System Performance

and Highly
Concurrent Systems

Lecture 12

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

4/7/2025, Lecture 12

Recall: Deadlock

Starvation vs. Deadlock
« Starvation: Thread indefinitely unable to make progress
- Deadlock: Thread(s) unable to make progress due to circular wait

Four conditions for deadlock:
* Mutual exclusion

- Hold and wait

* No preemption

« Circular Wait

Three different approaches to address deadlock:

lrIl)eadlock avoidance: dynamically delay resource requests so deadlock doesn’t
appen

« Deadlock prevention: write your code in a way that it 1sn’t prone to deadlock

. fDeadlgc)ck recovery: let deadlock happen, and then figure out how to recover
rom 1

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
wm
>
R
el
N
=
(A
on
el
o=
~
(o}
R
o3
&)
i
QO
7
O

:2
o
Q
-
n
=

>
+
o
o)
~
=
=)
Q
=
©)
o
>}
—
<
on
T

Application

Or deadlock denial: ignore the possibility of deadlock in applications —~—

Operating system
] [

Hardware

4/7/2025, Lecture 12

System Performance

- “Back of the Envelope” calculation and modeling

- Get the rough picture first... and don’t lose sight of it

]
(@)
ay]
o)
O
(@)
S
(=]
=~

Ke)

3
=~
(]

Ay
(=]
(=]
Q

+~
n
>

)]

Yol

AN

(@)

(A
)
g

o
=~
(o}

N

o3

S

—

<t

O

n

(@)

Z}
o
Q
-
n
~
>
)
=
o
o)
—
=
=
(]
=
©)
()
O
>
—
<
on
T

Application

-~ -

Operating system
"=

Hardware

Times (s) and Rates (op/s)

- Latency — time to complete a task
- Measured in units of time (s, ms, us, ..., hours, years)

- Response Time - time to initiate an operation and get its response
- Able to 1ssue an operation that depends on the result of another
- Know that it is done (anti-dependence, resource usage)

« Throughput or Bandwidth — rate at which tasks are performed
- Measured in units of things per unit of time (op/s, FLOP/s)

 Performance
- Operation time (5 mins to run a mile...)
- Rate (mph, mpg, ...)

Application

1 L°

Operating system
] [

Hardware

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
wm
>
R
el
N
=
(A
on
el
o=
~
(o}
R
o3
&)
i
QO
7
O

:2
o
Q
-
n
=

>
+
o
o)
~
=
=)
Q
=
©)
o
>}
—
<
on
T

4/7/2025, Lecture 12

4/7/2025, Lecture 12

Sequential Server Performance

L L L L L

» time

- Single sequential “server” that can deliver a task in time L operates
at rate < % (on average, in steady state, ...)

- L =10 ms — B = 100 P/
+L=2yr—B =05 P/,

- Applies to a processor, a disk drive, a person, a TA, ...

e
<!
(o]
o]
O
<!
!
(=]
8

o
2
5]

Ay
(=]
(=]
)
+
n
>

n

Yol

AN

(@)

(A
a0
o

o]
=
Q

wm

o3
S
—

O

n

(@)

ELJ
=}
Q
-
n
~

<)
+
o
o)
~
=
=)
Q
=
]
@)
>}
—
<
on
s

4/7/2025, Lecture 12

Single Pipelined Server

L L
e -: divided over distinct resources
logical operation —
L L L L L L L
N) [I 1

» time

- Single pipelined server of k stages for tasks of length L (i.e., time L/,
per stage) delivers at rate < ¥/,.

