
Memory 1: Address 
Translation
Lecture 13

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/



Goals for Today
• Finish up discussion of highly concurrent systems

• Start exploring OS memory management (if time permits)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

2



System Performance 
and Highly 
Concurrent Systems
Part 2

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

18



Concurrent, Well-Conditioned 
Systems
• Thread Pools

• User-Mode Threads

• Event-Driven Execution

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

19



Thread Pools
• Key idea: limit the number of threads

 Before throughput starts to degrade

• Instead, allocate a bounded “pool” of worker threads, representing 
the maximum level of multiprogramming

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

20

Master

Thread

Thread Pool

q
u

e
u

e



Thread Pools
master() {

allocThreads(worker, queue);
while(TRUE) {

con = AcceptCon();
Enqueue(queue, con);

}
}

worker(queue) {
while(TRUE) {

// Blocks if empty
con = Dequeue(queue);
ServiceWebPage(con);

}
}

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

21

Master

Thread

Thread Pool

q
u

e
u

e



Highly Concurrent Well-Conditioned 
Systems
• Thread pools work well, but they somewhat limit concurrency

• Is there a good alternative?

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

22



We’ve Looked At: Kernel-Supported 
Threads
• Threads run and block (e.g., on I/O) independently

• One process may have multiple threads waiting on different things

• Two mode switches for every context switch (expensive)

• Create threads with syscalls

• Alternative: multiplex several streams of execution (at user level) on 
top of a single OS thread

 E.g., Java, Go, … (and many many user-level threads libraries before it)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

23



Concurrent, Well-Conditioned 
Systems
• Thread Pools

• User-Mode Threads

• Event-Driven Execution

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

24



User-Mode Threads
• User program contains its own

scheduler

• Several user threads per kernel thread

• User threads may be scheduled
non-preemptively

 Only switch on yield

• Context switches cheaper

 Copy registers and jump (switch in userspace)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

25



Thread Yield 4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

26

yield (syscall)

ComputePI

S
ta

c
k
 g

ro
w

th

run_new_kernel_
thread

kernel_yield

Trap to OS

(Expensive)

switch

Kernel-Supported Threads

yield

ComputePI

S
ta

c
k
 g

ro
w

th

run_new_user_
thread

Library Function

Call (Cheap)

switch

User-Mode Threads



Thread I/O 4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

27

Kernel-Supported Threads User-Mode Threads

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

S
ta

c
k
 g

ro
w

th

CopyFile

run_new_thread

kernel_read
Trap to OS

switch

S
ta

c
k
 g

ro
w

th

read

• Selects a new kernel thread to run

• Bypassing user-level scheduler



User-Mode Threads: Problems
• One user-level thread blocks on I/O: they all do

 Kernel cannot adjust scheduling among threads it doesn’t know about

• Multiple Cores?

• Can’t completely avoid blocking (syscalls, page fault)

• One Solution: Scheduler Activations

 Have kernel inform user-level scheduler when a thread blocks

 Evolving the contract between OS and application

• Alternative Solution: Language Support?

 Make the scheduler aware of the blocking operation

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

28



Go Goroutines
• Goroutines are lightweight, user-level threads

 Scheduling not preemptive (relies on goroutines to yield)

 Yield statements inserted by compiler

• Advantages relative to regular threads (e.g., pthreads)

 More lightweight

 Faster context-switch time

• Disadvantages

 Less sophisticated scheduling at the user-level

 OS is not aware of user-level threads

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

29



Go User-Level Scheduler
• Why this approach?

• 1 OS (kernel-supported) thread per CPU core: allows Go program to 
achieve parallelism not just concurrency

 Fewer OS threads? Not utilizing all CPUs

 More OS threads? No additional benefit

 We’ll see one exception to this involving syscalls

• Keep goroutine on same OS thread: affinity, nice for caching and 
performance

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

30



Go User-Level Thread Scheduler 4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

31

CPU Core CPU Core CPU Core…

OS Thread 

(M)
OS Thread 

(M)
OS Thread 

(M)

Local Run Queue Local Run Queue Local Run Queue

Global Run Queue
Newly created 

goroutines

• Why not just have a single 

global run queue?



