Scheduling 3:
Deadlock

Lecture 11
Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

3/26/2025, Lecture 11

Recall: Linux O(1) Scheduler
Kernel/Realtime Tasks -

0 100 139
- MLFQ-Like Scheduler with 140 Priority Levels

« 40 for user tasks, 100 “realtime” tasks
- All algorithms O(1) complexity — low overhead

« Timeslices/priorities/interactivity credits all computed when job finishes time
slice

- Active and expired queues at each priority
- Once active is empty, swap them (pointers)
- Round Robin within each queue (varying quanta)

wn
4
3}
O
°
e}
(0]
5
a0
o
.-
—
=}
=
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
e
~
(o
N
o
(@)
—
<t
(@)
R
(@)

Application

- Timeslice depends on priority — linearly mapped onto timeslice range =

Operating system
- -

Hardware

3/26/2025, Lecture 11

Recall: Multi-Core Scheduling

- Algorithmically, not a huge difference from single-core scheduling

- Implementation-wise, helpful to have per-core scheduling data
structures

« Cache coherence

- Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

« Cache reuse

()
4
o
©
—
e}
<
S
Ty}
g
.-
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
O
R
©)

Application

3/26/2025, Lecture 11

Recall: Real-Time Scheduling

- Goal: Guaranteed Performance
* Meet deadlines even if it means being unfair or slow
« Limit how bad the worst case 1s

- Hard real-time:
+ Meet all deadlines (f possible)
* Ideally: determine in advance if this is possible

- Earliest Deadline First (EDF), Least Laxity First (LLF)

- Soft real-time
- Attempt to meet deadlines with high probability
- Constant Bandwidth Server (CBS)

Application

()
4
o
©
—
e}
<
S
Ty}
g
.-
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
R
©)

, Lecture 11

Recall: Earliest Deadline First (EDF)

 Priority scheduling with preemption

3/26/2025

- Prefer task with earliest deadline
* Priority proportional to time until deadline

- Example with periodic tasks:

T,=(41) . — 1 M — 1 N 1 |
- L NN ! BN | BN NN
T, =(7.2) T — - | 1 | - — L

0 5

w0
<
Q
S
=
<
Q
S
an
=)
o=
—
=
=
)
<
Q
N
10
N
=
oy
ap

CSC4103, Sprin

3/26/2025, Lecture 11

Recall: Ensuring Progress

- Starvation: thread fails to make progress for an indefinite period of
time

- Causes of starvation:
* Scheduling policy never runs a particular thread on the CPU

« Threads wait for each other or are spinning in a way that will never be
resolved

. Let’s explore what sorts of problems we might fall into and how to
avoid them...

Application

1 L°

Operating system
] [

Hardware

()
4
o
©
—
e}
<
S
Ty}
g
.-
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
R
©)

Recall: Schedulers Prone to
Starvation

- What kinds of schedulers are prone to starvation?

3/26/2025, Lecture 11

. Of the scheduling policies we've studied, which are prone to
starvation? And can we fix them?

- How might we design scheduling policies that avoid starvation
entirely?

« Arguably more relevant now than when CPU scheduling was first
developed...

Application

()
4
o
©
—
e}
<
S
Ty}
g
.-
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
O
R
©)

3/26/2025, Lecture 11

Recall: Priority Inversion

- Where high priority task is blocked waiting on low priority task
- Low priority one must run for high priority to make progress

- Medium priority task can starve a high priority one

- When else might priority lead to starvation or “live lock”?

wn
4
3}
O
—
e}
(0]
S
a0
g
.-
=
=]
o)
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
o=
s-<
(o
N
o
(@)
—
—i
O
R
(@)

High Priority Low Priority
c while (try_lock) { lock.acquire(..)
} lock.release(..) oo

Recall: Are SRTF and MLFQ Prone
to Starvation?

