
System Performance
and Highly
Concurrent Systems
Lecture 12

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: Deadlock
• Starvation vs. Deadlock

 Starvation: Thread indefinitely unable to make progress

 Deadlock: Thread(s) unable to make progress due to circular wait

• Four conditions for deadlock:
 Mutual exclusion

 Hold and wait

 No preemption

 Circular Wait

• Three different approaches to address deadlock:
 Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t

happen

 Deadlock prevention: write your code in a way that it isn’t prone to deadlock

 Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

• Or deadlock denial: ignore the possibility of deadlock in applications

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

2

System Performance
• “Back of the Envelope” calculation and modeling

• Get the rough picture first… and don’t lose sight of it

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

3

Times (s) and Rates (op/s)
• Latency – time to complete a task

 Measured in units of time (s, ms, us, …, hours, years)

• Response Time - time to initiate an operation and get its response

 Able to issue an operation that depends on the result of another

 Know that it is done (anti-dependence, resource usage)

• Throughput or Bandwidth – rate at which tasks are performed

 Measured in units of things per unit of time (op/s, FLOP/s)

• Performance

 Operation time (5 mins to run a mile…)

 Rate (mph, mpg, …)

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

4

Sequential Server Performance

• Single sequential “server” that can deliver a task in time 𝐿 operates

at rate ≤
1

𝐿
(on average, in steady state, …)

 𝐿 = 10 ms → 𝐵 = 100 ൗop
s

 𝐿 = 2 yr → 𝐵 = 0.5 ൗ
op

yr

• Applies to a processor, a disk drive, a person, a TA, …

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

5

L L L L…
time

L

Single Pipelined Server

• Single pipelined server of 𝑘 stages for tasks of length 𝐿 (i.e., time Τ𝐿 𝑘
per stage) delivers at rate ≤ Τ𝑘 𝐿.

 𝐿 = 10 ms, 𝑘 = 4 → 𝐵 = 400 ൗop
s

 𝐿 = 2 yr, 𝑘 = 2 → 𝐵 = 1 ൗ
op

yr

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

6

L

…

L

L L L L L L L

logical operation
divided over distinct resources

time

Example Systems “Pipelines”

• Anything with queues between operational processes behaves
roughly “pipeline like”

• Important difference is that “initiations” are decoupled from
processing
 May have to queue up a burst of operations

 Not synchronous and deterministic

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

7

User Process

sy
sc

a
ll

File

System

Upper

Driver

Lower

Driver

I/O Processing

Communication

Multiple Servers

• 𝑘 servers handling tasks of length 𝐿 delivers at rate ≤ Τ𝑘 𝐿.

 𝐿 = 10 ms, 𝑘 = 4 → 𝐵 = 400 ൗop
s

 𝐿 = 2 yr, 𝑘 = 2 → 𝐵 = 1 ൗ
op

yr

• You have seen multiple processors (cores)

 Systems present lots of multiple parallel servers

 Often with lots of queues

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

8

L

… k

Example System “Parallelism” 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

9

Communication

Parallel Computation, Databases, …

User Process
syscall

File

System

Upper

Driver

Lower

Driver

I/O Processing

User Process
User Process

A Simple System Performance Model 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

10

Bandwidth (𝐵): Rate, Op/s

e.g., flow: gal per min

Latency (𝐿): time per op

- How long does it take

to flow through the

system

“Service Time” If 𝐵 = 2 ൗgal
s and L = 3 s

How much water is “in the

system?”

A Simple System Performance Model 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

11

Latency (𝐿): time per op

- How long does it take

to flow through the

system

“Service Time”

Bandwidth (𝐵): Rate, Op/s

e.g., flow: gal per min

If 𝐵 = 2 ൗgal
s and L = 3 s

How much water is “in the

system?”

Little’s Law
• The number of “things” in a system is equal to the bandwidth times

the latency (on average)

𝑛 = 𝐿 𝐵

• Applies to any stable system (arrival rate = departure rate)

• Can be applied to an entire system:

 Including the queues, the processing stages, parallelism, whatever

• Or to just one processing stage:

 i.e., disk I/O subsystem, queue leading into a CPU or I/O stage, …

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

12

A Simple System Performance Model 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

13

Request Rate: 𝜆

Service Rate: 𝜇

Latency (𝐿)

Operation Time: 𝑡

Queuing delay: 𝑑

The maximum service rate

𝜇𝑚𝑎𝑥 is a property of the

system – the “bottleneck”

Utilization: 𝜌 =
𝜆

𝜇𝑚𝑎𝑥

Ideal System Performance
• How does 𝜇 (service rate) vary with 𝜆 (request rate)?

