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3/25/2025, Lecture 10

Evaluating Schedulers

- Response Time (ideally low)
- What user sees: from keypress to character on screen
* Or completion time for non-interactive

- Throughput (ideally high)
- Total operations (jobs) per second
- Overhead (e.g. context switching), artificial blockers

- Fairness
+ Fraction of resources provided to each
« May conflict with best avg. throughput, resp. time
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3/25/2025, Lecture 10

Recall: Classic Scheduling Policies

- First-Come First-Served: Simple, vulnerable to convoy effect

- Round-Robin: Fixed CPU time quantum, cycle between ready
threads

- Priority: Respect differences in importance

- Shortest Job/Remaining Time First: Optimal for average response
time, but unrealistic

- Multi-Level Feedback Queue: Use past behavior to approximate
SRTF and mitigate overhead

Application
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3/25/2025, Lecture 10

Adaptive Scheduling

- How can we adapt the scheduling algorithm based on threads’ past
behavior?

- Two steps:
- Based on past observations, predict what threads will do in the future.
- Make scheduling decisions based on those predictions.

Application

-~ -

Operating system
"=

Hardware

g
)
o
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O




3/25/2025, Lecture 10

Multi-Level Feedback Queue (MLFQ)

quantum = 8 b

Y

Long-Running Compute
Tasks Demoted to

quantum = 16 b—L/./ Low Priority

- Intuition: approximate SRTF by setting priority level proportional to
burst length

- Job Exceeds Quantum: Drop to lower queue
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How to Implement MLFQ in the
Kernel?

- We could explicitly build the queue data structures

3/25/2025, Lecture 10

- Or, we can leverage priority-based scheduling!
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Recall: Policy Based on Priority
Scheduling

3/25/2025, Lecture 10

Priority 3

Priority 2
Priority 1

Priority O

- Systems may try to set priorities according to some policy goal

- Example: Give interactive higher priority than long calculation
* Prefer jobs waiting on I/0 to those consuming lots of CPU

- Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)
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Linux O(1) Scheduler
Kernel/Realtime Tasks -

0 100 139
- MLFQ-Like Scheduler with 140 Priority Levels

+ 40 for user tasks, 100 “realtime” tasks

- All algorithms O(1) complexity — low overhead
+ Timeslices/priorities/interactivity credits all computed when job finishes time slice

- Active and expired queues at each priority
- Once active is empty, swap them (pointers)
- Round Robin within each queue (varying quanta)
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Linux O(1) Scheduler

CPU-X Expired CPU-X Active - Lots of ad-hoc heuristics
rungueue runguaue . .
* Try to boost priority of
- — > Priority 1 I/0-bound tasks
* Try to boost priority of
— =t Priority 2 starved tasks
i 'ﬁ Real-time task priorities
@ @
= | 4= = -
2 2
L (18 S
E, — z | = Priority 100 W
: g
S | =t Priority 101 x = Priority 101 )
[45)
= u
= T User task priorities
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https://www.ibm.com/developerworks/library/l-scheduler/index.html

S0, Does the OS Schedule Processes
or Threads?

- Many textbooks use the “old model”—one thread per process
. Usually it's really: threads (e.g., in Linux)

- One point to notice: switching threads vs. switching processes incurs
different costs:
« Switch threads: Save/restore registers
« Switch processes: Change active address space too!
- Expensive
* Disrupts caching
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3/25/2025, Lecture 10

Multi-Core Scheduling

- Algorithmically, not a huge difference from single-core scheduling

- Implementation-wise, helpful to have per-core scheduling data
structures

« Cache coherence

- Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

« Cache reuse

Application
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3/25/2025, Lecture 10

Recall: Spinlock

- Spinlock implementation:

int value = @; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

- Spinlock doesn’t put the calling thread to sleep—it just busy waits
* When might this be preferable?

. For multiprocessor cache coherence: every test&set() is a write,
whi;:h makes value ping-pong around in cache (using lots of memory _
BW Application
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Gang Scheduling and Parallel
Applications

- When multiple threads work together on a multi-core system, try to
schedule them together

- Makes spin-waiting more efficient (inefficient to spin-wait for a thread
that’s suspended)

3/25/2025, Lecture 10

- Alternative: OS informs a parallel program how many processors its
threads are scheduled on (Scheduler Activations)

+ Application adapts to number of cores that it has scheduled

- “Space sharing” with other parallel programs can be more efficient,
because parallel speedup 1s often sublinear with the number of cores

Application
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3/25/2025, Lecture 10

Real-Time Scheduling

- Goal: Guaranteed Performance
* Meet deadlines even if it means being unfair or slow
« Limit how bad the worst case 1s

- Hard real-time
- Meet all deadlines (if possible)
* Ideally: determine in advance if this is possible
- Earliest Deadline First (EDF), Least Laxity First (LLF)

- Soft real-time
- Attempt to meet deadlines with high probability
- Constant Bandwidth Server (CBS)
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Real-Time Example

. Preemptible tasks with known deadlines (D) and known burst times
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What if we try Round-Robin?

