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Evaluating Schedulers
• Response Time (ideally low)

 What user sees: from keypress to character on screen

 Or completion time for non-interactive

• Throughput (ideally high)

 Total operations (jobs) per second

 Overhead (e.g. context switching), artificial blockers

• Fairness

 Fraction of resources provided to each

 May conflict with best avg. throughput, resp. time
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Recall: Classic Scheduling Policies
• First-Come First-Served: Simple, vulnerable to convoy effect

• Round-Robin: Fixed CPU time quantum, cycle between ready 
threads

• Priority: Respect differences in importance

• Shortest Job/Remaining Time First: Optimal for average response 
time, but unrealistic

• Multi-Level Feedback Queue: Use past behavior to approximate 
SRTF and mitigate overhead
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Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past 

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.
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Multi-Level Feedback Queue (MLFQ)

• Intuition: approximate SRTF by setting priority level proportional to 
burst length

• Job Exceeds Quantum: Drop to lower queue

• Job Doesn't Exceed Quantum: Raise to higher queue
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How to Implement MLFQ in the 
Kernel?
• We could explicitly build the queue data structures

• Or, we can leverage priority-based scheduling!
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Recall: Policy Based on Priority 
Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU 
time (ad-hoc, bad if system overload)
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Linux O(1) Scheduler

• MLFQ-Like Scheduler with 140 Priority Levels
 40 for user tasks, 100 “realtime” tasks

 All algorithms O(1) complexity – low overhead

 Timeslices/priorities/interactivity credits all computed when job finishes time slice

• Active and expired queues at each priority
 Once active is empty, swap them (pointers)

 Round Robin within each queue (varying quanta)

• Timeslice depends on priority – linearly mapped onto timeslice range
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Linux O(1) Scheduler

• Lots of ad-hoc heuristics

 Try to boost priority of 
I/O-bound tasks

 Try to boost priority of 
starved tasks
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So, Does the OS Schedule Processes 
or Threads?
• Many textbooks use the “old model”—one thread per process

• Usually it's really: threads (e.g., in Linux)

• One point to notice: switching threads vs. switching processes incurs 
different costs:

 Switch threads: Save/restore registers

 Switch processes: Change active address space too!

 Expensive

 Disrupts caching
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Multi-Core Scheduling
• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data 
structures

 Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to 
reschedule it on the same CPU

 Cache reuse
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Recall: Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0;                  // atomic store

}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
 When might this be preferable?

• For multiprocessor cache coherence: every test&set() is a write, 
which makes value ping-pong around in cache (using lots of memory 
BW)
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Gang Scheduling and Parallel 
Applications
• When multiple threads work together on a multi-core system, try to 

schedule them together

 Makes spin-waiting more efficient (inefficient to spin-wait for a thread 
that’s suspended)

• Alternative: OS informs a parallel program how many processors its 
threads are scheduled on (Scheduler Activations)

 Application adapts to number of cores that it has scheduled

 “Space sharing” with other parallel programs can be more efficient, 
because parallel speedup is often sublinear with the number of cores
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Real-Time Scheduling
• Goal: Guaranteed Performance

 Meet deadlines even if it means being unfair or slow

 Limit how bad the worst case is

• Hard real-time

 Meet all deadlines (if possible)

 Ideally: determine in advance if this is possible

 Earliest Deadline First (EDF), Least Laxity First (LLF)

• Soft real-time

 Attempt to meet deadlines with high probability

 Constant Bandwidth Server (CBS)
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Real-Time Example
• Preemptible tasks with known deadlines (D) and known burst times 

(C)
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What if we try Round-Robin?
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Earliest Deadline First (EDF)
• Priority scheduling with preemption

• Prefer task with earliest deadline

 Priority (inverse) proportional to time until deadline

• Example with periodic tasks:
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EDF Feasibility Testing
• Even EDF won’t work if you have too many tasks

• For 𝑛 tasks with computation time 𝐶𝑖 and deadline 𝐷𝑖, a feasible 
schedule exists if:

෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1
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Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of 

time

• Causes of starvation:

 Scheduling policy never runs a particular thread on the CPU

 Threads wait for each other or are spinning in a way that will never be 
resolved

• Let’s explore what sorts of problems we might fall into and how to 
avoid them…
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Today: Schedulers Prone to 
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to 
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation 
entirely?