Dealing with Blocking Syscalls
• What if a goroutine wants to make a 

blocking syscall?

 Example: File I/O

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

32

CPU Core

OS Thread 

(M1)

Running Go-rtn.

Local Run Queue



Dealing with Blocking Syscalls
• What if a goroutine

wants to make a 
blocking syscall?

 Example: File I/O

• While syscall is 
blocking, allocate new 
OS thread (M2)

 M1 is blocked by 
kernel, M2 lets us 
continue using CPU

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

33

CPU Core

OS Thread 

(M2) Blocking Go-rtn.

Local Run Queue

OS Thread

(M1)



Dealing with Blocking Syscalls
• Syscall completes: Put 

invoking goroutine back 
on queue

• Keep M1 around in a 
spare pool

• Swap it with M2 upon 
next syscall, no need to 
pay thread creation cost

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

34

CPU Core

OS Thread 

(M2)

Ready Go-rtn.

Local Run Queue

OS Thread

(M1)

Running Go-rtn.



Concurrent, Well-Conditioned 
Systems
• Thread Pools

• User-Mode Threads

• Event-Driven Execution

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

37



Event-Driven Execution
• Allows a system to handle MTAO with a single thread

 Very lightweight

• Key idea: juggle different tasks within a single thread

 All tasks’ CPU bursts execute within a single thread

 I/O bursts for each task happen in the background without a backing 
thread

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

38



Event-Driven Server Concept
while (true) {

int task_id = <wait for a task to become ready>

<look up state for task_id>

<execute next CPU burst for this task>

if (task is done) {

<forget state for task_id>

continue;

}

<issue task’s next (I/O) operation>

<update state for task_id>

}

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

39



How to “Issue Task’s Next I/O 
Operation”?
• So far, we’ve seen read and write, which block the calling thread

• We can put file descriptors into non-blocking mode

 read: Just return whatever data is available

 write: Just write whatever the kernel can buffer in its memory for now

 So read/write calls may not read or write anything

• How to wait for the next task to become ready to perform its I/O?

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

40



How to “Wait for Task to Become 
Ready”?
• POSIX provides a way to wait for one of several files to have data 

available

 select/poll system calls

 Provide a list of file descriptors

 Blocks until at least one has “ready” data, then returns which ones do

 Mixes well with non-blocking I/O, especially sockets

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

41



Alternative Asynchronous I/O APIs
• Unfortunately, non-blocking mode and select/poll don’t work well 

with regular files

• Instead: there’s the asynchronous I/O interface

 io_submit issues a disk I/O

 io_getevents syscall reaps completion of disk I/Os issued with io_submit

• Newer, better APIs still emerging (e.g., io_uring)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

42



Event-Driven Server Concept
while (true) {

int task_id = <wait for a task to become ready>

<look up state for task_id>

<execute next CPU burst for this task>

if (task is done) {

<forget state for task_id>

continue;

}

<issue task’s next (I/O) operation>

<update state for task_id>

}

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

43

This looks kind of like the 

OS thread scheduler…

But it runs in the user 

program!



User-Mode Scheduler Based on 
Event Loop
• User-mode scheduler can be an event-loop

• User threads use I/O library that issues async I/O operations

• Now user-mode scheduler can properly suspend the thread…

• But only works for I/O operations for which the kernel supports an 
asynchronous interface

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

44



User-Mode Scheduling vs. Event 
Loops
• In user-mode scheduling:

 You’re still maintaining a separate stack for each thread

 Must save PC, stack, registers when switching

 Even if you use async I/O operations to properly suspend the user thread

• In pure event-driven scheduling:

 All events execute in the same stack

 All state to resume each task (e.g., which stage we’re at) must be stored 
explicitly

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

45



Final Word on Scheduling
• When do the details of the scheduling policy and fairness really matter?

• When should you simply buy a faster computer?

