
Scheduling 3:
Deadlock
Lecture 11

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: Linux O(1) Scheduler

• MLFQ-Like Scheduler with 140 Priority Levels
 40 for user tasks, 100 “realtime” tasks

 All algorithms O(1) complexity – low overhead

 Timeslices/priorities/interactivity credits all computed when job finishes time
slice

• Active and expired queues at each priority
 Once active is empty, swap them (pointers)

 Round Robin within each queue (varying quanta)

• Timeslice depends on priority – linearly mapped onto timeslice range

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

2

Kernel/Realtime Tasks User Tasks

0 100 139

Recall: Multi-Core Scheduling
• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data
structures

 Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

 Cache reuse

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

3

Recall: Real-Time Scheduling
• Goal: Guaranteed Performance

 Meet deadlines even if it means being unfair or slow

 Limit how bad the worst case is

• Hard real-time:

 Meet all deadlines (if possible)

 Ideally: determine in advance if this is possible

 Earliest Deadline First (EDF), Least Laxity First (LLF)

• Soft real-time

 Attempt to meet deadlines with high probability

 Constant Bandwidth Server (CBS)

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

4

Recall: Earliest Deadline First (EDF)
• Priority scheduling with preemption

• Prefer task with earliest deadline

 Priority proportional to time until deadline

• Example with periodic tasks:

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

5

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T

Recall: Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of

time

• Causes of starvation:

 Scheduling policy never runs a particular thread on the CPU

 Threads wait for each other or are spinning in a way that will never be
resolved

• Let’s explore what sorts of problems we might fall into and how to
avoid them…

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

6

Recall: Schedulers Prone to
Starvation
• What kinds of schedulers are prone to starvation?

• Of the scheduling policies we’ve studied, which are prone to
starvation? And can we fix them?

• How might we design scheduling policies that avoid starvation
entirely?

 Arguably more relevant now than when CPU scheduling was first
developed…

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

7

Recall: Priority Inversion
• Where high priority task is blocked waiting on low priority task

• Low priority one must run for high priority to make progress

• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

8

lock.acquire(…)
…
lock.release(…)

Low Priority

while (try_lock) {
…
}

High Priority

Recall: Are SRTF and MLFQ Prone
to Starvation?

• In SRTF, long jobs are starved in favor of short ones
 Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same
problem

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

9

Long-Running Compute
Tasks Demoted to

Low Priority

Recall: Evaluating Schedulers
• Response Time (ideally low)

 What user sees: from keypress to character on screen

 Or completion time for non-interactive

• Throughput (ideally high)

 Total operations (jobs) per second

 Overhead (e.g. context switching), artificial blocks

• Fairness

 Fraction of resources provided to each

 May conflict with best avg. throughput, resp. time

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

10

Recall: Changing Landscape of
Scheduling
• Priority-based scheduling rooted in “time-sharing”

 Allocating precious, limited resources across a diverse workload

 CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on
networks

 Different machines of different types for different purposes

 Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

 Server consolidation, massive clustered services, huge flashcrowds

 It’s about predictability, 95th percentile performance guarantees

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

11

Recall: Proportional-Share
Scheduling
• The policies we’ve studied so far:

 Always prefer to give the CPU to a prioritized job

 Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally

 Give each job a share of the CPU according to its priority

 Low-priority jobs get to run less often

 But all jobs can at least make progress (no starvation)

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

12

• Given a set of jobs (the mix), provide each with a share of a resource

 e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for

• Idea: Give out tickets according to the proportion each should receive,

• Every quantum (tick): draw one at random, schedule that job (thread) to
run

Recall: Lottery Scheduling

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

13

time
Q i Q i+1

Job C

Stride Scheduling
• Achieve proportional share scheduling without resorting to

randomness, and overcome the “law of small numbers” problem.

• “Stride” of each job is
𝑏𝑖𝑔#𝑊

𝑁𝑖
 The larger your share of tickets, the smaller your stride

 Ex: W = 10,000, A=100 tickets, B=50, C=250

 A stride: 100, B: 200, C: 40

• Each job as a “pass” counter

• Scheduler: pick job with lowest pass, runs it, add its stride to its pass

• Low-stride jobs (lots of tickets) run more often
 Job with twice the tickets gets to run twice as often

• Some messiness of counter wrap-around, new jobs, …

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

14

Recall: Linux Completely Fair
Scheduler (CFS)

• Instead: track CPU time given
to a thread so far

• Scheduling Decision:

 “Repair” illusion of complete
fairness

 Choose thread with minimum
CPU time

• Reset CPU time if thread goes
to sleep and wakes back up

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

15

CPU

Time T1

T2

T3

t/N

Recall: Linux CFS, Responsiveness
• In addition to fairness, we want low response time

• Constraint 1: Target Latency

 Period of time over which every process gets service

 Quanta = Target_Latency / n

• Target Latency: 20 ms, 4 Processes

 Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes

 Each process gets 0.1ms time slice (!!!)