3/26/2025, Lecture 11

> quantum = 8 b
Long-Running Compute
Tasks Demoted to

1 Low Priori
quantum = 16 b?‘/ ° ° ty
u FECFS L)

- In SRTF, long jobs are starved in favor of short ones
« Same fundamental problem as priority scheduling

w0
<
O
S
—
=
<
=
o
an

, Schedulin

o € =
g 2025

- MLFQ 1s an approximation of SRTF, so it suffers from the same
problem

CSC4103, Sprin

3/26/2025, Lecture 11

Recall: Evaluating Schedulers

- Response Time (ideally low)
- What user sees: from keypress to character on screen
* Or completion time for non-interactive

- Throughput (ideally high)
- Total operations (jobs) per second
- Overhead (e.g. context switching), artificial blocks

- Fairness
* Fraction of resources provided to each
« May conflict with best avg. throughput, resp. time

()
4
o
©
—
e}
<
S
Ty}
g
.-
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
R
©)

Application

1 L°

Operating system
] [

Hardware

Recall: Changing Landscape of
Scheduling

- Priority-based scheduling rooted in “time-sharing”
 Allocating precious, limited resources across a diverse workload
- CPU bound, vs interactive, vs I/0O bound

- 80’s brought about personal computers, workstations, and servers on
networks

- Different machines of different types for different purposes
- Shift to fairness and avoiding extremes (starvation)

- 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

* Server consolidation, massive clustered services, huge flashcrowds
« It’s about predictability, 95th percentile performance guarantees

Application

1 L°

Operating system
] [

Hardware

3/26/2025, Lecture 11

()
4
o
©
—
e}
<
S
Ty}
g
o=
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
R
©)

Recall: Proportional-Share
Scheduling

- The policies we've studied so far:
- Always prefer to give the CPU to a prioritized job
* Non-prioritized jobs may never get to run

- Instead, we can share the CPU proportionally
* Give each job a share of the CPU according to its priority
« Low-priority jobs get to run less often
- But all jobs can at least make progress (no starvation)

Application

1 L°

Operating system
] [

Hardware

3/26/2025, Lecture 11

()
4
o
©
—
e}
<
S
Ty}
g
o=
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
R
©)

3/26/2025, Lecture 11

Recall: Lottery Schedvjing

Qi Qi+1

» time

. Given a set of jobs (the mix), provide each with a share of a resource
« e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C

- Idea: Give out tickets according to the proportion each should receive,

- Every quantum (tick): draw one at random, schedule that job (thread) to —
run -~

Operating system
] [

Hardware

wn
4
3}
O
—
e}
(0]
S
a0
g
=
=
=]
o)
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
=
s-<
(o
N
o
(@)
—
<
(@)
R
(@)

3/26/2025, Lecture 11

Stride Scheduling

- Achieve proportional share scheduling without resorting to
randomness, and overcome the “law of small numbers” problem.

big#w

- “Stride” of each job 1s

* The larger your share of tickets, the smaller your stride
- Ext W =10,000, A=100 tickets, B=50, C=250
« A stride: 100, B: 200, C: 40

- Each job as a “pass” counter
- Scheduler: pick job with lowest pass, runs it, add its stride to its pass

- Low-stride jobs (lots of tickets) run more often
- Job with twice the tickets gets to run twice as often

Application

- Some messiness of counter wrap-around, new jobs, ... —~

wn
4
3}
O
—
e}
(0]
S
a0
g
.-
=
=]
=
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
o=
s-<
(o
N
o
(@)
—
<t
(@)
R
(@)

Operating system
] [

Hardware

Recall: Linux Completely Fair
Scheduler (CFS)

- Instead: track CPU time given
to a thread so far

[. Scheduling Decision:

CPU EEEEEEEENEEEEEEEEENESR t/N ¢ “Repair” 1llusion of Complete
’ fairness

Time

* Choose thread with minimum
CPU time

- Reset CPU time if thread goes
to sleep and wakes back up

3/26/2025, Lecture 11

g 3! Deadlocks

=)
o
—
=
=
<}
<
)
N
Te)
AN
e}
A
on

CSC4103, Sprin

Recall: Linux CFS, Responsiveness

- In addition to fairness, we want low response time

- Constraint 1: Target Latency
+ Period of time over which every process gets service
* Quanta = Target_Latency /n