- L =10 ms, k =4 — B = 400 °P/,
s L=2yr,k=2—->B=1"P/y

el
(@)
[aM]
<b]
]
(@)
g
=}
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
e
N
=
(A
on
g
o=
~
(o}
R

:.LJ
=}
Q
-
n
~

<)
+
=
o)
~
=
=)
Q
=
]
o
>
—
<
on
T

CSC4103

Application

] L

Operating system
- -

Hardware

4/7/2025, Lecture 12

Example Systems “Pipelines”

I/0 Processing

User Process |

Driver Driver

r—{
r—{

© File Upper Lower
%

w0

Communication

- Anything with queues between operational processes behaves
roughly “pipeline like”

- Important difference is that “initiations” are decoupled from
processing
- May have to queue up a burst of operations
« Not synchronous and deterministic

<
=
©
(D)
O
=
g
g
3
2
o
(D)
A~
(=
g
Q
+
w0
=
)
el
(%]
S
(A
o
=
35
5
Q
D)
)
S
i
@)
n
@)

:_2
=}
Q

-
n
~
<)

+
=
o)
~
=
=)
Q
=
]

o
>}

—

<
on

T

Application

-~ -

Operating system
- -

Hardware

4/7/2025, Lecture 12

Multiple Servers

- k servers handling tasks of length L delivers at rate < ¥/, .
- L=10ms, k =4 — B = 400 °P/4
cL=2yr,k=2—-B=1"P/y

- You have seen multiple processors (cores)
« Systems present lots of multiple parallel servers

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
wm
>
R
el
N
=
(A
on
el
o=
~
(o}
R
o3
&)
i
QO
7
O

:2
o
Q
-
n
=

>
+
o
o)
~
=
=)
Q
=
Q
o
>}
—
<
on
T

Application

+ Often with lots of queues —~

Operating system
] [

Hardware

Example System “Parallelism”

I/0 Processing

& Syscall
User Process:- > File - -
User Process‘f N System -
User Process .~
Communication

@}:m

Parallel Computation, Databases, ...

\«-;\m Upper

" Driver

Lower
Driver

Application

] L

Operating system

] [

Hardware

CSC4103, Spring 2025, System Performance and

Highly Concurrent Systems

N
—

)

<

o)
-

Q

o)
—
Yol
N
(@)
X
~
L\
=
<F

4/7/2025, Lecture 12

A Simple System Performance Model

Latency (L): time per op Bandwidth (B): Rate, Op/s
- How long does it take —— e.g, flow: gal per min

to flow through the _

system

“Service Time” 1fB=28/sandL=3s

How much water 1s “in the
system?”

=
g
«
(D)
Q
g
o
g
=~
S
[
(D)
A
g
Q
-
w0
>
N
el
N
S
N
i)
g
s
~
Q
AN
CQ“
=)
—
v{i
O
0
©

a
=
Q
+~
n
'b}}
N
+
g
o)
o
S~
=
Q
=
]
o
>
—
<
on
=

4/7/2025, Lecture 12

A Simple System Performance Model

Latency (L): time per op
- How long does it take
to flow through the

system

__— Bandwidth (B): Rate, Op/s
e.g., flow: gal per min

“Service Time” IfB =2 831/5 and L = 3 s

How much water 1s “in the
system?”

e
g
«
(D)
O
g
g
=]
3

=
~
(D)

A
(=
=]
Q
-
w0
>

N
10
N
S
(]
i)

:_2
=}
Q

-
n
~
<)

+
=
o)
~
::j
=)
Q
=
]

@)
>}

—

<
on

s

CSC4103, Sprin

4/7/2025, Lecture 12

Little’s Law

The number of “things” in a system 1s equal to the bandwidth times
the latency (on average)

n=1LBHB

Applies to any stable system (arrival rate = departure rate)

Can be applied to an entire system:
 Including the queues, the processing stages, parallelism, whatever

Or to just one processing stage:
* 1.e., disk I/O subsystem, queue leading into a CPU or I/O stage, ...

