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Recall: Deadlock

Starvation vs. Deadlock
« Starvation: Thread indefinitely unable to make progress
- Deadlock: Thread(s) unable to make progress due to circular wait

Four conditions for deadlock:
* Mutual exclusion

- Hold and wait

* No preemption

« Circular Wait

Three different approaches to address deadlock:

lrIl)eadlock avoidance: dynamically delay resource requests so deadlock doesn’t
appen

« Deadlock prevention: write your code in a way that it 1sn’t prone to deadlock

. fDeadlgc)ck recovery: let deadlock happen, and then figure out how to recover
rom 1
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System Performance

- “Back of the Envelope” calculation and modeling

- Get the rough picture first... and don’t lose sight of it
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Times (s) and Rates (op/s)

- Latency — time to complete a task
- Measured in units of time (s, ms, us, ..., hours, years)

- Response Time - time to initiate an operation and get its response
- Able to 1ssue an operation that depends on the result of another
- Know that it is done (anti-dependence, resource usage)

« Throughput or Bandwidth — rate at which tasks are performed
- Measured in units of things per unit of time (op/s, FLOP/s)

 Performance
- Operation time (5 mins to run a mile...)
- Rate (mph, mpg, ...)

Application
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Sequential Server Performance

L L L L L

» time

- Single sequential “server” that can deliver a task in time L operates
at rate < % (on average, in steady state, ...)

- L =10 ms — B = 100 P/
+L=2yr—B =05 P/,

- Applies to a processor, a disk drive, a person, a TA, ...
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Single Pipelined Server

L L
e -: divided over distinct resources
logical operation —
L L L L L L L
N ) [ I 1

» time

- Single pipelined server of k stages for tasks of length L (i.e., time L/,
per stage) delivers at rate < ¥/,.

- L =10 ms, k =4 — B = 400 °P/,
s L=2yr,k=2—->B=1"P/y
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Example Systems “Pipelines”

I/0 Processing

User Process |

Driver Driver

r—{
r—{

© File Upper Lower
%

w0

Communication

- Anything with queues between operational processes behaves
roughly “pipeline like”

- Important difference is that “initiations” are decoupled from
processing
- May have to queue up a burst of operations
« Not synchronous and deterministic
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Multiple Servers

- k servers handling tasks of length L delivers at rate < ¥/, .
- L=10ms, k =4 — B = 400 °P/4
cL=2yr,k=2—-B=1"P/y

- You have seen multiple processors (cores)
« Systems present lots of multiple parallel servers
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Example System “Parallelism”

I/0 Processing

& Syscall
User Process:- > File - -
User Process‘f N System -
User Process .~
Communication

@}:m

Parallel Computation, Databases, ...

\«-;\m Upper

" Driver

Lower
Driver

Application
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A Simple System Performance Model

Latency (L): time per op Bandwidth (B): Rate, Op/s
- How long does it take ——  e.g, flow: gal per min

to flow through the _

system

“Service Time” 1fB=28/sandL=3s

How much water 1s “in the
system?”
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A Simple System Performance Model

Latency (L): time per op
- How long does it take
to flow through the

system

__— Bandwidth (B): Rate, Op/s
e.g., flow: gal per min

“Service Time” IfB =2 831/5 and L = 3 s

How much water 1s “in the
system?”
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Little’s Law

The number of “things” in a system 1s equal to the bandwidth times
the latency (on average)

n=1LBHB

Applies to any stable system (arrival rate = departure rate)

Can be applied to an entire system:
 Including the queues, the processing stages, parallelism, whatever

Or to just one processing stage:
* 1.e., disk I/O subsystem, queue leading into a CPU or I/O stage, ...
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A Simple System Performance Model

Request Rate: 4

Latency (L)
Queuing delay: d
The maximum service rate

U0 1S @ property of the
system — the “bottleneck”

Operation Time"
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Ideal System Performance

- How does u (service rate) vary with 1 (request rate)?

asymptotic peak rate

l’l' max

Service Rate (u) -
“delivered load”

Hmax

v

el
(@)
<
<b]
]
(@)
=
=}
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
e
N
=
(A
on
g
o=
~
Q
R

ELJ
=}
Q
-
n
~

<)
+
o
o)
~
=
=)
Q
=
Q
@)
>}
—
<
on
s

Request Rate (1) - “offered load”

Application

-~ -

CSC4103

Operating system
] [

Hardware




SW9ISAG JULINOUO0) ATYSTH
puR 9oURMWLIONSJ WeISAS ‘GZ0g SuLtds ‘e01#)SD

ST ©9INY0T ‘CZ0T/ LIV

Hardware

A Simple System Performance Model




4/7/2025, Lecture 12

Bottleneck Analysis

L L L L L L L

» time

Service
Rate: u

Request
Rate: A

@ |O—
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Bottleneck Analysis

- Each stage has its own queue and maximum service rate

- Suppose the green stage is the bottleneck

Request
Rate: A

Service
Rate: u

Application

Overall System: Series of Stages o

Operating system
- -

Hardware

e
<
<
b}
O
<!
g
g
8

s
5
)

ol
(=]
g
)
+
n
S

»n
Yol
AN
o
(A
a0
<]