- Target Latency: 20 ms, 4 Processes
- Each process gets 5ms time slice

- Target Latency: 20 ms, 200 Processes
- Each process gets 0.1ms time slice (!!!)
* Recall Round-Robin: large context switching overhead if slice gets to small

Application

1 L°

Operating system
] [

Hardware

3/26/2025, Lecture 11

()
4
o
©
—
e}
<
S
Ty}
g
.-
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
R
©)

3/26/2025, Lecture 11

Recall: Linux CFS, Throughput

« Goal: Throughput

« Avoid excessive overhead

+ Constraint 2: Minimum Granularity
* Minimum length of any time slice

- Target Latency 20 ms, Minimum Granularity 1 ms,
200 processes

- Each process gets 1 ms time slice

)
4
5}
©
—
e}
<
o)
Ty}
g
o=
=
)
o)
)
<
[3)
N
Yol
AN
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
w0
(@)

Application

-~ -

Operating system
{1 -

Hardware

Recall: Linux CFS: Proportional
Shares

- Track a thread's virtual
A runtime rather than its true
physical runtime

Virtual . Higher weight: Virtual runtime
CPU Time increases more slowly

- Lower weight: Virtual runtime
Increases more quickly

Scheduler’s Decisions are
based on Virtual CPU Time

Application

3/26/2025, Lecture 11

0
4
Q
S
—
]
<
e
on
=)
o=
—
=
=
D
<
Q
N
Te)
N
o
N
oD
=]
=
~
oF
N
o
—
<t
O
R
o

—
—

)

<

=)
)

3]

)
—
Yol
N
(@)
X
~
©
N
~~
oA

Recall: Choosing the Right Scheduler

CPU Throughput FCFS .
Average Response Time SRTF Approximation ji

I/0 Throughput SRTF Approximation f
Fairness (CPU Time) Linux CFS ,i
Fairness (Wait Time to Get CPU) Round Robin 7
Meeting Deadlines EDF %

Favoring Important Tasks Priority

CSC4103, Sprin

1T 9IN399T ‘GZ0G/9G/E SYo0[pea(] :¢ SUIMPoYOS ‘GZ0g SULL

(),
=
-
-
—]
o
v
D
-

1T 91N ‘GZ0G/93/E s3oo[pea(] :g SuInpaydg ‘¢g0g Suttds ‘€0T¥ISD

3/26/2025, Lecture 11

Ensuring Progress

- Starvation: thread fails to make progress for an indefinite period of
time

- Causes of starvation:
- Scheduling policy never runs a particular thread on the CPU

« Threads wait for each other or are spinning in a way that will never be
resolved

. Let’s explore what sorts of problems we might fall into and how to
avoid them...

wn
4
3}
O
—
e}
(0]
S
a0
g
.-
=
=]
=
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
o=
s-<
(o
N
o
(@)
—
<t
(@)
R
(@)

Application

-~ -

Operating system
] [

Hardware

3/26/2025, Lecture 11

Deadlock: A Type of Starvation

- Starvation — thread fails to
make progress for an indefinite
period of time

- Deadlock — starvation due to a
cycle of waiting among a set of

threads
- Each thread waits for some

other thread in the cycle to take
some action

14)]
4
5}
©
—
e}
<
S
Ty}
g
o=
=
)
o)
)
<
[3)
N
Yol
AN
(@)
(o]
o0
o
o=
&
oF
N
o
S
—
<t
Q
w0
©)

Application

-~ -

Operating system
-

Hardware

Example: Single-Lane Bridge
Crossing

%%

3/26/2025, Lecture 11

PSRN

CA 140 to Yosemite
National Park

n
4
Q
©)
—
]
<
jb)
A
on
o
=
—
=]
el
(D)
<
Q
0)]
.
N
(@)
N
on
=
s
=
oF
N
-
&)
—
<t
QO
N
O

Application

1 L

Operating system

- -

Hardware

3/26/2025, Lecture 11

Bridge Crossing Example

- Each segment of road can be viewed as a resource
+ Car must own the segment under them
« Must acquire segment that they are moving into

- Deadlock: Two cars in opposite directions meet in middle

wn
4
3}
O
°
e}
(0]
5
a0
o
.-
—
=
=
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
e
~
(o
N
o
(@)
—
<t
(@)
R
(@)