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
el
N
=
(A
on
g
o=
~
(o}
R
o3
&)
i
QO
7
O

=}
Q
-
n
~
<)
+
o
o)
~
5;_-}
=)
Q
=
]
o
>}
—
<
on
T

Application

1 L°

Operating system
] [

Hardware

4/7/2025, Lecture 12

A Simple System Performance Model

Request Rate: 4

Latency (L)
Queuing delay: d
The maximum service rate

U0 1S @ property of the
system — the “bottleneck”

Operation Time"

e
g
«
(D)
O
g
g
=]
3

=
~
(D)

A
(=
=]
Q
-
w0
>

N

10

N

S

(]
i)

:_2
=}
Q

-
n
~
<)

+
=
o)
~
::j
=)
Q
=
]

@)
>}

—

<
on

s

Utilization: p =

Service Rate: u

™ ‘- " &
N - vy
N — Y

- . 4 %

V==] /

N X / \ 411

g 1\ _ 277 1
J ' |

CSC4103, Sprin

4/7/2025, Lecture 12

Ideal System Performance

- How does u (service rate) vary with 1 (request rate)?

asymptotic peak rate

l’l' max

Service Rate (u) -
“delivered load”

Hmax

v

el
(@)
<
<b]
]
(@)
=
=}
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
e
N
=
(A
on
g
o=
~
Q
R

ELJ
=}
Q
-
n
~

<)
+
o
o)
~
=
=)
Q
=
Q
@)
>}
—
<
on
s

Request Rate (1) - “offered load”

Application

-~ -

CSC4103

Operating system
] [

Hardware

SW9ISAG JULINOUO0) ATYSTH
puR 9oURMWLIONSJ WeISAS ‘GZ0g SuLtds ‘e01#)SD

ST ©9INY0T ‘CZ0T/ LIV

Hardware

A Simple System Performance Model

4/7/2025, Lecture 12

Bottleneck Analysis

L L L L L L L

» time

Service
Rate: u

Request
Rate: A

@ |O—

el
(@)
[aM]
<b]
]
(@)
g
=}
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
e
N
=
(A
on
g
o=
~
(o}
R

:_2
=}
Q

-
n
~
<)

+
=
o)
~
::j
=)
Q
=
]

@)
>

—

<
on

s

CSC4103

Application

Overall System: Series of Stages | ~

Operating system
- -

Hardware

Bottleneck Analysis

- Each stage has its own queue and maximum service rate

- Suppose the green stage is the bottleneck

Request
Rate: A

Service
Rate: u

Application

Overall System: Series of Stages o

Operating system
- -

Hardware

e
<
<
b}
O
<!
g
g
8

s
5
)

ol
(=]
g
)
+
n
S

»n
Yol
AN
o
(A
a0
<]

=
=
Q

n
o
S
—

O

0

(@)

:.L}
=}
Q
-
n
~

<)
+
=
o)
~
=
=)
Q
=
]
o
>}
—
<
on
T

4/7/2025, Lecture 12

4/7/2025, Lecture 12

Bottleneck Analysis

- Each stage has its own queue and maximum service rate
- Suppose the green stage is the bottleneck

- The bottleneck stage dictates the maximum service rate g

Request ‘ SeI‘Vice
Rate: 1 g " Rate: u

e
=
©
(D)
O
c
g
£
3

2
S
(D)

A~
(=
£
)
+
w0
S

n
el
(%]
S
(A
oo
o

-
5
Q

D)
o
S
i

@)

n

@)

:_2
=}
Q

-
n
~
<)

+
=
o)
~
::j
=)
Q
=
]

@)
>}

—

<
on

s

Application

System Model: Bottleneck Stage | ~

Operating system
- -

Hardware

Example: Servicing a Highly
Contended Lock
Queue of waiting

P threads
\ Hmax = 1/ X

(e All try to grab lock Q

4/7/2025, Lecture 12

v

X sec in
} critical Tlme = p . X secC
section — _ o .
Rate = 1/x ops/sec, Critical section
regardless of # cores guarded by lock

g
=]
<
(D)
)
=]
g
=]
S

=
)
(D)

A
]
=)
Q
+
%)
>

n

el

(%]

=

(A
on
=]

=
g
Q

n

o

©

—

<

o

N

O

:_2
=}
Q

-
n
~
<)