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

14

Request Rate (𝜆) - “offered load”

Service Rate (𝜇) -

“delivered load”

𝜇𝑚𝑎𝑥

𝜇𝑚𝑎𝑥

asymptotic peak rate

Request Rate: 𝜆

Queuing delay: 𝑑

The maximum service rate

𝜇𝑚𝑎𝑥 is a property of the

system – the “bottleneck”

Utilization: 𝜌 =
𝜆

𝜇𝑚𝑎𝑥Service Rate: 𝜇

Operation Time: 𝑡

Latency (𝐿)

A Simple System Performance Model 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

15

What determines

𝜇𝑚𝑎𝑥?

What about

“internal” queues?

Bottleneck Analysis 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

16

…

L L L L L L L

time

Overall System: Series of Stages

Request

Rate: 𝜆

Service

Rate: 𝜇

Bottleneck Analysis
• Each stage has its own queue and maximum service rate

• Suppose the green stage is the bottleneck

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

17

Overall System: Series of Stages

Request

Rate: 𝜆

Service

Rate: 𝜇

𝜇𝑚𝑎𝑥,1 𝜇𝑚𝑎𝑥,2 𝜇𝑚𝑎𝑥,3

Bottleneck Analysis
• Each stage has its own queue and maximum service rate

• Suppose the green stage is the bottleneck

• The bottleneck stage dictates the maximum service rate 𝜇𝑚𝑎𝑥

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

18

System Model: Bottleneck Stage

Request

Rate: 𝜆

Service

Rate: 𝜇

𝜇𝑚𝑎𝑥 = 𝜇𝑚𝑎𝑥,3

Example: Servicing a Highly
Contended Lock 4

/7
/2

0
2

5
,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

19

…

…

𝑋 sec in

critical

section

All try to grab lock

Time = 𝑝 ⋅ 𝑋 sec

Rate = Τ1 𝑋 ops/sec,

regardless of # cores

𝑝

𝜇𝑚𝑎𝑥 = ൗ1 𝑋

Queue of waiting

threads

Critical section

guarded by lock

Request Rate: 𝜆

The maximum service rate

𝜇𝑚𝑎𝑥 is a property of the

system – the “bottleneck”

Utilization: 𝜌 =
𝜆

𝜇𝑚𝑎𝑥

Operation Time: 𝑡

Latency (𝐿)

A Simple System Performance Model 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

20

Service Rate: 𝜇

𝜇𝑚𝑎𝑥 is service rate of

bottleneck stage

Tank represents queue

of bottleneck stage

• Including queues of

previous stages, in

case of backpressure

Queuing delay: 𝑑

Request Rate: 𝜆

The maximum service rate

𝜇𝑚𝑎𝑥 is a property of the

system – the “bottleneck”

Utilization: 𝜌 =
𝜆

𝜇𝑚𝑎𝑥

Operation Time: 𝑡

Latency (𝐿)

A Simple System Performance Model 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

21

Service Rate: 𝜇

Queuing delay: 𝑑

Useful to apply this

model to:

• Bottleneck stage

• Entire system up to

and including

bottleneck stage

• Entire system

Announcements
• Assignment 2 due today

 Let me know if you have trouble pushing to your repository

 If auto-grader fails even if locally all is well – attach screenshot to
submission

• Project 1 due today as well

 Let me know if you need more time

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

22

Rest of Today’s Lecture
• Using this system model, we will:

 Explore latency in more depth

 Discuss how to build systems that perform well under load

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

23

Latency (Response Time)

• Total latency (response time): queuing time + service time

• Service time depends on the underlying operation
 For CPU stage, how much computation

 For I/O stage, characteristics of the hardware

• What about the queuing time?

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

24

Processing

Stage (Server)

Queue

A Simple System Performance Model 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

25

Request Rate: 𝜆

Service Rate: 𝜇

Operation Time: 𝑡

Queuing delay: 𝑑

Latency (𝐿)

The maximum service rate

𝜇𝑚𝑎𝑥 is a property of the

system – the “bottleneck”

Utilization: 𝜌 =
𝜆

𝜇𝑚𝑎𝑥

When will the

queue(s) start to fill?

Queuing
• What happens when request rate (𝜆) exceeds max service rate

(𝜇𝑚𝑎𝑥)?

