally: determine in advance if this is possible
- Earliest Deadline First (EDF), Least Laxity First (LLF)

- Soft real-time
- Attempt to meet deadlines with high probability
- Constant Bandwidth Server (CBS)

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
~
(@)
N
(@)

Application

1 L°

Operating system
] [

Hardware

(@)
—

)

<

=)
-

Q

)
—
Yol
N
(@)
X
~~
Yo
N
~~
>

Real-Time Example

. Preemptible tasks with known deadlines (D) and known burst times

(C)
e D =
T)
} n
4 Ca‘r D ?f
T2 : l
> g
F 3 C =
3 D -
>
F Cd Dd l :5:
T4 :
O

3/25/2025, Lecture 10

What if we try Round-Robin?

Missed
- L deadline!!
T il
]

L ::l
. y

]
L
q
if—
w

—]
I
H

g
o
o
)
«
>
g
<
+
n
N
an
=i
.-
—
S
=
(ob]
<=
(&}
N
e
N
=)
N
an
g
=
~
o,
n
S
—
Q
9P
O

, Lecture 10

Earliest Deadline First (EDF)

- Priority scheduling with preemption

3/25/2025

- Prefer task with earliest deadline
- Priority (inverse) proportional to time until deadline

- Example with periodic tasks:

T, =(41) . — 1 M — 1 M—»
T,=(52) T—- | 1 - | 1 - | 1 : —
T, =(7.2) T — - | 1 | - — L

0 5

g
)
=
+~
<
>
g
<
+
N
N
a0
g
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0

CSC4103, Sprin

3/25/2025, Lecture 10

EDF Feasibility Testing

- Even EDF won’t work if you have too many tasks

- For n tasks with computation time C; and deadline D;, a feasible

schedule exists if:
n
C;
z “l) <1
L\ D;
=1

Application

-~ -

Operating system
{1 -

Hardware

g
)
=
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O

Ensuring Progress

- Starvation: thread fails to make progress for an indefinite period of
time

* Scheduling policy never runs a particular thread on the CPU

reads walt for each other or are spinning 1in a way that will never be
resolved

- Let’s explore what sorts of problems we might fall into and how to
avold them...

Application

-~ -

Operating system
] [

Hardware

3/25/2025, Lecture 10

g
)
o
+~
<
>
g
<
+
N
N
a0
=
o=
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
<t
(@)
(@)

Today: Schedulers Prone to
Starvation

| - What kinds of schedulers are prone to starvation?

3/25/2025, Lecture 10

. Of the scheduling policies we've studied, which are prone to
starvation? And can we fix them?

- How might we design scheduling policies that avoid starvation
entirely?

« Arguably more relevant now than when CPU scheduling was first
developed...

Application

g
)
o
+~
<
>
g
<
+
N
N
a0
=
o=
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
o
—
<t
(@)
(@)

3/25/2025, Lecture 10

Non-Work-Conserving Scheduler

- A work-conserving scheduler is one that does not leave the CPU idle
when there 1s work to do

- A non-work-conserving scheduler could trivially lead to starvation

- In this class, we’ll assume that the scheduler is work-conserving
(unless stated otherwise)

Application

-~ -

Operating system
{1 -

Hardware

g
)
=
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O

3/25/2025, Lecture 10

Last-Come, First-Served (LCFS)

. Stack (LIFO) as a scheduling data structure
- Late arrivals get fastest service

- Early ones wait — extremely unfair

- In the worst case — starvation

« When would this occur?
- When arrival rate (offered load) exceeds service rate (delivered load)
* Queue builds up faster than it drains

- Queue can build in FIFO too, but “serviced in the order received”...

Application

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
o=
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
~
(@)
N
(@)

Today: Schedulers Prone to
Starvation

- What kinds of schedulers are prone to starvation?

3/25/2025, Lecture 10

. Of the scheduling policies we've studied, which are prone to
starvation? And can we fix them?