+
=
o)
~
=
=)
Q
=
]

o
>

—

<
on

T

4/7/2025, Lecture 12

A Simple System Performance Model

Queuing delay: d

, System Performance and

Service Rate: u

- I

:Q
=i
0]
)
9]
>
+~
=)
o)
—
~—
—
=)
(]
=
o
@)
>
—
<
an
s

L0
N
=
N
a0
=]
=
=
o,
n
o
S
—
<t
Q
n
@

4/7/2025, Lecture 12

A Simple System Performance Model

Queuing delay: d

, System Performance and

Service Rate: u

:Q
=i
0]
)
9]
>
+~
=)
o)
—
~—
—
=)
(]
=
o
@)
>
—
<
an
s

L0
N
=
N
a0
=]
=
=
o,
n
o
S
—
<t
Q
n
@

\ R = / 5 \ —_
| = \ N
T - # / X
7 . g f
e, ‘ Y K
5 |
| .

4/7/2025, Lecture 12

Announcements

- Assignment 2 due today
+ Let me know if you have trouble pushing to your repository

- If auto-grader fails even if locally all is well — attach screenshot to
submission

- Project 1 due today as well
* Let me know if you need more time

Application

-~ -

Operating system
{1 -

Hardware

]
(@)
ay]
o)
O
(@)
S
(=]
=~

Ke)

3
=~
(]

Ay
(=]
(=]
5}

+~
n
>

)]

Yol

AN

(@)

(A
)
g

o
=~
(o}

N

o

S
—
<t

O

n

(@)

Z}
o
Q
-
n
~
)
)
+
o
o)
~
=
=)
Q
=
©)
()
<
>
—
<
on
s

4/7/2025, Lecture 12

Rest of Today’s Lecture

- Using this system model. we will:
‘ - Explore latency in more depth

* Discuss how to build systems that pertform well under load

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
wm
>
R
el
N
=
(A
on
el
o=
~
(o}
R
o3
&)
i
QO
7
O

:2
o
Q
-
n
=
>
+
o
o)
~
=
=)
Q
=
Q
o
>}
—
<
on
T

Application

1 L°

Operating system
] [

Hardware

4/7/2025, Lecture 12

Latency (Response Time)

Queue Processing
Stage (Server)

- Total latency (response time): queuing time + service time

- Service time depends on the underlying operation
« For CPU stage, how much computation
« For I/0 stage, characteristics of the hardware

e
<!
(o]
o]
O
<!
!
(=]
8

o
2
5]

Ay
(=]
(=]
)
+
n
>

n

Yol

AN

(@)

(A
a0
o

o]
=
Q

wm

o3

S

—

O

n

(@)

ELJ
=}
Q
-
n
~

<)
+
o
o)
~
=
=)
Q
=
Q
@)
>}
—
<
on
s

Application

-~ -

- What about the queuing time?

Operating system
] [

Hardware

A Simple System Performance Model

Latency (L)
Operation Timegt t

Service Rate: u

Request Rate: 4

Queuing delay: d

:umax

system — the bottleneck

Utilization: p =

A

'u'max

7/2025, Lecture 12

stems

0]
rrent Sy

CSC4103, Spring 2025, System Performance anc

=
(]
=
©)
()
O
>
—
<
on
s

4/7/2025, Lecture 12

Queuing

- What happens when request rate (1) exceeds max service rate
(Uimax)?

- Short bursts can be absorbed by the queue
« If on average 1 < u, it will drain eventually

- Prolonged 4 > u — queue will grow without bound

]
(@)
ay]
o)
O
(@)
S
(=]
=~

Ke)

3
=~
(]

Ay
(=]
(=]
Q

+~
n
>

)]

Yol

AN

(@)

(A
)
g

o
=~
(o}

N

o

S
—
<t

O

n

(@)

Z}
o
Q
-
n
~
>
)
=
o
o)
—
=
=
(]
=
©)
()
O
>
—
<
on
T

Application

-~ -

Operating system
{1 -

Hardware

A Simple, Deterministic World

T,: time between
arrivals
* A= 1/ Ty
Ts: service time
* U= k/ Ts
Tp' queulng time
¢ L=Ty+Ts

arrivals ——

Queue

V

T

Ts

Vv

departures

\%

N
7

N
7

N

Ty
;T!
Ty S

Ty

- Assume requests arrive at regular intervals, take a fixed time to
process, with plenty of time between ...