Application

-~ -

Operating system
- -

Hardware

Deadlock with Locks

Thread A
X.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B

y.Acquire();
X.Acquire();

X.Release();
y.Release();

Nondeterministic Deadlock

3/26/2025, Lecture 11

3: Deadlocks

Ty}
g
.-
=
)
o)
oo}
<
[3)
N
Yol
N
(@)
(o]
o0

CSC4103, Sprin

3/26/2025, Lecture 11

Deadlock with Locks: Unlucky Case

Thread A Thread B
X.Acquire();

y.Acquire();
y.Acquire(); <stalled>
x.Acquire(); <stalled>

3: Deadlocks

Ty}
g
.-
=
)
o)
oo}
<
[3)
N
Yol
N
(@)
(o]
o0

Owned
<unreadchable> <unreachable> By
y.Release(); X.Release(); Wait §
x.Release(); y.Release(); 3

3/26/2025, Lecture 11

Deadlock with Locks: “Lucky” Case

Thread A Thread B

X.Acquire();

y.Acquire(); F
. y.Acquire(); E
y.Release(); o

X.Release();

=i
o=
=
)
o)
5}
<
[3)
N

X.Acquire();

o € =
g 2025

X.Release();
y.Release();

CSC4103, Sprin

Sometimes, schedule won’t trigger deadlock

3/26/2025, Lecture 11

Other Types of Deadlock

- Threads often block waiting for resources
 Locks
« Terminals
* Printers

CD drives
Memory

- Threads often block waiting for other threads
 Pipes
* Sockets

- You can deadlock on any of these!

Application

-~ -

Operating system
{1 -

Hardware

)
i
5}
©
—
e}
<
o)
Ty}
g
.-
=
)
o)
)
<
[3)
N
Yol
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
w0
(@)

3/26/2025, Lecture 11

Deadlock with Space

Thread A Thread B

AllocateOrWait(1l MB) AllocateOrWait(1 MB)
AllocateOrWait(1l MB) AllocateOrWait(1 MB)
Free(1l MB) Free(1l MB)
Free(1l MB) Free(1l MB)

g 3: Deadlocks

=)
-
—
5
=
o)
<
)
n
Te)
N
=
N
on

- If only 2 MB of space, we get same deadlock situation

CSC4103, Sprin

3/26/2025, Lecture 11

The Dining Philosophers Problem

- Five chopsticks, five philosophers
* Goal: Grab two chopsticks to eat

- Deadlock if they all grab chopstick to their
right

- How to fix deadlock?
« Make one of them give up a chopstick

g 3: Deadlocks

- How to prevent deadlock?

« Never take last chopstick if a hungry
philosopher can’t have two afterward

- Alternatively, always take either two chopsticks
or none

g
.-
=]

=)
o)

)
<

[3)
N
Yol
AN
(@)
(o]

a0

o
o=

=

(o
N
o
(@)
—
<t
Q
%
(@)

1T 9IN399T ‘GZ0G/9G/E SYo0[pe(J :& SUInpayos ‘G50z suridg

>3/ G

<+
>
&
D
-
S
S
-
an

Deadlock?

—
—

o)

=

=)
-

Q

o)
—
Yol
N
[a»)
=
X
~
S
N
~
D

Resource-Allocation Graph

- System Model

« Aset of Threads T,, Ty, ..., T,

- Resource types R, R,, .. ., R,
CPU cycles, memory space, I/0 devices

- Kach resource type R. has W. instances

- Each thread utilizes a resource as follows:

- Request() / Use() / Release()

- Resource-Allocation Graph V:
+ V 1s partitioned into two types:
- T={T,, T,, ... T}, the set threads in the system.
- R=1{R,, Ry, ..., R_}, the set of resource types in system

CSC4103, Spring 2025, Scheduling 3: Deadlocks

* request edge — directed edge T; — R, _

Application

- assignment edge — directed edge R; — T; -

Operating system
T

Hardware

—
—

o)

~

=

=
=

Q
3
el
[N
(e
S
N
.\
e
N
~~
[am)