Missed
- L deadline!!
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, Lecture 10

Earliest Deadline First (EDF)

- Priority scheduling with preemption

3/25/2025

- Prefer task with earliest deadline
- Priority (inverse) proportional to time until deadline

- Example with periodic tasks:

T, =(41) . — 1 M — 1 M—»
T,=(52) T—- | 1 - | 1 - | 1 : —
T, =(7.2) T — - | 1 | - — L

0 5

g
)
=
+~
<
>
g
<
+
N
N
a0
g
.-
=]
-
ge)
)
<
3
N
Yol
N
=
N
a0

CSC4103, Sprin




3/25/2025, Lecture 10

EDF Feasibility Testing

- Even EDF won’t work if you have too many tasks

- For n tasks with computation time C; and deadline D;, a feasible

schedule exists if:
n
C;
z “l) <1
L\ D;
=1

Application

-~ -

Operating system
{1 -

Hardware

g
)
=
+~
S
"4
~
<
+
N
N
a0
=
.-
=]
-
ge)
)
<=
3
N
Yol
N
=
N
a0
(@}
-
=
Q
N
o
(@)
—
~
(@)
N
O




Ensuring Progress

- Starvation: thread fails to make progress for an indefinite period of
time

* Scheduling policy never runs a particular thread on the CPU

reads walt for each other or are spinning 1in a way that will never be
resolved

- Let’s explore what sorts of problems we might fall into and how to
avold them...
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Today: Schedulers Prone to
Starvation

| - What kinds of schedulers are prone to starvation?

3/25/2025, Lecture 10

. Of the scheduling policies we've studied, which are prone to
starvation? And can we fix them?

- How might we design scheduling policies that avoid starvation
entirely?

« Arguably more relevant now than when CPU scheduling was first
developed...

Application
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3/25/2025, Lecture 10

Non-Work-Conserving Scheduler

- A work-conserving scheduler is one that does not leave the CPU idle
when there 1s work to do

- A non-work-conserving scheduler could trivially lead to starvation

- In this class, we’ll assume that the scheduler is work-conserving
(unless stated otherwise)
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3/25/2025, Lecture 10

Last-Come, First-Served (LCFS)

. Stack (LIFO) as a scheduling data structure
- Late arrivals get fastest service

- Early ones wait — extremely unfair

- In the worst case — starvation

« When would this occur?
- When arrival rate (offered load) exceeds service rate (delivered load)
* Queue builds up faster than it drains

- Queue can build in FIFO too, but “serviced in the order received”...

Application
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Today: Schedulers Prone to
Starvation

- What kinds of schedulers are prone to starvation?

3/25/2025, Lecture 10

. Of the scheduling policies we've studied, which are prone to
starvation? And can we fix them?

- How might we design scheduling policies that avoid starvation
entirely?

« Arguably more relevant now than when CPU scheduling was first
developed...

Application
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3/25/2025, Lecture 10

Is FCFS Prone to Starvation?

Scheduled Task (process, thread)
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« If a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run
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Is Round Robin (RR) Prone to
Starvation?

- Each of N processes gets ~1/N of CPU (in window)

+ With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

* So a process can’t be kept waiting indefinitely

- So RR is fair in terms of waiting time
+ Not necessarily in terms of throughput...

Application
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Is Priority Scheduling Prone to
Starvation?

- Always run the ready thread with highest priority
* Low priority thread might never run!