« T,

Application

-~ -

Operating system
{1 -

Hardware

]
(@)
ay]
o)
O
(@)
S
(=]
=~

Ke)

3
=~
(]

Ay
(=]
(=]
Q

+~
n
>

)]

Yol

AN

(@)

(A
)
g

o
=~
(o}

N

o

S

—

<t

O

n

(@)

Z}
o
Q
-
n
~

>
)
=
o
o)
—
=
=
(]
=
©)
()
O
>
—
<
on
T

4/7/2025, Lecture 12

N
—

)

<

o)
-

3]

o)
—
Yol
N
(@)
X
~
L\
=
<F

A Simple, Deterministic World

5 = Saturation
o 1 o 1 >
< c
(o) o))
2 S
2 S .
c - 5
= — :
S - :
o) -
) o) :
= = Empty Queue Unbounded K
) [£
)]) £
o) 1 0 1 £z
Utilization (p = */u = "/ir,) Utilization (p = */u =[%/xr,) S
S 8
% % Application % éf
= > { T -
O ~ O - Operating system
: ” . ”~ -

Hardware

4/7/2025, Lecture 12

A Bursty World

arrivals Queue >| Server departures

* T,: time between
arrivals
 Now, a random ‘
variable Arrivals

* Ts: service time |
© u="/r Q depth .

* Ty' queulng time
¢ L=Ty+Ts

Vv

Q’ﬂ
4

Is

- Requests arrive in a burst, must queue up until served

e
<
<
b}
O
<!
g
g
8

s
5
)

ol
(=]
g
)
+
n
S

»n
Yol
AN
o
(A
a0
<]

=
=
Q

n
o
S
—

O

0

(@)

:.L}
=}
Q
-
n
~

<)
+
=
o)
~
=
=)
Q
=
]
o
>}
—
<
on
T

Application

- Same average arrival time, but almost all of the requests experience large =

queue delays (even though average utilization is low — T./TA « 1)

Operating system
- -

Hardware

How to model Burstiness of Arrival?

- T4, the time between arrivals, is now a random variable

- Elegant mathematical framework if we model it as an exponential
distribution

- Probability distribution function of an exponential distribution with
parameter A1s f(x) = e —Mx

“Memoryless”: Likelihood of an
event occurring is independent
of how long we’ve been waiting

mean arrival interval (1/1)

Lots of short arrival
intervals (i.e., high 03

instantaneous rate) 0.2 i
0.1 : ¥ | v
1 Application
0 - - - | -

Few long gaps (i.e., low / J : : o
perating system

instantaneous rate) x (1)

1.

Hardware

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
el
N
=
(A
on
g
o=
~
(o}
R
o3
&)
i
QO
7
O

:2
=}
Q
-
n
~

<)
+
o
o)
~
=
=)
Q
=
Q
o
>}
—
<
on
T

4/7/2025, Lecture 12

el2

4/7/2025, Lectur

A Simple System Performance Model

Request Rate: 4

Latency (L)

Queuing delay: d

d

nce an

Operation Timg" Queue grows at rate u — A

After time t, 1t will have
grown to length t(u — 1)

stems

g
=]
3
=
~
(D)
A
(=
=]
Q
-
w0
>
N
10
N
S
(]
i)

rrent Sy

Service Rate: u

N -]
[N —— J
! — A
- |
N === B
_— [| \
N —- fi
s ¢ |
J ' |

Utilization: p = ML

CSC4103, Sprin
Highly Concu

4/7/2025, Lecture 12

Background: Random Distributions

Mean

(m)

. Server spends variable time (T) with customers
- Mean (Average): m = Y. p(T) - T
- Variance (stddev2): 62 = Y. p(T) - (T — m)?