Resource-Allocation Graph Examples

- Model:
Directed
Graph
- request edge :
- T, > R, 2
- assignment ~
edge E
‘R, > T, 5
Simple Resource Allocation Graph Allocation Graph fi
Allocation Graph With Deadlock With Cycle, but S
No Deadlock @& S

3/26/2025, Lecture 11

Deadlock Detection Algorithm

- Let [X] represent an m-ary vector of non-negative integers (quantities of resources of each type):

[FreeResources]: Current free resources of each type
[Requesty]: Current requests from thread X
[Allocy]: Current resources held by thread X

- See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {
done = true
Foreach thread in UNFINISHED {
if ([Requestiy.caq] <= [Avail]) { # if resources are available
remove thread from UNFINISHED # task can terminate on its own
[Avail] = [Avail] + [All0Ci,.eaq] # free resources of this task
done = false
} . :pplicatitrjrnr

} until(done) - -

Operating system

- Nodes left in UNFINISHED = deadlocked (tasks that can terminate on their own have been removed) - -

Hardware

CSC4103, Spring 2025, Scheduling 3: Deadlocks

How Should a System Deal With
Deadlock?

« Three different approaches:
‘ + Deadlock avoidance: dynamically delay resource requests so deadlock ‘

doesn’t happen

« Deadlock prevention: write your code in a way that it isn’t prone to
deadlock

* Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

- Modern operating systems:
- Make sure the system isn’t involved in any deadlock

 Ignore deadlock in applications
+ “Ostrich Algorithm” or deadlock denial

Application

-~ -

Operating system
] [

Hardware

3/26/2025, Lecture 11

wn
4
3}
O
—
e}
(0]
S
a0
g
.-
=
=]
=
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
o=
s-<
(o
N
o
(@)
—
—i
O
R
(@)

3/26/2025, Lecture 11

Deadlock Avoidance

- Idea: When a thread requests a resource, OS checks if 1t would result
1in deadlock

- If not, 1t grants the resource right away
- If so, 1t waits for other threads to release resources

THIS DOES NOT WORK!!!

w0
~d
Q
o
—
ge!
©
A
o0
g
o=
—
=
=
<=
Q
N
10
N
S
N
o0
=i
=
~
=
n
=
—
QO
0
(@)

. o Thread A Thread B
T hxample: X.Acquire(); y.Acquire();
Blocks... Y-Acquire(); X.Acquire();
y.Release(); x.Release();

X.Release(); y.Release();

3/26/2025, Lecture 11

Deadlock Avoidance: Three States

- Safe state
+ System can delay resource acquisition to prevent deadlock

Deadlock avoidance: prevent system

. Unsafe state from reaching an unsafe state
* No deadlock yet...

- But threads can request resources in a pattern that unavoidably leads to
deadlock

- Deadlocked state

* There exists a deadlock in the system

Application

-~ -

)
i
5}
©
—
e}
<
o)
Ty}
g
.-
=
)
o)
)
<
[3)
N
Yol
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
w0
(@)

« Also considered “unsafe”

Operating system
{1 -

Hardware

Deadlock Avoidance

- Idea: When a thread requests a resource, OS checks if 1t would result
1n an unsafe state

- If not, 1t grants the resource right away
- If so, 1t waits for other threads to release resources

- Example:
Thread A Thread B
Wait until X.Acquire(); y.Acquire();
Thrcad A y.Acquire(); x.Acquire();
releases the lock y.Release(); x.Release(); S —

X.Release(); y.Release();

3/26/2025, Lecture 11

wn
4
3}
O
—
e}
(0]
S
a0
g
.-
=
=]
=
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
o=
s-<
(o
N
o
(@)
—
<t
(@)
R
(@)

Banker’s Algorithm for Avoiding
Deadlock

- Toward right idea:

.+ State maximum (max) resource needs in advance

3/26/2025, Lecture 11

+ Allow particular thread to proceed if:

- (available resources - #requested) > max remaining that might be
needed by any thread