 One approach: Buy it when it will pay 
for itself in improved response time

 Perhaps you’re paying for worse response 
time in reduced productivity, customer angst, 
etc…

 Might think that you should buy a faster X 
when X is utilized 100%, but usually, response 
time goes to infinity as utilization100%

• An interesting implication of this curve:

 Most scheduling algorithms work fine in the “linear” portion of the load curve, 
fail otherwise

 Argues for buying a faster X when hit “knee” of curve

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

46

Utilization

R
e

s
p

o
n

s
e

tim
e 1

0
0
%



Announcements
• Assignment 2, due Monday April 14

• Project 1, due Monday April 21

• Assignment 3 will be posted asap, due May 2

• No further deadline extensions for any of those will be possible

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

47



Address Translation

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

48



Next Objective
• Dive deeper into the concepts and mechanisms of memory sharing 

and address translation

• Enabler of many key aspects of operating systems

 Protection

 Multi-programming

 Isolation

 Memory resource management

 I/O efficiency

 Sharing

 Inter-process communication

 Debugging

 Demand paging

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

49



Recall: Four Fundamental OS 
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

50



Key OS Concept: Address Space
• Program operates in an address space that is distinct from the 

physical memory space of the machine

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

51

Processor Memory

0x000…

0xFFF…

Translator
Registers



Recall: Address Space
• Definition: Set of accessible addresses and the state 

associated with them

 232 = ~4 billion on a 32-bit machine

• What happens when you read or write to an address?

 Perhaps acts like regular memory

 Perhaps causes I/O operation

 (Memory-mapped I/O)

 Causes program to abort (segfault)?

 Communicate with another program

 …

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

52

0x000…

0xFFF…

Code

Static Data

Heap

Stack



Recall: Typical Address Space 
Structure 4

/9
/2

0
2

5
, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

53

Processor

registers

PC:

SP:

0x000…

0xFFF…

Code

Static Data

Heap

Stack



Recall: Single and Multithreaded 
Processes

• Threads encapsulate 
concurrency

 “Active” component

• Address space encapsulate 
protection:

 “Passive” component

 Keeps bugs from crashing the 
entire system

• Why have multiple threads per 
address space?

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

54



Important Aspects of Memory 
Multiplexing
• Protection

 Prevent access to private memory of other process or kernel

• Translation

 Gives uniform view of memory to programs

 Allows for efficient “tricks”

 E.g., in implementation of fork()

• Controlled Overlap

 Read-only data, execute-only shared libraries

 Inter-process communication

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

55



Alternative View: Interposing on 
Process Behavior
• OS interposes on process’ I/O operations

 How? All I/O happens via syscalls.

• OS interposes on process’ CPU usage

 How? Interrupt lets OS preempt current thread

• Question: How can the OS interpose on process’ memory accesses?

 Too slow for the OS to interpose every memory access

 Translation: hardware support to accelerate the common case

 Page fault: uncommon cases trap to the OS to handle

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

56



From Program to Process
• Preparation of a program for execution involves 

components at:
 Compile time (i.e., “gcc”)

 Link/Load time (UNIX “ld” does link)

 Execution time (e.g., dynamic libs)

• Addresses can be bound to final values anywhere in this 
path
 Depends on hardware support 

 Also depends on operating system

• Dynamic Libraries
 Linking postponed until execution

 Small piece of code (i.e. the stub), locates appropriate 
memory-resident library routine

 Stub replaces itself with the address of the routine, and 
executes routine

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

57



Uniprogramming: One Process at a 
Time
• No Translation or Protection

 Application always runs at same 
place in physical memory since only 
one application at a time

 Application can access any physical 
address

 Application given illusion of 
dedicated machine by giving it 
reality of a dedicated machine

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

58
0x00000000

0xFFFFFFFF

Application

Operating

System

V
a
lid

 3
2
-b

it

A
d
d

re
s
s
e
s



Primitive Multiprogramming
• Multiprogramming without 

Translation or Protection

• Use Loader/Linker: Adjust addresses 
while program loaded into memory 
(loads, stores, jumps)

 Everything adjusted to memory location 
where OS put program

 Translation done by a linker-loader 
(relocation)

• No protection!

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

59
0x00000000

0xFFFFFFFF

Application1

Operating

System

Application2 0x00020000



Multiprogramming with Protection
• Can we protect programs from each other without translation?

 Yes: Base and Bound!