- Squared coefficient of variance: € = ¢°

m? Distribution
of service times

- Important values of C:

+ Poisson process — ‘purely’ or ‘completely’ random process
- Many complex systems (or aggregates) are well described as memoryless

s

o

[aM]

o}

O

o

s

=}

g

=

o

3

A

(=

=}

Q

<+

w0

>

N

el

N

=

]

on

o

o)

o

Q

R

o

&)

i

: ~
— O
Application wn
@

: Ce mean @

- No variance or deterministic = C = 0 z
* “Memoryless” or exponential = C =1 f
 Past tells nothing about future E
Memoryless

-~ -

Operating system
- -

Hardware

4/7/2025, Lecture 12

Introduction to Queuing Theory

Arrivals Departures

- Queuing Theory applies to long term, steady state behavior
- Arrival rate = Departure rate (1 = p)

- Arrivals characterized by some probabilistic distribution

]
o
®
o)
o
-
P
g
(=]
=

<
=~

o
-
(=]
Q

<+
n
>

N

Yol

N

(@)

N
on
(@]
P

o=
=~
(o

n

o

S

—

~

Q

n

:Jj
=i
Q
-
n
5

>
+
=
o)
b
=
=)
Q
=
©)
o
>
—
<
an
T

- Departures characterized by some probabilistic distribution

4/7/2025, Lecture 12

Our Goals with Queuing Theory

- We wish to compute:
* Tp: Time spent in queue
* Lo* Length of the queue

]
(@)
ay]
o)
O
(@)
S
(=]
=~

Ke)

3
=~
(]

Ay
(=]
(=]
Q

+~
n
>

)]

Yol

AN

(@)

(A
)
g

o
=~
(o}

N

o

S

—

<t

O

n

(@)

Z}
o
Q
-
n
~
>
)
=
o
o)
—
=
=
(]
=
©)
()
O
>
—
<
on
T

4/7/2025, Lecture 12

Little’s Law Applied to a Queue

. Before, we had n = LB (for a stable system):
* B: bandwidth

L' latency
* n: number of operations in the system

- When applied to a queue, we get:

Average Arrival Rate
i o N
L, = AT,
- aQ Q

]
(@)
ay]
o)
O
(@)
<
(]
(=]
=~

S
=~
(]

Ay
(=]
(=]
Q

+~
w0
)

)]

Yol

AN

(@)

(A
on
g

‘g
Q

N

:2
=}
Q
-
n
~

<)
+
o
o)
~
5;_-}
=)
Q
=
Q
o
>}
—
<
on
T

Average length of the ™~ Average time “waiting”
queue

Application

1 L°

CSC4103,

Operating system
] [

Hardware

4/7/2025, Lecture 12

Some Results from Queuing Theory

- Assumptions: system in equilibrium, no limit to the queue, time
between successive arrivals 1s random and memoryless

—

Arrival Rate Service Rate
_1
A w="r

e A arrival rate e U service rate (1/TS)

* T mean time to service a customer - p: utilization (%/,)

* (:squared coefficient of variance (°° /ng)

el
(@)
(o]
<b]
]
(@)
(o]
=]
=}
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
el
N
=
(A
on
g
o=
~
Q
R
o
&)
i
QO
7
O

:2
=}
Q
-
n
~

<)
+
o
o)
~
5;_-}
=)
Q
=
Q
o
>}
—
<
on
T

Application

1 L°

Operating system
] [

Hardware

4/7/2025, Lecture 12

Some Results from Queuing Theory

- Memoryless service distribution (C = 1) - an “M/M/1 queue”

2
)
-]
)
=
Qo
o
n
®
=
<
o o
Q
@)
oF
b o
6D
ﬁ
=
o o
U‘
<
ﬁ
o
o
-]
VS
-]
o
~
)
n
rf
=
o
)
ﬁ
p—d o
@)
n
N
Qo
=]
=
P!
~~
p—
K
<
)
-
m\‘