- How might we design scheduling policies that avoid starvation
entirely?

« Arguably more relevant now than when CPU scheduling was first
developed...

Application

g
)
0=
+~
<
>
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<ff
(@)
(@)

3/25/2025, Lecture 10

Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

o]
2 |

=

@

an

k= arrivals
p—

=

=

ab]

<

(D)

@p)

« If a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run

g
)
0=
+~
<
>
g
<
+
N
N
a0
g
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
<t
(@)
(@)

* Problem with all non-preemptive schedulers... ——
-

Operating system
- -

Hardware

Is Round Robin (RR) Prone to
Starvation?

- Each of N processes gets ~1/N of CPU (in window)

+ With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

* So a process can’t be kept waiting indefinitely

- So RR is fair in terms of waiting time
+ Not necessarily in terms of throughput...

Application

-~ -

Operating system
{1 -

Hardware

3/25/2025, Lecture 10

g
)
=
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O

Is Priority Scheduling Prone to
Starvation?

- Always run the ready thread with highest priority
* Low priority thread might never run!

3/25/2025, Lecture 10

- Starvation

- But there are more serious problems as well...
 Priority inversion: even high priority threads might become starved

g
)
=
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O

3/25/2025, Lecture 10

Priority Inversion

Priority 3

Priority 2

Priority 1

Acquire()

- Job 1 holds lock and suspends
- At this point, which job does the scheduler choose?

=)
©
o
)
]
2
~
fav]
+—
N
N
on
=)
-
—
=]
e
)
<
QO
N
&
N
S
N
on
=}
=
~
-~
N
C‘OT
©
—
©)
)
<

- Job 3 (Highest priority)

3/25/2025, Lecture 10

Priority Inversion

Priority 3 —— Acquire()

Priority 2 “*~-~~~~
=

PI'iOI‘ity I NN Job 1 T kbbb >

- Job 3 attempts to acquire lock held by Job 1

=)
©
o
)
]
2
~
<
+—
N
N
on
=)
-
—
=]
=
)
<
QO
N
LO"
AN
S
N
on
=}
s
~
-~
N
C‘OT
©
—
©)
)
<

3/25/2025, Lecture 10

Priority Inversion

— Blocked on Acquire
Priority 3

Priority 2 Job 2

Priority 1

- At this point, which job does the scheduler choose?
. Job 2 (Medium Priority)

=)
©
o
)
]
2
~
fav]
+—
N
N
on
=)
-
—
=]
e
)
<
QO
N
&
N
S
N
on
=}
=
~
-~
N
C‘OT
©
—
©)
)
<

Application

- Priority Inversion!

3/25/2025, Lecture 10

Priority Inversion

- Where high priority task is blocked waiting on low priority task
- Low priority one must run for high priority to make progress

- Medium priority task can starve a high priority one

- When else might priority lead to starvation or “live lock”?

g
)
0=
+~
<
>
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<ff
(@)
(@)

High Priority Low Priority
c while (try_lock) { lock.acquire(..)
} lock.release(..) oo

3/25/2025, Lecture 10

One Solution: Priority Donation

Priority 3 —— Acquire()

Priority 2 “*~-~~~~
=

PI'iOI‘ity I NN Job 1 T kbbb >

- Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

=)
©
o
)
]
2
~
<
+—
N
N
on
=)
-
—
=]
=
)
<
QO
N
LO"
AN
S
N
on
=}
s
~
-~
N
C‘OT
©
—
©)
)
<

3/25/2025, Lecture 10

One Solution: Priority Donation

Blocked on Acquire

Priority 3 ULREN--. Release()
Priority 2 Job 2 ~~~\~~
Priority 1 e

- Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

=)
o
o=
)
<
2
~
<
+
0)]
N
on
=)
o=
—
=]
el
(D)
<
Q
0)]
S
N
S
N
on
=}
=
=~
oF
N
.
©
—
QO
)
<

One Solution: Priority Donation

Priority 3 Job 3 -___Acquir'e()
Priority 2 Job 2 T e———l

Priority 1 Job 1

- Job 1 completes critical section and releases lock
- Job 3 acquires lock, runs again

- How does the scheduler know?