Ds

. Banker’s algorithm (less conservative):
- Allocate resources dynamically

- Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

« Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting

(Max,,..q) [Allocy,,eaql <= [Availl) for ([Request,y .4 <= [Availl)

wn
4
3}
O
—
e}
(0]
S
a0
g
=
=
=]
o)
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
=
s-<
(o
N
o
(@)
—
<t
(@)
R
(@)

Application
Grant request if result is deadlock free (conservative!) - -

Operating system
] [

Hardware

Banker’s Algorithm for Avoiding
Deadlock

- Toward right idea:

3/26/2025, Lecture 11

[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {
done = true
Foreach thread in UNFINISHED {
1-F ([Maxthread]'[Allocthread] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [AlloCippeaq]
done = false

}
} antil(done)

Grant request 1t result 1s deadlock 1ree (conservative!)

n
4
O
©
—
=
(y]
e
on
=)
o=
—
=
=
<}
<
)
N
Te)
AN
e}
A
on
=]
=
~
[
N
-
&)
—
QO
N
(@)

Application

Banker’s Algorithm for Avoiding
Deadlock

- Alternative view: Banker’s Algorithm checks whether all
tasks finish if

* Scheduler runs each task to completion one at a time, with no
concurrency

3/26/2025, Lecture 11

« Most conservative thing the scheduler can do—it will avoid deadlock if
1t’s possible to do so

Ds

- Tasks allocate resources up to maximum and hold the resources
simultaneously

« Most deadlock-prone thing the tasks can do

- If under these circumstances all tasks can proceed, then the
system will not enter an ‘unsafe’ state

wn
4
3}
O
—
e}
(0]
S
a0
g
=
=
=]
o)
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
=
s-<
(o
N
o
(@)
—
<t
(@)
R
(@)

Application

-~ -

Operating system
] [

Hardware

Applying Banker’s Algorithm to the
Dining Philosophers Problem

- “Safe” (won’t cause deadlock) if when
trying to grab chopstick either:
« Not last chopstick

- Is last chopstick but someone will have two
afterwards

3/26/2025, Lecture 11

- What if k-handed philosophers? Don’t
allow 1f:
 It’s the last one, no one would have k

0
4
Q
©
—
]
(V]
e
on
=)
o=
—
=
=
)
<
Q
N
Te)
AN
e}
A
on

« It’s 2nd to last, and no one would have k-1
« It’s 3rd to last, and no one would have k-2

CSC4103, Sprin

How Should a System Deal With
Deadlock?

- Three different approaches:

+ Deadlock avoidance: dynamically delay resource requests so deadlock
doesn’t happen

« Deadlock prevention: write your code in a way that it isn’t prone to
deadlock

* Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

- Modern operating systems:
- Make sure the system isn’t involved in any deadlock

 Ignore deadlock in applications
+ “Ostrich Algorithm” or deadlock denial

Application

-~ -

Operating system
] [

Hardware

3/26/2025, Lecture 11

wn
4
3}
O
—
e}
(0]
S
a0
g
.-
=
=]
=
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
o=
s-<
(o
N
o
(@)
—
—i
O
R
(@)

Deadlock Prevention

- Structure code in a way that it i1sn’t prone to deadlock

3/26/2025, Lecture 11

- First: What must be true about our code for deadlock to happen?

Application

-~ -

Operating system
"=

Hardware

)
4
5}
©
—
e}
<
o)
Ty}
g
o=
=
)
o)
)
<
[3)
N
Yol
AN
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
w0
(@)

Four Requirements for Deadlock

- Mutual exclusion
* Only one thread at a time can use a resource.

Hold and wait

+ Thread holding at least one resource is waiting to acquire additional resources held by
other threads

- No preemption

+ Resources are released only voluntarily by the thread holding the resource, after thread is
finished with it

Circular wait
- There exists a set {T, ..., T,} of waiting threads
- T, 1s waiting for a resource that is held by T,
- T, 1s waiting for a resource that is held by T4

- T, is waiting for a resource that is held by T,

To prevent deadlock, make sure at least one of these conditions does not hold —

-~ -

Operating system
{1 -

Hardware

3/26/2025, Lecture 11

)
i
5}
©
—
e}
<
o)
Ty}
g
.-
=
)
o)
)
<
[3)
N
Yol
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
w0
(@)

Deadlock Prevention (1/4)

- Remove “Mutual Exclusion”
* Only one thread at a time can use a resource.