=
=
Q

n
o
S
—

O

0

(@)

:.L}
=}
Q
-
n
~

<)
+
=
o)
~
=
=)
Q
=
]
o
>}
—
<
on
T

4/7/2025, Lecture 12




4/7/2025, Lecture 12

Bottleneck Analysis

- Each stage has its own queue and maximum service rate
- Suppose the green stage is the bottleneck

- The bottleneck stage dictates the maximum service rate g

Request ‘ SeI‘Vice
Rate: 1 g " Rate: u
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Example: Servicing a Highly
Contended Lock
Queue of waiting

P threads
\ Hmax = 1/ X

(e All try to grab lock Q

4/7/2025, Lecture 12

v

X sec in
} critical Tlme = p . X secC
section — _ o .
Rate = 1/x ops/sec, Critical section
regardless of # cores guarded by lock
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A Simple System Performance Model

Queuing delay: d

, System Performance and

Service Rate: u
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A Simple System Performance Model

Queuing delay: d

, System Performance and

Service Rate: u
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Announcements

- Assignment 2 due today
+ Let me know if you have trouble pushing to your repository

- If auto-grader fails even if locally all is well — attach screenshot to
submission

- Project 1 due today as well
* Let me know if you need more time

Application
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Rest of Today’s Lecture

- Using this system model. we will:
‘ - Explore latency in more depth

* Discuss how to build systems that pertform well under load
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Latency (Response Time)

Queue Processing
Stage (Server)

- Total latency (response time): queuing time + service time

- Service time depends on the underlying operation
« For CPU stage, how much computation
« For I/0 stage, characteristics of the hardware
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A Simple System Performance Model

Latency (L)
Operation Timegt t

Service Rate: u

Request Rate: 4

Queuing delay: d

:umax

system — the bottleneck

Utilization: p =

A

'u'max

7/2025, Lecture 12

stems

0]
rrent Sy

CSC4103, Spring 2025, System Performance anc

=
(]
=
©)
()
O
>
—
<
on
s



4/7/2025, Lecture 12

Queuing

- What happens when request rate (1) exceeds max service rate
(Uimax)?

- Short bursts can be absorbed by the queue
« If on average 1 < u, it will drain eventually

- Prolonged 4 > u — queue will grow without bound
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A Simple, Deterministic World

T,: time between
arrivals
* A= 1/ Ty
Ts: service time
* U= k/ Ts
Tp' queulng time
¢ L=Ty+Ts

arrivals ——

Queue

V

T

Ts

Vv

departures

\%

N
7

N
7

N

Ty
;T!
Ty S

Ty

- Assume requests arrive at regular intervals, take a fixed time to
process, with plenty of time between ...

« T,

Application
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A Bursty World

arrivals Queue >| Server departures

* T,: time between
arrivals
 Now, a random ‘
variable Arrivals

* Ts: service time |
© u="/r Q depth .

* Ty' queulng time
¢ L=Ty+Ts

Vv

Q’ﬂ
4

Is

- Requests arrive in a burst, must queue up until served
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How to model Burstiness of Arrival?

- T4, the time between arrivals, is now a random variable

- Elegant mathematical framework if we model it as an exponential
distribution

- Probability distribution function of an exponential distribution with
parameter A1s f(x) = e —Mx

“Memoryless”: Likelihood of an
event occurring is independent
of how long we’ve been waiting

mean arrival interval (1/1)

Lots of short arrival
intervals (i.e., high 03

instantaneous rate) 0.2 i
0.1 : ¥ | v
1 Application
0 - - - | -

Few long gaps (i.e., low / J : : o
perating system

instantaneous rate) x (1)

1.

Hardware
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A Simple System Performance Model

Request Rate: 4

Latency (L)

Queuing delay: d

d

nce an

Operation Timg" Queue grows at rate u — A

After time t, 1t will have
grown to length t(u — 1)
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Background: Random Distributions

Mean

(m)

. Server spends variable time (T) with customers
- Mean (Average): m = Y. p(T) - T
- Variance (stddev2): 62 = Y. p(T) - (T — m)?