Project 2:

Scheduling

3/25/2025, Lecture 10

CSC4103, Spring 2025, Scheduling 2: Starvation

Are SRTF and MLFQ Prone to
Starvation?

quantum = 8 b
Long-Running Compute
Tasks Demoted to

1 Low Priori
quantum = 16 b?‘/ ° ° ty
u FECFS L)

- In SRTF, long jobs are starved in favor of short ones
+ Same fundamental problem as priority scheduling

h 4

- MLFQ 1s an approximation of SRTF, so it suffers from the same
problem

3/25/2025, Lecture 10

g
o
o
-
<
>
g
<
-
wn
N
o0
g
o=
—
[}
e
5
<=
O
wn
el
N
S
N
o0
g
=
~
o,
w0
o
S
—
(@)
(2
O

Announcements

« Project 1: deadline extended to Monday, March 31

3/25/2025, Lecture 10

- Assignment 2: due Monday, April 7

Application

-~ -

Operating system
{1 -

Hardware

g
8
o
+~
S
"4
2
=
+
n
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
<t
(@)
N
O

3/25/2025, Lecture 10

Cause for Starvation: Priorities?

- The policies we've studied so far:
« Always prefer to give the CPU to a prioritized job
* Non-prioritized jobs may never get to run

- But priorities were a means, not an end

- Our end goal was to serve a mix of CPU-bound, I/0O bound, and
Interactive jobs effectively on common hardware

* Give the I/0 bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

- Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

* Let the CPU bound ones grind away without too much disturbance

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<t
(@)
N
(@)

Application

1 L°

Operating system
] [

Hardware

(@)
—

)

<

=)
-

Q

)
—
Yol
N
(@)
X
~~
Yo
N
~~
>

Recall: Changing Landscape...

Computers
Per Person Number

crunching,
106 Data Storage, o
1:10 Massive Inet 3
Services, §
n
1:108 p
Productivity, :5
— Interactive =
)
’ 11 S
o AN
Bell’'s Law: New = 2
Streaming =3
computer class from/to the 2
103:1 physical world o
every 10 years s
— O
Application n
O

] L

Operating system

] [

Hardware

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8

3/25/2025, Lecture 10

Changing Landscape of Scheduling

- Priority-based scheduling rooted in “time-sharing”
 Allocating precious, limited resources across a diverse workload
- CPU bound, vs interactive, vs I/0O bound

- 80’s brought about personal computers, workstations, and servers on
networks
- Different machines of different types for different purposes

- Shift to fairness and avoiding extremes (starvation)

- 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer
* Server consolidation, massive clustered services, huge flashcrowds
 It’s about predictability, 95th percentile performance guarantees

g
)
o
+~
S
s
g
<
+
N
N
a0
=
o=
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<t
(@)
N
(@)

Application

1 L°

Operating system
] [

Hardware

, Lecture 10

Does prioritizing some jobs necessarily
starve those that aren’t prioritized?

3/25/2025

ation

N
=
~
(o]

+—

N

g 2025, Scheduling 2

CSC4103, Sprin

Key Idea: Proportional-Share
Scheduling

- The policies we've studied so far:
« Always prefer to give the CPU to a prioritized job

3/25/2025, Lecture 10

* Non-prioritized jobs may never get to run

- Instead, we can share the CPU proportionally
* Give each job a share of the CPU according to its priority
« Low-priority jobs get to run less often
- But all jobs can at least make progress (no starvation)

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
o=
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
v}-{
(@)
N
(@)

Application

-~ -

Operating system
] [

Hardware

Today: Schedulers Prone to
Starvation

- What kinds of schedulers are prone to starvation?