 Recall Round-Robin: large context switching overhead if slice gets to small

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

16

Recall: Linux CFS, Throughput
• Goal: Throughput

 Avoid excessive overhead

• Constraint 2: Minimum Granularity

 Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms,
200 processes

 Each process gets 1 ms time slice

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

17

Recall: Linux CFS: Proportional
Shares

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

18

Virtual

CPU Time

B A

Scheduler’s Decisions are

based on Virtual CPU Time

• Track a thread's virtual
runtime rather than its true
physical runtime

• Higher weight: Virtual runtime
increases more slowly

• Lower weight: Virtual runtime
increases more quickly

Recall: Choosing the Right Scheduler

If You Care About: Then Choose:

CPU Throughput FCFS

Average Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness (Wait Time to Get CPU) Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

19

Deadlocks

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

20

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

21

Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of

time

• Causes of starvation:

 Scheduling policy never runs a particular thread on the CPU

 Threads wait for each other or are spinning in a way that will never be
resolved

• Let’s explore what sorts of problems we might fall into and how to
avoid them…

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

22

Deadlock: A Type of Starvation
• Starvation – thread fails to

make progress for an indefinite
period of time

• Deadlock – starvation due to a
cycle of waiting among a set of
threads

 Each thread waits for some
other thread in the cycle to take
some action

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

23

Res 2Res 1

Thread

B

Thread

A
Wait

For

Wait

For

Owned

By

Owned

By

Example: Single-Lane Bridge
Crossing

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

24

CA 140 to Yosemite
National Park

Bridge Crossing Example

• Each segment of road can be viewed as a resource

 Car must own the segment under them

 Must acquire segment that they are moving into

• Deadlock: Two cars in opposite directions meet in middle

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

25

Deadlock with Locks

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

26

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Nondeterministic Deadlock

Lock yLock x

Thread

B

Thread

A
Wait

For

Wait

For

Owned

By

Owned

By

Deadlock with Locks: Unlucky Case

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

27

Thread A
x.Acquire();

y.Acquire(); <stalled>

<unreachable>
…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire(); <stalled>

<unreachable>
…
x.Release();
y.Release();

Lock yLock x

Thread

B

Thread

A
Wait

For

Wait

For

Owned

By

Owned

By

Deadlock with Locks: “Lucky” Case

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

28

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock

Lock yLock x

Thread

B

Thread

A
Wait

For

Wait

For

Owned

By

Owned

By

Other Types of Deadlock
• Threads often block waiting for resources

 Locks

 Terminals

 Printers

 CD drives

 Memory

• Threads often block waiting for other threads

 Pipes

 Sockets

• You can deadlock on any of these!

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

29

Deadlock with Space

• If only 2 MB of space, we get same deadlock situation

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

30

Thread A

AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B

AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

The Dining Philosophers Problem
• Five chopsticks, five philosophers

 Goal: Grab two chopsticks to eat

• Deadlock if they all grab chopstick to their
right

• How to fix deadlock?

 Make one of them give up a chopstick

• How to prevent deadlock?

 Never take last chopstick if a hungry
philosopher can’t have two afterward

 Alternatively, always take either two chopsticks
or none

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

31

How to Detect
Deadlock?

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

32

Resource-Allocation Graph
• System Model

 A set of Threads T1, T2, . . ., Tn

 Resource types R1, R2, . . ., Rm

 CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances

 Each thread utilizes a resource as follows:

 Request() / Use() / Release()

• Resource-Allocation Graph V:

 V is partitioned into two types:

 T = {T1, T2, . . ., Tn}, the set threads in the system.