3/25/2025, Lecture 10

- Starvation

- But there are more serious problems as well...
 Priority inversion: even high priority threads might become starved
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3/25/2025, Lecture 10

Priority Inversion

Priority 3

Priority 2

Priority 1

Acquire()

- Job 1 holds lock and suspends
- At this point, which job does the scheduler choose?
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Priority Inversion

Priority 3 —— Acquire()

Priority 2 “*~-~~~~
=

PI'iOI‘ity I NN Job 1 T kbbb >

- Job 3 attempts to acquire lock held by Job 1
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3/25/2025, Lecture 10

Priority Inversion

— Blocked on Acquire
Priority 3

Priority 2 Job 2

Priority 1

- At this point, which job does the scheduler choose?
. Job 2 (Medium Priority)
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3/25/2025, Lecture 10

Priority Inversion

- Where high priority task is blocked waiting on low priority task
- Low priority one must run for high priority to make progress

- Medium priority task can starve a high priority one

- When else might priority lead to starvation or “live lock”?
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3/25/2025, Lecture 10

One Solution: Priority Donation

Priority 3 —— Acquire()

Priority 2 “*~-~~~~
=

PI'iOI‘ity I NN Job 1 T kbbb >

- Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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3/25/2025, Lecture 10

One Solution: Priority Donation

Blocked on Acquire

Priority 3 ULREN--. Release()
Priority 2 Job 2 ~~~\~~
Priority 1 e

- Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation

Priority 3 Job 3 -___Acquir'e()
Priority 2 Job 2 T e———l

Priority 1 Job 1

- Job 1 completes critical section and releases lock
- Job 3 acquires lock, runs again

- How does the scheduler know?

Project 2:

Scheduling

3/25/2025, Lecture 10
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Are SRTF and MLFQ Prone to
Starvation?

quantum = 8 b
Long-Running Compute
Tasks Demoted to

1 Low Priori
quantum = 16 b?‘/ ° ° ty
u FECFS L )

- In SRTF, long jobs are starved in favor of short ones
+ Same fundamental problem as priority scheduling

h 4

- MLFQ 1s an approximation of SRTF, so it suffers from the same
problem

3/25/2025, Lecture 10
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Announcements

« Project 1: deadline extended to Monday, March 31

3/25/2025, Lecture 10

- Assignment 2: due Monday, April 7
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3/25/2025, Lecture 10

Cause for Starvation: Priorities?

- The policies we've studied so far:
« Always prefer to give the CPU to a prioritized job
* Non-prioritized jobs may never get to run

- But priorities were a means, not an end

- Our end goal was to serve a mix of CPU-bound, I/0O bound, and
Interactive jobs effectively on common hardware

* Give the I/0 bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

- Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

* Let the CPU bound ones grind away without too much disturbance
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Recall: Changing Landscape...
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Changing Landscape of Scheduling

- Priority-based scheduling rooted in “time-sharing”
 Allocating precious, limited resources across a diverse workload
- CPU bound, vs interactive, vs I/0O bound

- 80’s brought about personal computers, workstations, and servers on
networks
- Different machines of different types for different purposes

- Shift to fairness and avoiding extremes (starvation)

- 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer
* Server consolidation, massive clustered services, huge flashcrowds
 It’s about predictability, 95th percentile performance guarantees
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, Lecture 10

Does prioritizing some jobs necessarily
starve those that aren’t prioritized?

3/25/2025
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Key Idea: Proportional-Share
Scheduling

- The policies we've studied so far:
« Always prefer to give the CPU to a prioritized job

3/25/2025, Lecture 10

* Non-prioritized jobs may never get to run

- Instead, we can share the CPU proportionally
* Give each job a share of the CPU according to its priority
« Low-priority jobs get to run less often
- But all jobs can at least make progress (no starvation)
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Today: Schedulers Prone to
Starvation

- What kinds of schedulers are prone to starvation?

3/25/2025, Lecture 10

. Of the scheduling policies we've studied, which are prone to
starvation? And can we fix them?

- How might we design scheduling policies that avoid starvation
entirely?

« Arguably more relevant now than when CPU scheduling was first
developed...

Application
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3/25/2025, Lecture 10

Lottery Scheduling 4

Qi Qi+1

L)

. Given a set of jobs (the mix), provide each with a share of a resource
* e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C

» time

- Idea: Give out tickets according to the proportion each should receive
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- Every quantum (tick): draw one at random, schedule that job T hevicaton
(thread) to run




Lottery Scheduling: Simple

Mechanism

10

‘ Nticket — ZNl

« Pick a number d 1n

1 .. N, e @s the random
“dart”

- Jobs record their N, of

allocated tickets

- Order them by N,
- Select the first j such that

2. N. up to j exceeds d.
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g 2! Starvation
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Unfairness

L g —— - E.g., Given two jobs A and B of same run
time (# Qs) that are each supposed to

0.8 . 0 5
receive 50% £
@ 0.6- o . S E
E « U = finish time of first / finish time of last %
8
£ 0.4 . . 2
- As a function of run time E
0.2 ?
0.0 . : . 3
1 10 100 1000
Job Length n
Figure 9.2: Lottery Fairness Study e
Application %
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Stride Scheduling

- Achieve proportional share scheduling without resorting to
randomness, and overcome the “law of small numbers” problem.