3/25/2025, Lecture 10

. Of the scheduling policies we've studied, which are prone to
starvation? And can we fix them?

- How might we design scheduling policies that avoid starvation
entirely?

« Arguably more relevant now than when CPU scheduling was first
developed...

Application

g
)
0=
+~
<
>
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<ff
(@)
(@)

3/25/2025, Lecture 10

Lottery Scheduling 4

Qi Qi+1

L)

. Given a set of jobs (the mix), provide each with a share of a resource
* e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C

» time

- Idea: Give out tickets according to the proportion each should receive

g
)
0=
+~
<
>
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
<ff
(@)
(@)

- Every quantum (tick): draw one at random, schedule that job T hevicaton
(thread) to run

Lottery Scheduling: Simple

Mechanism

10

‘ Nticket — ZNl

« Pick a number d 1n

1 .. N, e @s the random
“dart”

- Jobs record their N, of

allocated tickets

- Order them by N,
- Select the first j such that

2. N. up to j exceeds d.

3/25/2025, Lecture 10

g 2! Starvation

g
o=
=]

=)
ge)

o5}
<

3}
N
el
N
=
(o]

o0

CSC4103, Sprin

(@]
—

o)

<

=
-

Q
3
Yol
N
(@)
X
~~
Yo
N
~
D

Unfairness

L g —— - E.g., Given two jobs A and B of same run
time (# Qs) that are each supposed to

0.8 . 0 5
receive 50% £
@ 0.6- o . S E
E « U = finish time of first / finish time of last %
8
£ 0.4 . . 2
- As a function of run time E
0.2 ?
0.0 . : . 3
1 10 100 1000
Job Length n
Figure 9.2: Lottery Fairness Study e
Application %
©

-~ -

Operating system
] [

Hardware

3/25/2025, Lecture 10

Stride Scheduling

- Achieve proportional share scheduling without resorting to
randomness, and overcome the “law of small numbers” problem.

. . 1 . Dbighw
- “Stride” of each job 1s Z
{

* The larger your share of tickets, the smaller your stride
- Ext W =10,000, A=100 tickets, B=50, C=250
« A stride: 100, B: 200, C: 40

- Each job has a “pass” counter
- Scheduler: pick job with lowest pass, runs it, add its stride to its pass

- Low-stride jobs (lots of tickets) run more often
- Job with twice the tickets gets to run twice as often

Application

- Some messiness of counter wrap-around, new jobs, ... —~

g
)
=
+~
<
>
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
(@)
(@)

Operating system
] [

Hardware

Linux Completely Fair Scheduler
(CFS)

At any time twe equal share of CPU

would observe: - N threads “simultaneously”
execute on 1/Nth of CPU

3/25/2025, Lecture 10

g 2! Starvation

- Can’t do this with real
hardware

* OS needs to give out full CPU in
time slices

g
-
=]

-
=

)
<

QO
N
AN
=
(A

on

CSC4103, Sprin

Linux Completely Fair Scheduler
(CFS)

. Instead: track CPU time given
to a thread so far

« Scheduling Decision:
« “Repair” i1llusion of complete

fairness
[* Choose thread with minimum
CPU EEEEEEEEEEEEEEEEEEENR t/N CPUtlme
Time

- Reset CPU time if thread goes
to sleep and wakes back up

3/25/2025, Lecture 10

g
o
o
+
<
>
<
<
-
N
N
a0
g
o=
—
[}
=
o)
<
)
N
S
[N
(@)
N
a0
(@}
o]
~
Q
N
o
(@)
—
@)
(2
O

3/25/2025, Lecture 10

Linux CFS: Responsiveness

- In addition to fairness, we want low response time

- Constraint 1: Target Latency
+ Period of time over which every process gets service
* Quanta = Target_Latency /n