[}
e
Q
~
~
o
<
Q
e
=
Q
rr
@

el
(@)
<
<b]
]
(@)
=
=}
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
el
N
=
(A
on
g
o
~
Q
R

« Tg' mean time to service a cusgOmer p: utilization (%/,) ﬁ

* (:squared coefficient of v

M/M/1: M/G/1: " S|

Input: Markovian (Poisson) Input: Markovian (Poisson) — O
Output: Markovian (Poisson) Output: General distribution Operaing sysem

Number of servers: 1 Number of servers: 1 L

Hardware

N
—

o)

<

=
-

Q

o)
—
Yol
N
(@)
X
~
L‘
=
=

Key Results from Queuing Theory

+ Ty = 1_p - Ts (memoryless service distribution)
1-p
P’ \
- Utilization is p = /... = AT, so o8

1-p
« Lo = AT, = T% - To %n a single server) \ j

CSC4103, Spring 2025, System Performance and

Highly Concurrent Systems

Ideal System Performance

' . ~P 5=
3 % » TQ 1_p, p /ﬂmax
o § o Latency « Why does latency bloow up
S £ Hinax ~N S as we approach 100%
T | B | utilization?
o 52 9 : ,
S 2 E ; * Queue builds up on
2= K each burst
3 SR 5 But very rarely (or
never) gets a chance to
oo drain

Operation Time ﬁ Request Rate (1) - “offered load”

“Half-Power Point”: load at which system delivers half of peak performance

- Design and provision systems to operate roughly in this regime ::

- Latency low and predictable, utilization good: ~50%

Operating system
- -

Hardware

<
=
<
(D)
]
=
g
=]
S
2
o
(D)
A~
(=
=)
Q
+
w0
=
)
el
(%]
=
(A
on
=
35
5
Q
D)
o
©
i
@)
n
O

:.LJ
=}
Q
-
n
~

<)
+
=
o)
~
=
=)
Q
=
]
o
>
—
<
on
T

4/7/2025, Lecture 12

4/7/2025, Lecture 12

Rest of Today’s Lecture

- Using this system model, we will:
- Explore latency in more depth
| Discuss how to build systems that perform well under load

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
w0
>
R
el
N
=
(A
on
g
o=
~
(o}
R
o3
&)
i
QO
7
O

:2
=}
Q
-
n
~
<)
+
o
o)
~
=
=)
Q
=
Q
o
>}
—
<
on
T

Application

1 L°

Operating system
] [

Hardware

Ideal System Performance

asymptotic peak rate

H max

Service Rate (u) -
“delivered load”

" Himax

v

Request Rate (1) - “offered load”

- A system that behaves this way 1s well-conditioned
« Delivered load increases with offered load until pipeline saturates
- As offered load increases further, throughput remains high

Application

-~ -

Operating system
] [

Hardware

e
<!
(o]
o]
O
<!
!
(=]
8

o
2
5]

Ay
(=]
(=]
)
+
n
>

n

Yol

AN

(@)

(A
a0
o

o]
=
Q

wm

o3
S
—

O

n

(@)

ELJ
=}
Q
-
n
~

<)
+
o
o)
~
=
=)
Q
=
Q
@)
>}
—
<
on
s

4/7/2025, Lecture 12

Sockets with Protection and Concurrency

: Server
Client

Create Server Socket

l

Create Client Socket Bind it to an Address

(host:port)
\\4
Connect it to server (host:port) . ___________ S Listen\ /for Connection

e J m
=~ Accept syscall(\

\Z ‘l/ oo g
Connection Socket — Gmm——— Connection Socket

Chl].d warent
A\

Close Connection Socket

7 “ywrlte request . ________.