3/26/2025, Lecture 11

* Infinite resources
- Example: Virtual Memory
« Restructure program to avoid sharing

)
4
5}
©
—
e}
<
o)
Ty}
g
o=
=
)
o)
)
<
[3)
N
Yol
AN
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
N
(@)

Application

-~ -

Operating system
"=

Hardware

3/26/2025, Lecture 11

(Virtually) Infinite Resources

Thread A Thread B

AllocateOrWait(1l MB) AllocateOrWait(1 MB)
AllocateOrWait(1l MB) AllocateOrWait(1 MB)
Free(1l MB) Free(1l MB)
Free(1l MB) Free(1l MB)

g 3: Deadlocks

=)
-
—
5
=
o)
<
)
n
Te)
N
=
N
on

- With virtual memory we have “infinite” space so everything will just
succeed.

CSC4103, Sprin

3/26/2025, Lecture 11

Deadlock Prevention (2/4)

- Remove “Hold-and-Wait”

« Thread holding at least one resource 1s waiting to acquire additional
resources held by other threads

« Back off and retry
- Removes deadlock but could still lead to starvation
* Request all resources up front
- Reduces concurrency (parallelism?)
- Example: Dining philosophers grab both chopsticks atomically

Application

-~ -

Operating system
{1 -

Hardware

)
4
5}
©
—
e}
<
o)
Ty}
g
o=
=
)
o)
)
<
[3)
N
Yol
AN
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
w0
(@)

3/26/2025, Lecture 11

Request Resource Atomically

Thread A Thread B

X.Acq!

y.Acql Consider instead: :

Thread A Thread B ﬁ

y.Rel{ Acquire_both(x, y); Acquire_both(y, X); ;

X.Rely ;
y.Release(); x.Release(); g
x.Release(); y.Release(); :

CSC4103, Sprin

—
—

)

<

=)
-

Q

)
—
Yol
N
(@)
X
~
©
N
~~
>

Request Resource Atomically

Thread A Thread B

X.Acq! . .

y.Acql Or consider this: :

Thread A Thread B

y.Rel{ z.Acquire(); z.Acquire(); £

x.Rel{ x.Acquire(); y.Acquire(); :
y.Acquire(); x.Acquire(); <
z.Release(); z.Release(); g
y.Release(); x.Release(); %
X.Release(); y.Release();

Deadlock Prevention (3/4)

- Remove “No Preemption”

* Resources are released only voluntarily by the thread holding the resource,
after thread is finished with it

« Allow OS to revoke resources 1t has granted
- Example: Preemptive scheduling
* Doesn’t always work with resource semantics

Application

-~ -

Operating system
"=

Hardware

3/26/2025, Lecture 11

)
4
5}
©
—
e}
<
o)
Ty}
g
o=
=
)
o)
)
<
[3)
N
Yol
AN
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
N
(@)

3/26/2025, Lecture 11

Preempting Resources

Thread A Thread B

AllocateOrWait(1l MB) AllocateOrWait(1 MB)
AllocateOrWait(1l MB) AllocateOrWait(1 MB)
Free(1l MB) Free(1l MB)
Free(1l MB) Free(1l MB)

- With virtual memory we have “infinite” space so everything will just
succeed.

- Alternative view: we are “pre-empting’ memory when paging out to
disk, and giving it back when paging back in

w0
~d
Q
=}
—
ge!
©
A
o0
g
o=
—
=
=
<=
Q
N
10
N
S
N
o0
=i
=
~
=
n
=
—
QO
0
(@)

3/26/2025, Lecture 11

Deadlock Prevention (4/4)

- Remove “Circular Wait”
- T, waits for T, and T, waits for T,

« Acquire resources 1n a consistent order
« Acquire all resources atomically

Application

-~ -

Operating system
"=

Hardware

)
4
5}
©
—
e}
<
o)
Ty}
g
o=
=
)
o)
)
<
[3)
N
Yol
AN
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
w0
(@)

Acquire Resources 1in a Consistent

Order

Thread A
X.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B

y.Acquir
X.Acquir

X.Releas
y.Releag

Consider instead:

Thread A Thread B
x.Acquire(); x.Acquire();
y.Acquire(); y.Acquire();

y.Release(); X.Release();
X.Release(); y.Release();

Does it matter 1n which
order the locks are released?