 Arguably more relevant now than when CPU scheduling was first 
developed…
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Non-Work-Conserving Scheduler
• A work-conserving scheduler is one that does not leave the CPU idle 

when there is work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving 
(unless stated otherwise)
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Last-Come, First-Served (LCFS)
• Stack (LIFO) as a scheduling data structure 

• Late arrivals get fastest service

• Early ones wait – extremely unfair

• In the worst case – starvation

• When would this occur?

 When arrival rate (offered load) exceeds service rate (delivered load)

 Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…
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Today: Schedulers Prone to 
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to 
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation 
entirely?

 Arguably more relevant now than when CPU scheduling was first 
developed…
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Is FCFS Prone to Starvation?
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• If a task never yields (e.g., goes into an infinite loop), then other tasks 
don’t get to run

• Problem with all non-preemptive schedulers…
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Is Round Robin (RR) Prone to 
Starvation?
• Each of N processes gets ~1/N of CPU (in window)

 With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

 So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time

 Not necessarily in terms of throughput…
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Is Priority Scheduling Prone to 
Starvation?
• Always run the ready thread with highest priority

 Low priority thread might never run!

 Starvation

• But there are more serious problems as well…

 Priority inversion: even high priority threads might become starved
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Priority Inversion

• Job 1 holds lock and suspends

 At this point, which job does the scheduler choose?

• Job 3 (Highest priority)
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Priority Inversion

• Job 3 attempts to acquire lock held by Job 1
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Priority Inversion

• At this point, which job does the scheduler choose?

• Job 2 (Medium Priority)

• Priority Inversion!
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Priority Inversion
• Where high priority task is blocked waiting on low priority task

• Low priority one must run for high priority to make progress

• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

3
/2

5
/2

0
2

5
, 
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
S

ch
e
d

u
li

n
g
 2

: 
S

ta
rv

a
ti

o
n

37

lock.acquire(…)
…
lock.release(…)

Low Priority

while (try_lock) {
…
}

High Priority



One Solution: Priority Donation

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation

• Job 1 completes critical section and releases lock

• Job 3 acquires lock, runs again

• How does the scheduler know?
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Are SRTF and MLFQ Prone to 
Starvation?

• In SRTF, long jobs are starved in favor of short ones
 Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same 
problem
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Announcements
• Project 1: deadline extended to Monday, March 31

• Assignment 2: due Monday, April 7
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Cause for Starvation: Priorities?
• The policies we’ve studied so far:

 Always prefer to give the CPU to a prioritized job

 Non-prioritized jobs may never get to run

• But priorities were a means, not an end

• Our end goal was to serve a mix of CPU-bound, I/O bound, and 
Interactive jobs effectively on common hardware

 Give the I/O bound ones enough CPU to issue their next file operation and 
wait (on those slow discs)

 Give the interactive ones enough CPU to respond to an input and wait (on 
those slow humans)

 Let the CPU bound ones grind away without too much disturbance
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Recall: Changing Landscape…

3
/2

5
/2

0
2

5
, 
L

e
ct

u
re

 1
0

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
S

ch
e
d

u
li

n
g
 2

: 
S

ta
rv

a
ti

o
n

45

Bell’s Law: New 

computer class 

every 10 years
years

Computers

Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Mote!

The Internet of 

Things!

Number 

crunching, 

Data Storage, 

Massive Inet

Services,

ML, …

Productivity,

Interactive

Streaming 

from/to the 

physical world

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8


Changing Landscape of Scheduling
• Priority-based scheduling rooted in “time-sharing”

 Allocating precious, limited resources across a diverse workload

 CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on 
networks

 Different machines of different types for different purposes

 Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

 Server consolidation, massive clustered services, huge flashcrowds

 It’s about predictability, 95th percentile performance guarantees
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Does prioritizing some jobs necessarily 
starve those that aren’t prioritized?
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Key Idea: Proportional-Share 
Scheduling
• The policies we’ve studied so far:

 Always prefer to give the CPU to a prioritized job

 Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally

 Give each job a share of the CPU according to its priority

 Low-priority jobs get to run less often

 But all jobs can at least make progress (no starvation)
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Today: Schedulers Prone to 
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to 
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation 
entirely?