- Target Latency: 20 ms, 4 Processes
- Each process gets 5ms time slice

- Target Latency: 20 ms, 200 Processes
- Each process gets 0.1ms time slice (!!!)
* Recall Round-Robin: large context switching overhead if slice gets to small

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
~
(@)
N
(@)

Application

1 L°

Operating system
] [

Hardware

3/25/2025, Lecture 10

Linux CFS: Throughput

« Goal: Throughput

« Avoid excessive overhead

+ Constraint 2: Minimum Granularity
* Minimum length of any time slice

- Target Latency 20 ms, Minimum Granularity 1 ms,
200 processes

- Each process gets 1 ms time slice

Application

-~ -

Operating system
{1 -

Hardware

g
)
o
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O

3/25/2025, Lecture 10

Aside: Priority in Unix — Being Nice
- The industrial operating systems of the 60s and 70’s provided

priority to enforced desired usage policies.

- When i1t was being developed at Berkeley, instead it provided ways to
“be nice”.

- nice values range from -20 to 19
« Negative values are “not nice”
 If you wanted to let your friends get more time, you would nice up your job

. Schedule puts higher nice (lower priority) to sleep more ...

Application

1 L°

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
v}-{
(@)
N
(@)

Operating system
] [

Hardware

3/25/2025, Lecture 10

Linux CFS: Proportional Shares

- What if we want to give more CPU to some and less to others
(proportional share) ?

- Reuse nice value to reflect share, rather than priority

- Key Idea: Assign a weight w; to each process 1

- Basic equal share: Q = Target Latency %

- Weighted Share:
_ (w;
Q; = Target Latency (g /Zp Wp)

Application

g
)
0=
+~
S
s
g
<
+
N
N
a0
=
o=
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
(@)

3/25/2025, Lecture 10

Linux CFS: Proportional Shares

- Target Latency = 20ms

- Minimum Granularity = 1ms

- Two CPU-Bound Threads
* Thread A has weight 1
* Thread B has weight 4

- Time slice for A? 4 ms

- Time slice for B? 16 ms

g
)
0=
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
o
=
Q
N
o
(@)
—
~
(@)
N
O

3/25/2025, Lecture 10

Linux CFS: Proportional Shares

- Track a thread's virtual
A runtime rather than its true
physical runtime

- Higher weight: Virtual runtime
Increases more slowly

Physical
CPU Time

- Lower weight: Virtual runtime
Increases more quickly

Application

g
S
o
-
<
>
g
<
-
w0
N
o0
g
o=
=
[}
S
5
<
O
wn
5
N
S
N
o0
g
o
~
o,
w0
o
S
—
3
D)
O

Linux CFS: Proportional Shares

- Track a thread's virtual
A runtime rather than its true
physical runtime

Virtual - Higher weight: Virtual runtime

CPU Time increases more slowly

- Lower weight: Virtual runtime
Increases more quickly

Scheduler’s Decisions are
based on Virtual CPU Time

Application

3/25/2025, Lecture 10

g
o
o
-
<
>
g
<
-
wn
N
o0
g
o=
—
[}
e
5
<=
O
wn
el
N
S
N
o0
g
o=
~
o,
w0
o
S
—
(@)
N
O

Summary: Choosing the Right
Scheduler

If You Care About: Then Choose:

(@)
—

)

<

=)
)

3]

)
—
Yol
N
(@)
X
~~
Yo
N
~~
oA

Favoring Important Tasks Priority

CPU Throughput FCFS :
Average Response Time SRTF Approximation ‘§

I/0 Throughput SRTF Approximation f
Fairness (CPU Time) Linux CFS %
Fairness (Wait Time to Get CPU) Round Robin f
Meeting Deadlines EDF %

CENTER FOR COMPUTATION
& TECHNOLOGY

3/25/2025, Lecture 10

CSC4103, Spring 2025, Scheduling 2: Starvation

P
NN