.. - read response

-

Close Client Socket

Application

-~ -

Close Server Socket iRy
-~ -

Hardware

]
o
®
o)
o
-
P
g
(=]
=

<
=~

o
-
(=]
Q

<+
n
>

N

Yol

N

(@)

N
on
(@]
P

o=
=~
(o

n

o

S

—

<

Q

n

:Jj
=i
Q
-
n
N

>
+
=
o)
b
=
=)
Q
=
©)
o
>
—
<
an
T

4/7/2025, Lecture 12

Sockets with Concurrency, without

Server

4/7/2025, Lecture 12

Protection
Create Server Socket

Client
l

Bind it to an Address

Create Client Socket
(host:port)

Vv
Vv

Connect it to server (host'port) .. _________ > Listen for Connection

\
~~ Accept syscall(

v \l/

Connection Socket Connection Socket

Spawned Thread

pthtead_create Main Thread

Vv

L+~ gy write request
_ . read response = «-------------

-

Close Client Socket

Close Server Socket

Application

-~ -

Operating system
T

Hardware

]
o
®
o)
o
-
P
g
(=]
=

<
=~

o
-
(=]
Q

<+
n
>

N

Yol

N

(@)

N
on
(@]
P

o=
=~
(o

n

o

S

—

<

Q

n

:Jj
=i
Q
-
n
N

>
+
=
o)
b
=
=)
Q
=
©)
o
>
—
<
an
T

N
—

o)

<

=
-

Q

o)
—
Yol
N
(@)
X
~
L\
=
<

Non-Well-Conditioned Systems

- A server that spawns a new
pthread per request 1s not well- R Thvedgrou == L“OO

Linear (ideal) latency =B | ¥ 350

conditioned! 25000 \

]
»
-

300

Number of threads

Figure 2: Threaded server throughput degradation: This benchmark mea-
sures a simple threaded server which creates a single thread for each task in the [
] L__¢
Operating system
] [
https://people.eecs.berkeley.edu/~prabal/teaching/resources/eecs582/welshOlseda.pdf Hardware

Q j v
2 20000 ; :
g i {200 ¢ 3
3 2 .
= 15000 il = £
-4 i 5 g
H Q ~

[s) ; & 2
g i {150 3 =
. (=]

£ 10000 ; :
100 fﬁ

N

5000 -

50 g

. . (e]

Y TOURRT T WO~ WY W S WL, HIUL S 0 :

1 4 16 64 256 1024 3

D)

o

=

O

D)

&)

Highly Concurrent Systems

4/7/2025, Lecture 12

Building Well-Conditioned Systems

- Spawning a new thread or process for each request is not well-
conditioned

- Too many threads 1s bad
* Scheduling overhead becomes large

* Context switch overhead becomes large
- E.g., Poor cache performance

« Synchronization overhead becomes large
- E.g., Lock contention

- Was our original (v1) server well-conditioned?
* The one that handles requests one at a time, with no concurrency?
« Hint: yes!

el
(@)
(o]
<b]
]
(@)
(o]
=]
=
g
]
~
<)
ol
(=
=}
Q
+~
wm
>
n
el
N
=
(A
on
g
o
~
(o}
R
o3
&)
i
QO
R
O

o
Q
-
n
=
>
+
o
o)
~
E:j
=)
Q
=
Q
o
>}
—
<
on
T

Application

-~ -

Operating system
] [

Hardware

4/7/2025, Lecture 12

Building Well-Conditioned Systems

- Thread Pools
« User-Mode Threads

- Event-Driven Execution

- We'll discuss these next time...

]
(@)
ay]
o)
O
(@)
S
(=]
=~

Ke)

3
=~
(]

Ay
(=]
(=]
Q

+~
n
>

)]

Yol

AN

(@)

(A
)
g

o
=~
(o}

N

o

S

—

<t

O

n

(@)

Z}
o
Q
-
n
~

>
)
=
o
o)
—
=
=
(]
=
©)
()
O
>
—
<
on
T

CENTER FOR COMPUTATION
& TECHNOLOGY

CSC4103, Spring 2025, System Performance and

Highly Concurrent Systems

N
~J

4/7/2025, Lecture 12