 Used by, e.g., Cray-1 supercomputer

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

60
0x00000000

0xFFFFFFFF

Application1

Operating

System

Application2 0x00020000BaseAddr=0x20000

LimitAddr=0x10000



Recall: Base and Bound (no 
Translation) 4

/9
/2

0
2

5
, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

61

Code

Static Data

Heap

Stack

Code

Static Data

Heap

Stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program

address

Base Address

Bound <

1000…

1100…
0100…

• Requires relocation

• Can the program touch OS?

• Can it touch other programs?

0010…
1010…

0100…

≥

Original Program



General Translation

• Two views of memory:

 View from the CPU (what program sees, virtual memory)

 View from memory (physical memory)

 Hardware translator (Memory Management Unit or MMU) converts 
between the two views

• With translation, every program can be linked/loaded into same 
region of user address space

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

62

Physical Addresses
CPU MMU

Virtual Addresses



Recall: Base and Bound (with 
Translation) 4

/9
/2

0
2

5
, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

63

Code

Static Data

Heap

Stack

Code

Static Data

Heap

Stack

0000…

FFFF…

1000…

Program

address

Base Address

Bound <

1000…

1100…
0100…

0010…
0010…

1010…

• Can the program touch OS?

• Can it touch other programs?

• Fragmentation still an issue!

code

Static Data

heap

stack

0000…

0100…

Original Program



Issues with Simple Base and Bound

• Fragmentation problem over time

• No support for sparse address space

• Hard to do interprocess sharing

 E.g., to share code

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

64

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10
process 11



Segmentation

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

65



Segmentation
• Program’s view of memory: 

multiple separate segments

• Each segment is given a 
region of contiguous memory

 Has a base and limit

• Memory address consists of 
segment ID and offset

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

66

1

3

2

4

user view of

memory space 

1

4

2

3

physical 

memory space

1

2



Hardware Support for Segmentation

• Segment map resides in 
processor
 Segment number mapped to

base/bound pair (for translation)

• Each entry corresponds to a chunk
of physical memory
 Segment addressed by portion of virtual address

 However, could be included in instruction instead:

 x86 Example: mov [es:bx],ax. 

• What is “V/N” (valid / not valid)?
 Can mark segments as invalid; requires check as well

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

67

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 V

Base5 Limit5 N

Base6 Limit6 N

Base7 Limit7 V

OffsetSeg #Virtual

Address

Base2 Limit2 V

+
Physical

Address

> Error
offset

Check Valid

Access

Error



Intel x86 Special Registers

• Segmentation can’t be just “turned off”

• What if we just want to use paging?
 Set base and bound to all of memory, in all 

segments

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

68

80386 Special Registers



Example: Four Segments 4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

69

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

OffsetSeg

014 1315

0x4000

0x0000

0x8000

0xC000

Virtual Address Space

Virtual Address Format:

0x0000

0x4800

0x5C00

0x4000

0xF000

Physical Address Space

Space for Other Apps

Shared with

Other Apps

Might be shared

SegID = 0

SegID = 1



Observations about Segmentation
• Translation on every instruction fetch, load or store

• Virtual address space has holes
 Segmentation efficient for sparse address spaces

• When it is OK to address outside valid range?
 This is how the stack (and heap?) is allowed to grow

 For instance, stack takes fault, system automatically increases size of stack

• Need protection mode in segment table
 For example, code segment would be read-only

 Data and stack would be read-write (stores allowed)

• What must be saved/restored on context switch?
 Segment table stored in CPU, not in memory (small)

 Might store all of processes memory onto disk when switched (called 
“swapping”)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

70



What if not all segments fit in 
memory?

• Extreme form of Context Switch: 
Swapping
 In order to make room for next 

process, some or all of the previous 
process is moved to disk

 Likely need to send out complete 
segments 

 This greatly increases the cost of 
context-switching

• What might be a desirable 
alternative?
 Some way to keep only active 

portions of a process in memory at 
any one time

 Need finer granularity control over 
physical memory

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

71



Problems with Segmentation
• Must fit variable-sized chunks into physical memory

• May move processes multiple times to fit everything

• Limited options for swapping to disk

• Fragmentation: wasted space

 External: free gaps between allocated chunks

 Internal: don’t need all memory within allocated chunks

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

72



4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

73