 Arguably more relevant now than when CPU scheduling was first 
developed…
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• Given a set of jobs (the mix), provide each with a share of a resource

 e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for 

• Idea: Give out tickets according to the proportion each should receive 

• Every quantum (tick): draw one at random, schedule that job 
(thread) to run

Lottery Scheduling
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Lottery Scheduling: Simple 
Mechanism

• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 = σN 𝑖

• Pick a number 𝑑 in 
1 . . 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the random 
“dart”

• Jobs record their Ni of 
allocated tickets

• Order them by Ni

• Select the first j such that 
σNi up to j exceeds d.
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Unfairness

• E.g., Given two jobs A and B of same run 
time (# Qs) that are each supposed to 
receive 50% 

• U = finish time of first / finish time of last

• As a function of run time
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Stride Scheduling
• Achieve proportional share scheduling without resorting to 

randomness, and overcome the “law of small numbers” problem.

• “Stride” of each job is 
𝑏𝑖𝑔#𝑊

𝑁𝑖

 The larger your share of tickets, the smaller your stride

 Ex: W = 10,000,  A=100 tickets, B=50, C=250

 A stride: 100, B: 200, C: 40

• Each job has a “pass” counter 

• Scheduler: pick job with lowest pass, runs it, add its stride to its pass

• Low-stride jobs (lots of tickets) run more often
 Job with twice the tickets gets to run twice as often

• Some messiness of counter wrap-around, new jobs, …
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Linux Completely Fair Scheduler 
(CFS)

• Goal: Each process gets an 
equal share of CPU

• N threads “simultaneously” 
execute on 1/Nth of CPU

• Can’t do this with real 
hardware

 OS needs to give out full CPU in 
time slices
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Time
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Linux Completely Fair Scheduler 
(CFS)

• Instead: track CPU time given 
to a thread so far

• Scheduling Decision:

 “Repair” illusion of complete 
fairness

 Choose thread with minimum 
CPU time

• Reset CPU time if thread goes 
to sleep and wakes back up
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Linux CFS: Responsiveness
• In addition to fairness, we want low response time

• Constraint 1: Target Latency

 Period of time over which every process gets service

 Quanta = Target_Latency / n

• Target Latency: 20 ms, 4 Processes

 Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes

 Each process gets 0.1ms time slice  (!!!)

 Recall Round-Robin: large context switching overhead if slice gets to small
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Linux CFS: Throughput
• Goal: Throughput

 Avoid excessive overhead

• Constraint 2: Minimum Granularity

 Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms,
200 processes

 Each process gets 1 ms time slice
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Aside: Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70’s provided 

priority to enforced desired usage policies.

• When it was being developed at Berkeley, instead it provided ways to 
“be nice”.

• nice values range from -20 to 19

 Negative values are “not nice”

 If you wanted to let your friends get more time, you would nice up your job

• Schedule puts higher nice (lower priority) to sleep more …
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Linux CFS: Proportional Shares
• What if we want to give more CPU to some and less to others 

(proportional share) ?

• Reuse nice value to reflect share, rather than priority

• Key Idea: Assign a weight wi to each process i

• Basic equal share: 𝑄 = Target Latency ⋅
1

𝑁

• Weighted Share:

𝑄𝑖 = Target Latency ⋅ ൗ
𝑤𝑖

σ𝑝𝑤𝑝
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Linux CFS: Proportional Shares
• Target Latency = 20ms

• Minimum Granularity = 1ms

• Two CPU-Bound Threads

 Thread A has weight 1

 Thread B has weight 4

• Time slice for A? 4 ms

• Time slice for B? 16 ms
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Linux CFS: Proportional Shares

• Track a thread's virtual 
runtime rather than its true 
physical runtime

• Higher weight: Virtual runtime 
increases more slowly

• Lower weight: Virtual runtime 
increases more quickly
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Linux CFS: Proportional Shares
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Virtual

CPU Time

B A

Scheduler’s Decisions are 

based on Virtual CPU Time

• Track a thread's virtual 
runtime rather than its true 
physical runtime

• Higher weight: Virtual runtime 
increases more slowly

• Lower weight: Virtual runtime 
increases more quickly



Summary: Choosing the Right 
Scheduler

If You Care About: Then Choose:

CPU Throughput FCFS

Average Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness (Wait Time to Get CPU) Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority
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