• Short bursts can be absorbed by the queue

 If on average 𝜆 < 𝜇, it will drain eventually

• Prolonged 𝜆 > 𝜇 → queue will grow without bound

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

26

A Simple, Deterministic World

• Assume requests arrive at regular intervals, take a fixed time to
process, with plenty of time between …

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

27

𝑇𝐴 𝑇𝐴 𝑇𝐴

𝑇𝑄
𝑇𝑆

Queue Serverarrivals departures

𝑇𝑄 𝑇𝑆

• 𝑇𝐴: time between

arrivals

• 𝜆 = ൗ1 𝑇𝐴

• 𝑇𝑆: service time

• 𝜇 = ൗ𝑘 𝑇𝑆

• 𝑇𝑄: queuing time

• 𝐿 = 𝑇𝑄 + 𝑇𝑆

A Simple, Deterministic World 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

28

Utilization (𝜌 = Τ𝜆 𝜇 = ൗ𝑇𝑆
𝑘𝑇𝐴

)

D
e
liv

e
re

d
 T

h
ro

u
g
h
p
u
t

0 1

1

time

Q
u
e
u
e
 d

e
la

y

D
e
liv

e
re

d
 T

h
ro

u
g
h
p
u
t

0 1

1

Utilization (𝜌 = Τ𝜆 𝜇 = ൗ𝑇𝑆
𝑘𝑇𝐴

)

Empty Queue

Saturation

Unbounded

time

Q
u
e
u
e
 d

e
la

y

A Bursty World

• Requests arrive in a burst, must queue up until served

• Same average arrival time, but almost all of the requests experience large
queue delays (even though average utilization is low – 𝑇𝑆/𝑇𝐴 ≪ 1)

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

29

Queue Serverarrivals departures

𝑇𝑄 𝑇𝑆

• 𝑇𝐴: time between

arrivals

• Now, a random

variable

• 𝑇𝑆: service time

• 𝜇 = ൗ𝑘 𝑇𝑆

• 𝑇𝑄: queuing time

• 𝐿 = 𝑇𝑄 + 𝑇𝑆

Q depth

Server

Arrivals

How to model Burstiness of Arrival?
• 𝑇𝐴, the time between arrivals, is now a random variable

 Elegant mathematical framework if we model it as an exponential
distribution

 Probability distribution function of an exponential distribution with
parameter 𝜆 is 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Lots of short arrival

intervals (i.e., high

instantaneous rate)

Few long gaps (i.e., low

instantaneous rate)
𝑥 (𝜆)

mean arrival interval (1/𝜆)

“Memoryless”: Likelihood of an

event occurring is independent

of how long we’ve been waiting

A Simple System Performance Model 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

31

Request Rate: 𝜆

Service Rate: 𝜇

Operation Time: 𝑡

Queuing delay: 𝑑

Latency (𝐿)

Queue grows at rate 𝜇 − 𝜆

After time 𝑡, it will have

grown to length 𝑡(𝜇 − 𝜆)

Utilization: 𝜌 =
𝜆

𝜇𝑚𝑎𝑥

Background: Random Distributions
• Server spends variable time (𝑇) with customers

 Mean (Average): 𝑚 = σ𝑝 𝑇 ⋅ 𝑇

 Variance (stddev2): 𝜎2 = σ𝑝 𝑇 ⋅ 𝑇 − 𝑚 2

 Squared coefficient of variance: 𝐶 = ൗ𝜎2

𝑚2

• Important values of 𝐶:

 No variance or deterministic 𝐶 = 0

 “Memoryless” or exponential 𝐶 = 1

 Past tells nothing about future

 Poisson process – ‘purely’ or ’completely’ random process

 Many complex systems (or aggregates) are well described as memoryless

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

32

Mean

(m)

mean

Memoryless

Distribution

of service times

Introduction to Queuing Theory

• Queuing Theory applies to long term, steady state behavior

 Arrival rate = Departure rate (𝜆 = 𝜇)

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

33

DeparturesArrivals

Queuing System

Queue
Server

Our Goals with Queuing Theory
• We wish to compute:

 𝑇𝑄: Time spent in queue

 𝐿𝑄: Length of the queue

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

34

Little’s Law Applied to a Queue
• Before, we had 𝑛 = 𝐿𝐵 (for a stable system):

 𝐵: bandwidth

 𝐿: latency

 𝑛: number of operations in the system

• When applied to a queue, we get:

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

35

Average length of the

queue

Average Arrival Rate

Average time “waiting”

𝐿𝑄 = 𝜆𝑇𝑄

Some Results from Queuing Theory
• Assumptions: system in equilibrium, no limit to the queue, time

between successive arrivals is random and memoryless

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

36

Arrival Rate

𝜆

Queue Server
Service Rate

𝜇 = ൗ1 𝑇𝑆

• 𝜇: service rate (ൗ1 𝑇𝑆)

• 𝜌: utilization (Τ𝜆 𝜇)