3/26/2025, Lecture 11

n
4
O
©)
—
=
(y]
e
on
=)
o
—
=
=
<}
<
)
N
Yol
AN
@]
A
on

CSC4103, Sprin

How Should a System Deal With
Deadlock?

- Three different approaches:

+ Deadlock avoidance: dynamically delay resource requests so deadlock
doesn’t happen

« Deadlock prevention: write your code in a way that it isn’t prone to
deadlock

* Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

- Modern operating systems:
- Make sure the system isn’t involved in any deadlock

 Ignore deadlock in applications
+ “Ostrich Algorithm” or deadlock denial

Application

-~ -

Operating system
] [

Hardware

3/26/2025, Lecture 11

wn
4
3}
O
—
e}
(0]
S
a0
g
.-
=
=]
=
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
o=
s-<
(o
N
o
(@)
—
—i
O
R
(@)

3/26/2025, Lecture 11

How to Deal with Deadlock?

- Terminate thread, force it to give up resources
* Dining Philosophers Example: Remove a dining philosopher
« In AllocateOrWait example, OS kills a process to free up some memory

« Not always possible—killing a thread holding a lock leaves world
Inconsistent

- Roll back actions of deadlocked threads

- Common techniques in databases (transactions)
« Of course, if you restart in exactly the same way, may enter deadlock again

- Preempt resources without killing off thread
- Temporarily take resources away from a thread
« Doesn’t always fit with semantics of computation

()
4
o
©
—
e}
<
S
Ty}
g
.-
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
O
R
©)

Application

1 L°

Operating system
] [

Hardware

Announcements

- Assignment 2: due Monday, April 7

3/26/2025, Lecture 11

 Project 1: deadline extended to Monday, April 7

3: Deadlocks

on
g
-
=
-
]
(o)
<
[,
N
10
N
(@)
(o]
on
=)
o=
=
oF
N
o
&)
—
<t
&)
72!
©)

3/26/2025, Lecture 11

The multi-oom Test (Project 1)

- The multi-oom test is designed to stress your Project 1
1mplementation

- Keeps creating processes until doing so fails
- Checks that you handle all failures properly (e.g., malloc failures)

- Exits 1n unclean ways

* Checks that you properly handle exiting due to a fault, exiting with files
open...

- Checks whether all memory has been released when process exits

 Verify that every page alloc has a page_free, every malloc has a
corresponding free

- It repeats the same thing 10 times, and checks that it can spawn the
same number of processes each time —

« To make sure there are no memory leaks T T

Operating system

wn
4
3}
O
—
e}
(0]
S
a0
g
.-
=
=]
o)
O
<
3,
N
Yol
AN
(@)
(o]
a0
o
o=
s-<
(o
N
o
(@)
—
<t
(@)
R
(@)

1.

Hardware

Conclusion

Starvation vs. Deadlock
« Starvation: Thread indefinitely unable to make progress
- Deadlock: Thread(s) unable to make progress due to circular wait

3/26/2025, Lecture 11

Four conditions for deadlock:
* Mutual exclusion

- Hold and wait

* No preemption

« Circular Wait

Three different approaches to address deadlock:

lrIl)eadlock avoldance: dynamically delay resource requests so deadlock doesn’t
appen

« Deadlock prevention: write your code in a way that it isn’t prone to deadlock

. fDeadlgc)ck recovery: let deadlock happen, and then figure out how to recover
rom 1

()
4
o
©
—
e}
<
S
Ty}
=i
.-
=
)
o)
Q
<
[3)
N
Yol
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
O
R
©)

Application

Or deadlock denial: ignore the possibility of deadlock in applications —~—

Operating system
] [

Hardware

CENTER FOR COMPUTATION
& TECHNOLOGY

3/26/2025, Lecture 11

CSC4103, Spring 2025, Scheduling 3: Deadlocks

o)
b