. . 1 . Dbighw
- “Stride” of each job 1s Z
{

* The larger your share of tickets, the smaller your stride
- Ext W =10,000, A=100 tickets, B=50, C=250
« A stride: 100, B: 200, C: 40

- Each job has a “pass” counter
- Scheduler: pick job with lowest pass, runs it, add its stride to its pass

- Low-stride jobs (lots of tickets) run more often
- Job with twice the tickets gets to run twice as often

Application

- Some messiness of counter wrap-around, new jobs, ... —~
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Linux Completely Fair Scheduler
(CFS)

At any time twe equal share of CPU

would observe: - N threads “simultaneously”
execute on 1/Nth of CPU

3/25/2025, Lecture 10

g 2! Starvation

- Can’t do this with real
hardware

* OS needs to give out full CPU in
time slices
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Linux Completely Fair Scheduler
(CFS)

. Instead: track CPU time given
to a thread so far

« Scheduling Decision:
« “Repair” i1llusion of complete

fairness
[ * Choose thread with minimum
CPU EEEEEEEEEEEEEEEEEEENR t/N CPUtlme
Time

- Reset CPU time if thread goes
to sleep and wakes back up
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Linux CFS: Responsiveness

- In addition to fairness, we want low response time

- Constraint 1: Target Latency
+ Period of time over which every process gets service
* Quanta = Target_Latency /n

- Target Latency: 20 ms, 4 Processes
- Each process gets 5ms time slice

- Target Latency: 20 ms, 200 Processes
- Each process gets 0.1ms time slice (!!!)
* Recall Round-Robin: large context switching overhead if slice gets to small
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Linux CFS: Throughput

« Goal: Throughput

« Avoid excessive overhead

+ Constraint 2: Minimum Granularity
* Minimum length of any time slice

- Target Latency 20 ms, Minimum Granularity 1 ms,
200 processes

- Each process gets 1 ms time slice

Application
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Aside: Priority in Unix — Being Nice
- The industrial operating systems of the 60s and 70’s provided

priority to enforced desired usage policies.

- When i1t was being developed at Berkeley, instead it provided ways to
“be nice”.

- nice values range from -20 to 19
« Negative values are “not nice”
 If you wanted to let your friends get more time, you would nice up your job

. Schedule puts higher nice (lower priority) to sleep more ...

Application

1 L°
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Linux CFS: Proportional Shares

- What if we want to give more CPU to some and less to others
(proportional share) ?

- Reuse nice value to reflect share, rather than priority

- Key Idea: Assign a weight w; to each process 1

- Basic equal share: Q = Target Latency %

- Weighted Share:
_ (w;
Q; = Target Latency ( g /Zp Wp)

Application
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Linux CFS: Proportional Shares

- Target Latency = 20ms

- Minimum Granularity = 1ms

- Two CPU-Bound Threads
* Thread A has weight 1
* Thread B has weight 4

- Time slice for A? 4 ms

- Time slice for B? 16 ms
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Linux CFS: Proportional Shares

- Track a thread's virtual
A runtime rather than its true
physical runtime

- Higher weight: Virtual runtime
Increases more slowly

Physical
CPU Time

- Lower weight: Virtual runtime
Increases more quickly

Application
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Linux CFS: Proportional Shares

- Track a thread's virtual
A runtime rather than its true
physical runtime

Virtual - Higher weight: Virtual runtime

CPU Time increases more slowly

- Lower weight: Virtual runtime
Increases more quickly

Scheduler’s Decisions are
based on Virtual CPU Time

Application
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Summary: Choosing the Right
Scheduler

If You Care About: Then Choose:
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Favoring Important Tasks Priority

CPU Throughput FCFS :
Average Response Time SRTF Approximation ‘§

I/0 Throughput SRTF Approximation f
Fairness (CPU Time) Linux CFS %
Fairness (Wait Time to Get CPU) Round Robin f
Meeting Deadlines EDF %
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& TECHNOLOGY

3/25/2025, Lecture 10

CSC4103, Spring 2025, Scheduling 2: Starvation

P
NN