 R = {R1, R2, . . ., Rm}, the set of resource types in system

 request edge – directed edge Ti  Rj

 assignment edge – directed edge Rj  Ti

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

33

Symbols

R1

R2

T1 T2

Resource-Allocation Graph Examples
• Model:

Directed
Graph

• request edge

 Ti  Rj

• assignment
edge

 Rj  Ti

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

34

T1 T2 T3

R1 R2

R3

R4

Simple Resource

Allocation Graph

T1 T2 T3

R1 R2

R3

R4

Allocation Graph

With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph

With Cycle, but

No Deadlock

Deadlock Detection Algorithm
• Let [X] represent an m-ary vector of non-negative integers (quantities of resources of each type):

[FreeResources]: Current free resources of each type

[RequestX]: Current requests from thread X

[AllocX]: Current resources held by thread X

• See if tasks can eventually terminate on their own

[Avail] = [FreeResources]

Add all threads to UNFINISHED

do {

done = true

Foreach thread in UNFINISHED {

if ([Requestthread] <= [Avail]) { # if resources are available

remove thread from UNFINISHED # task can terminate on its own

[Avail] = [Avail] + [Allocthread] # free resources of this task

done = false

}

}

} until(done)

• Nodes left in UNFINISHED  deadlocked (tasks that can terminate on their own have been removed)

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

35

T1

T2

T3

R2

R1

T4

How Should a System Deal With
Deadlock?
• Three different approaches:

 Deadlock avoidance: dynamically delay resource requests so deadlock
doesn’t happen

 Deadlock prevention: write your code in a way that it isn’t prone to
deadlock

 Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

• Modern operating systems:

 Make sure the system isn’t involved in any deadlock

 Ignore deadlock in applications

 “Ostrich Algorithm” or deadlock denial

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

36

Deadlock Avoidance
• Idea: When a thread requests a resource, OS checks if it would result

in deadlock

 If not, it grants the resource right away

 If so, it waits for other threads to release resources

• Example:

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

37

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Blocks…

Deadlock Avoidance: Three States
• Safe state

 System can delay resource acquisition to prevent deadlock

• Unsafe state

 No deadlock yet…

 But threads can request resources in a pattern that unavoidably leads to
deadlock

• Deadlocked state

 There exists a deadlock in the system

 Also considered “unsafe”

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

38

Deadlock avoidance: prevent system

from reaching an unsafe state

Deadlock Avoidance
• Idea: When a thread requests a resource, OS checks if it would result

in an unsafe state

 If not, it grants the resource right away

 If so, it waits for other threads to release resources

• Example:

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

39

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Wait until

Thread A

releases the lock

Banker’s Algorithm for Avoiding
Deadlock
• Toward right idea:

 State maximum (max) resource needs in advance

 Allow particular thread to proceed if:

 (available resources - #requested)  max remaining that might be
needed by any thread

• Banker’s algorithm (less conservative):

 Allocate resources dynamically

 Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

 Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting

([Maxthread]-[Allocthread] <= [Avail]) for ([Requestthread] <= [Avail])

Grant request if result is deadlock free (conservative!)

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

40

Banker’s Algorithm for Avoiding
Deadlock
• Toward right idea:

 State maximum (max) resource needs in advance

 Allow particular thread to proceed if:

 (available resources - #requested)  max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):

 Allocate resources dynamically

 Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

 Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting
([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

41

[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {

done = true
Foreach thread in UNFINISHED {

if ([Maxthread]-[Allocthread] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [Allocthread]
done = false

}
}

} until(done)

Banker’s Algorithm for Avoiding
Deadlock
• Alternative view: Banker’s Algorithm checks whether all

tasks finish if:

 Scheduler runs each task to completion one at a time, with no
concurrency

 Most conservative thing the scheduler can do—it will avoid deadlock if
it’s possible to do so

 Tasks allocate resources up to maximum and hold the resources
simultaneously

 Most deadlock-prone thing the tasks can do

• If under these circumstances all tasks can proceed, then the
system will not enter an ‘unsafe’ state

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

42

Applying Banker’s Algorithm to the
Dining Philosophers Problem
• “Safe” (won’t cause deadlock) if when

trying to grab chopstick either:

 Not last chopstick

 Is last chopstick but someone will have two
afterwards

• What if k-handed philosophers? Don’t
allow if:

 It’s the last one, no one would have k

 It’s 2nd to last, and no one would have k-1

 It’s 3rd to last, and no one would have k-2

 …

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

43

How Should a System Deal With
Deadlock?
• Three different approaches:

 Deadlock avoidance: dynamically delay resource requests so deadlock
doesn’t happen

 Deadlock prevention: write your code in a way that it isn’t prone to
deadlock

 Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

• Modern operating systems:

 Make sure the system isn’t involved in any deadlock

 Ignore deadlock in applications

 “Ostrich Algorithm” or deadlock denial

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

44

Deadlock Prevention
• Structure code in a way that it isn’t prone to deadlock

• First: What must be true about our code for deadlock to happen?

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

45

Four Requirements for Deadlock
• Mutual exclusion

 Only one thread at a time can use a resource.