- Squared coefficient of variance: € = ¢°

m? Distribution
of service times

- Important values of C:

+ Poisson process — ‘purely’ or ‘completely’ random process
- Many complex systems (or aggregates) are well described as memoryless
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Introduction to Queuing Theory

Arrivals Departures

- Queuing Theory applies to long term, steady state behavior
- Arrival rate = Departure rate (1 = p)

- Arrivals characterized by some probabilistic distribution
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Our Goals with Queuing Theory

- We wish to compute:
* Tp: Time spent in queue
* Lo* Length of the queue
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Little’s Law Applied to a Queue

. Before, we had n = LB (for a stable system):
* B: bandwidth

L' latency
* n: number of operations in the system

- When applied to a queue, we get:

Average Arrival Rate
i o N
L, = AT,
- aQ Q
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Some Results from Queuing Theory

- Assumptions: system in equilibrium, no limit to the queue, time
between successive arrivals 1s random and memoryless

—

Arrival Rate Service Rate
_1
A w="r

e A arrival rate e U service rate (1/TS)

* T mean time to service a customer - p: utilization (%/,)

* (:squared coefficient of variance (°° /ng)
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Some Results from Queuing Theory

- Memoryless service distribution (C = 1) - an “M/M/1 queue”
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+ Ty = 1_p - Ts (memoryless service distribution)
1-p
P’ \
- Utilization is p = /... = AT, so o8

1-p
« Lo = AT, = T% - To %n a single server) \ j
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Ideal System Performance

' . ~P 5=
3 % » TQ 1_p, p /ﬂmax
o § o Latency « Why does latency bloow up
S £ Hinax ~N S as we approach 100%
T | B | utilization?
o 52 9 : ,
S 2 E ; * Queue builds up on
2= K each burst
3 SR 5  But very rarely (or
never) gets a chance to
oo drain

Operation Time ﬁ Request Rate (1) - “offered load”

“Half-Power Point”: load at which system delivers half of peak performance

- Design and provision systems to operate roughly in this regime ::

- Latency low and predictable, utilization good: ~50%
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Rest of Today’s Lecture

- Using this system model, we will:
- Explore latency in more depth
|  Discuss how to build systems that perform well under load

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
el
N
=
(A
on
g
o=
~
(o}
R
o3
&)
i
QO
7
O

:2
=}
Q
-
n
~
<)
+
o
o)
~
=
=)
Q
=
Q
o
>}
—
<
on
T

Application

1 L°

Operating system
] [

Hardware




Ideal System Performance

asymptotic peak rate

H max

Service Rate (u) -
“delivered load”

" Himax

v

Request Rate (1) - “offered load”

- A system that behaves this way 1s well-conditioned
« Delivered load increases with offered load until pipeline saturates
- As offered load increases further, throughput remains high
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Sockets with Protection and Concurrency

: Server
Client

Create Server Socket

l

Create Client Socket Bind it to an Address

(host:port)
\\4
Connect it to server (host:port) . ___________ S Listen\ /for Connection

e J m
=~ Accept syscall( \

\Z ‘l/ oo g
Connection Socket — Gmm——— Connection Socket

Chl].d warent
A\

Close Connection Socket

7 “ywrlte request . ________.

.. - read response

-

Close Client Socket

Application
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Close Server Socket iRy
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Sockets with Concurrency, without

Server

4/7/2025, Lecture 12

Protection
Create Server Socket

Client
l

Bind it to an Address

Create Client Socket
(host:port)

Vv
Vv

Connect it to server (host'port) .. _________ > Listen for Connection

\
~~ Accept syscall(

v \l/

Connection Socket Connection Socket

Spawned Thread

pthtead_create Main Thread

Vv

L+~ gy write request
\_ . read response = «-------------

-

Close Client Socket

Close Server Socket
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-~ -

Operating system
T

Hardware

]
o
®
o)
o
-
P
g
(=]
=

<
=~

o
-
(=]
Q

<+
n
>

N

Yol

N

(@)

N
on
(@]
P

o=
=~
(o

n

o

S

—

<

Q

n

:Jj
=i
Q
-
n
N

>
+
=
o)
b
=
=)
Q
=
©)
o
>
—
<
an
T




N
—

o)

<

=
-

Q

o)
—
Yol
N
(@)
X
~
L\
=
<

Non-Well-Conditioned Systems

- A server that spawns a new
pthread per request 1s not well- R Thvedgrou == L“OO

Linear (ideal) latency =B | ¥ 350

conditioned! 25000 \

]
»
-

300

Number of threads

Figure 2: Threaded server throughput degradation: This benchmark mea-
sures a simple threaded server which creates a single thread for each task in the [
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Building Well-Conditioned Systems

- Spawning a new thread or process for each request is not well-
conditioned

- Too many threads 1s bad
* Scheduling overhead becomes large

* Context switch overhead becomes large
- E.g., Poor cache performance

« Synchronization overhead becomes large
- E.g., Lock contention

- Was our original (v1) server well-conditioned?
* The one that handles requests one at a time, with no concurrency?
« Hint: yes!

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
wm
>
n
el
N
=
(A
on
g
o
~
(o}
R
o3
&)
i
QO
R
O

o
Q
-
n
=
>
+
o
o)
~
E:j
=)
Q
=
Q
o
>}
—
<
on
T

Application

-~ -

Operating system
] [

Hardware




4/7/2025, Lecture 12

Building Well-Conditioned Systems

- Thread Pools
« User-Mode Threads

- Event-Driven Execution

- We'll discuss these next time...
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