• 𝜆: arrival rate

• 𝑇𝑆: mean time to service a customer

• 𝐶: squared coefficient of variance (ൗ𝜎2

𝑇𝑆
2)

Some Results from Queuing Theory
• Memoryless service distribution (𝐶 = 1) - an “M/M/1 queue”:

𝑇𝑄 =
𝜌

1 − 𝜌
⋅ 𝑇𝑆

• General service distribution (no restrictions) - an “M/G/1 queue”:

𝑇𝑄 =
1 + 𝐶

2
⋅

𝜌

1 − 𝜌
⋅ 𝑇𝑆

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

37

• 𝜇: service rate (ൗ1 𝑇𝑆)

• 𝜌: utilization (Τ𝜆 𝜇)

• 𝜆: arrival rate

• 𝑇𝑆: mean time to service a customer

• 𝐶: squared coefficient of variance (ൗ𝜎2

𝑇𝑆
2)

M/M/1:

Input: Markovian (Poisson)

Output: Markovian (Poisson)

Number of servers: 1

M/G/1:

Input: Markovian (Poisson)

Output: General distribution

Number of servers: 1

Key Results from Queuing Theory
• 𝑇𝑄 =

𝜌

1−𝜌
⋅ 𝑇𝑆 (memoryless service distribution)

• 𝐿𝑄 = 𝜆𝑇𝑄 (by Little’s Law)

• Utilization is 𝜌 = Τ𝜆 𝜇𝑚𝑎𝑥 = 𝜆𝑇𝑆, so

• 𝐿𝑄 = 𝜆𝑇𝑄 =
𝜌

𝑇𝑆
⋅ 𝑇𝑄 =

𝜌2

1−𝜌
(for a single server)

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

38

𝜌

1 − 𝜌

𝜌2

1 − 𝜌

Ideal System Performance 4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

39

Request Rate (𝜆) - “offered load”

S
e
rv

ic
e
 R

a
te

 (
𝜇

)
-

“d
e
li

v
e
re

d
 l

o
a
d

”

𝜇𝑚𝑎𝑥

𝜇𝑚𝑎𝑥

Latency

Operation Time

S
e
rv

ic
e
 T

im
e

“Half-Power Point”: load at which system delivers half of peak performance

- Design and provision systems to operate roughly in this regime

- Latency low and predictable, utilization good: ~50%

• 𝑇𝑄~
𝜌

1−𝜌
, 𝜌 = Τ𝜆 𝜇𝑚𝑎𝑥

• Why does latency blow up

as we approach 100%

utilization?

• Queue builds up on

each burst

• But very rarely (or

never) gets a chance to

drain

Rest of Today’s Lecture
• Using this system model, we will:

 Explore latency in more depth

 Discuss how to build systems that perform well under load

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

40

Ideal System Performance

• A system that behaves this way is well-conditioned
 Delivered load increases with offered load until pipeline saturates

 As offered load increases further, throughput remains high

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

41

Request Rate (𝜆) - “offered load”

Service Rate (𝜇) -

“delivered load”

𝜇𝑚𝑎𝑥

𝜇𝑚𝑎𝑥

asymptotic peak rate

Sockets with Protection and Concurrency

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

42

Client
Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket Close Server Socket

Child

Close Connection SocketClose Listen Socket

Parent

Sockets with Concurrency, without
Protection

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

43

Client

Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket

Close Server Socket

Spawned Thread Main Threadpthread_create

Non-Well-Conditioned Systems
• A server that spawns a new

pthread per request is not well-
conditioned!

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

44https://people.eecs.berkeley.edu/~prabal/teaching/resources/eecs582/welsh01seda.pdf

Building Well-Conditioned Systems
• Spawning a new thread or process for each request is not well-

conditioned

• Too many threads is bad

 Scheduling overhead becomes large

 Context switch overhead becomes large

 E.g., Poor cache performance

 Synchronization overhead becomes large

 E.g., Lock contention

• Was our original (v1) server well-conditioned?

 The one that handles requests one at a time, with no concurrency?

 Hint: yes!

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

45

Building Well-Conditioned Systems
• Thread Pools

• User-Mode Threads

• Event-Driven Execution

• We’ll discuss these next time…

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

46

4
/7

/2
0

2
5

,
L

e
ct

u
re

 1
2

C
S

C
4

1
0

3
,
S

p
ri

n
g
 2

0
2

5
,
S

y
st

e
m

 P
e
rf

o
rm

a
n

ce
 a

n
d

H
ig

h
ly

 C
o
n

cu
rr

e
n

t
S

y
st

e
m

s

47