• Hold and wait
 Thread holding at least one resource is waiting to acquire additional resources held by

other threads

• No preemption
 Resources are released only voluntarily by the thread holding the resource, after thread is

finished with it

• Circular wait
 There exists a set {T1, …, Tn} of waiting threads

 T1 is waiting for a resource that is held by T2

 T2 is waiting for a resource that is held by T3

 …

 Tn is waiting for a resource that is held by T1

• To prevent deadlock, make sure at least one of these conditions does not hold

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

46

Deadlock Prevention (1/4)
• Remove “Mutual Exclusion”

 Only one thread at a time can use a resource.

 Infinite resources

 Example: Virtual Memory

 Restructure program to avoid sharing

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

47

(Virtually) Infinite Resources

• With virtual memory we have “infinite” space so everything will just
succeed.

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

48

Thread A

AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B

AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Deadlock Prevention (2/4)
• Remove “Hold-and-Wait”

 Thread holding at least one resource is waiting to acquire additional
resources held by other threads

 Back off and retry

 Removes deadlock but could still lead to starvation

 Request all resources up front

 Reduces concurrency (parallelism?)

 Example: Dining philosophers grab both chopsticks atomically

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

49

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Request Resource Atomically

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

50

Consider instead:

Thread A
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B
Acquire_both(y, x);
…
x.Release();
y.Release();

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Request Resource Atomically

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

51

Or consider this:

Thread A
z.Acquire();
x.Acquire();
y.Acquire();
z.Release();
…
y.Release();
x.Release();

Thread B
z.Acquire();
y.Acquire();
x.Acquire();
z.Release();
…
x.Release();
y.Release();

Deadlock Prevention (3/4)
• Remove “No Preemption”

 Resources are released only voluntarily by the thread holding the resource,
after thread is finished with it

 Allow OS to revoke resources it has granted

 Example: Preemptive scheduling

 Doesn’t always work with resource semantics

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

52

Preempting Resources

• With virtual memory we have “infinite” space so everything will just
succeed.

• Alternative view: we are “pre-empting” memory when paging out to
disk, and giving it back when paging back in

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

53

Thread A

AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B

AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Deadlock Prevention (4/4)
• Remove “Circular Wait”

 T1 waits for T2 and T2 waits for T1

 Acquire resources in a consistent order

 Acquire all resources atomically

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

54

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Acquire Resources in a Consistent
Order

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

55

Consider instead:

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
x.Acquire();
y.Acquire();
…
x.Release();
y.Release();

Does it matter in which

order the locks are released?

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

How Should a System Deal With
Deadlock?
• Three different approaches:

 Deadlock avoidance: dynamically delay resource requests so deadlock
doesn’t happen

 Deadlock prevention: write your code in a way that it isn’t prone to
deadlock

 Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

• Modern operating systems:

 Make sure the system isn’t involved in any deadlock

 Ignore deadlock in applications

 “Ostrich Algorithm” or deadlock denial

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

56

How to Deal with Deadlock?
• Terminate thread, force it to give up resources

 Dining Philosophers Example: Remove a dining philosopher

 In AllocateOrWait example, OS kills a process to free up some memory

 Not always possible—killing a thread holding a lock leaves world
inconsistent

• Roll back actions of deadlocked threads

 Common techniques in databases (transactions)

 Of course, if you restart in exactly the same way, may enter deadlock again

• Preempt resources without killing off thread

 Temporarily take resources away from a thread

 Doesn’t always fit with semantics of computation

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

57

Announcements
• Assignment 2: due Monday, April 7

• Project 1: deadline extended to Monday, April 7

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

58

The multi-oom Test (Project 1)
• The multi-oom test is designed to stress your Project 1

implementation

• Keeps creating processes until doing so fails
 Checks that you handle all failures properly (e.g., malloc failures)

• Exits in unclean ways
 Checks that you properly handle exiting due to a fault, exiting with files

open…

• Checks whether all memory has been released when process exits
 Verify that every page_alloc has a page_free, every malloc has a

corresponding free

• It repeats the same thing 10 times, and checks that it can spawn the
same number of processes each time
 To make sure there are no memory leaks

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

59

Conclusion
• Starvation vs. Deadlock

 Starvation: Thread indefinitely unable to make progress

 Deadlock: Thread(s) unable to make progress due to circular wait

• Four conditions for deadlock:
 Mutual exclusion

 Hold and wait

 No preemption

 Circular Wait

• Three different approaches to address deadlock:
 Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t

happen

 Deadlock prevention: write your code in a way that it isn’t prone to deadlock

 Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

• Or deadlock denial: ignore the possibility of deadlock in applications

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

60

3
/2

6
/2

0
2

5
,
L

e
ct

u
re

 1
1

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g
 3

:
D

e
a

d
lo

ck
s

61

