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4/9/2025, Lecture 13

Goals for Today

- Finish up discussion of highly concurrent systems

. Start exploring OS memory management (if time permits)
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System Performance
and Highly
Concurrent Systems

Part 2




Concurrent, Well-Conditioned
Systems

- Thread Pools
« User-Mode Threads

4/9/2025, Lecture 13

- Event-Driven Execution
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4/9/2025, Lecture 13

Thread Pools

- Key idea: limit the number of threads
- Before throughput starts to degrade

- Instead, allocate a bounded “pool” of worker threads, representing
the maximum level of multiprogramming

Thread Pool —
1 -

Operating system
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4/9/2025, Lecture 13

Thread Pools

master() { worker(queue) A
allocThreads(worker, queue); while(TRUE) A
while(TRUE) { // Blocks if empty

con = AcceptCon(); con = Dequeue(queue);
Enqueue(queue, con); ServicelWebPage(con);
} }
} }
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Highly Concurrent Well-Conditioned
Systems

- Thread pools work well, but they somewhat limit concurrency

4/9/2025, Lecture 13

- Is there a good alternative?
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We'’ve Looked At: Kernel-Supported
Threads

- Threads run and block (e.g., on I/0) independently

4/9/2025, Lecture 13

- One process may have multiple threads waiting on different things
- Two mode switches for every context switch (expensive)

- Create threads with syscalls

. Alternative: multiplex several streams of execution (at user level) on
top of a single OS thread

- E.g., Java, Go, ... (and many many user-level threads libraries before it)
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Concurrent, Well-Conditioned
Systems

- Thread Pools
« User-Mode Threads

4/9/2025, Lecture 13

- Event-Driven Execution
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User-Mode Threads

User program contains its own
scheduler

Several user threads per kernel thread

User threads may be scheduled
non-preemptively
* Only switch on yield

Context switches cheaper
- Copy registers and jump (switch in userspace)

k

«—— user thread

<«—— kernel thread
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Thread Yield

Kernel-Supported Threads

0
Trap to OS &
(Expensive) . &S
kernel yield 3
2
>

run_new_kernel |4

thread

switch

Library Function
Call (Cheap)

User-Mode Threads
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Thread I/0O

Kernel-Supported Threads User-Mode Threads
CopyFile CopyFile

n n
read § read :’-’:
Trap to OS C X Trap to OS C X
(@) (@]
kernel_read 3 kernel_read 3
2 2
run_new_thread = run_new_thread =

<

switch

 Selects a new kernel thread to run
* Bypassing user-level scheduler

switch
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4/9/2025, Lecture 13

User-Mode Threads: Problems

- One user-level thread blocks on I/0: they all do
+ Kernel cannot adjust scheduling among threads it doesn’t know about

- Multiple Cores?
. Can’t completely avoid blocking (syscalls, page fault)

« One Solution: Scheduler Activations
« Have kernel inform user-level scheduler when a thread blocks
« Evolving the contract between OS and application

- Alternative Solution: Language Support?
- Make the scheduler aware of the blocking operation
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4/9/2025, Lecture 13

Go Goroutines

- Goroutines are lightweight, user-level threads
- Scheduling not preemptive (relies on goroutines to yield)
* Yield statements inserted by compiler

- Advantages relative to regular threads (e.g., pthreads)
* More lightweight
- Faster context-switch time

- Disadvantages
 Less sophisticated scheduling at the user-level
* OS 1s not aware of user-level threads
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4/9/2025, Lecture 13

(o User-Level Scheduler

- Why this approach?

- 1 OS (kernel-supported) thread per CPU core: allows Go program to
achieve parallelism not just concurrency

« Fewer OS threads? Not utilizing all CPUs
* More OS threads? No additional benefit

« We'll see one exception to this involving syscalls

- Keep goroutine on same OS thread: affinity, nice for caching and
performance
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4/9/2025, Lecture 13

Go User-Level Thread Scheduler

. . 1
 Why not just have a single Global Run Queue A Newly created
global run queue? . . . . goroutines
Local Run Queue Local Run Queue Local Run Queue

OS Thread OS Thread OS Thread
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4/9/2025, Lecture 13

Dealing with Blocking Syscalls

- What if a goroutine wants to make a
Local Run Queue blocking syscall?

. . . . - Example: File I/O

OS Thread
(M1)

=
©
o
+
<
—
n
=)
o]
=~
E
92}
0
=
bt
=
2
10
N
S
N
on

CPU Core

CSC4103, Sprin




Dealing with Blocking Syscalls

- What if a goroutine
Local Run Queue wants to make a

T . . . blocking syscall?

- Example: File I/0

- While syscall 1s

OS Thread blocking, allocate new
M2) Blocking Go-rtn. OS thread (M2)
* M1 is blocked by
OS Thread kernel, M2 lets us
CPU Core M1) continue using CPU

4/9/2025, Lecture 13
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4/9/2025, Lecture 13

Dealing with Blocking Syscalls

- Syscall completes: Put
Local Run Queue invoking goroutine back

N o e
- Keep M1 around in a

OS Thread Ready Go-rtn. - Swap it with M2 upon
M2) next syscall, no need to

pay thread creation cost

OS Thread
CPU Core (M1)
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Concurrent, Well-Conditioned
Systems

- Thread Pools
« User-Mode Threads

4/9/2025, Lecture 13

- Event-Driven Execution
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4/9/2025, Lecture 13

Event-Driven Execution

- Allows a system to handle MTAO with a single thread
* Very lightweight

- Key 1dea: juggle different tasks within a single thread
- All tasks’ CPU bursts execute within a single thread

+ I/O bursts for each task happen in the background without a backing
thread

Application
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4/9/2025, Lecture 13

Event-Driven Server Concept

while (true) {
int task _id = <wait for a task to become ready>
<look up state for task id>
<execute next CPU burst for this task>
if (task is done) {
<forget state for task id>
continue;
}
<issue task’s next (I/O0) operation>
<update state for task id>
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How to “Issue Task’s Next I/0
Operation™?

- So far, we've seen read and write, which block the calling thread

4/9/2025, Lecture 13

- We can put file descriptors into non-blocking mode
* read: Just return whatever data is available
- write: Just write whatever the kernel can buffer in its memory for now
* So read/write calls may not read or write anything

- How to wait for the next task to become ready to perform its I/0?

Application
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How to “Wait for Task to Become
Ready”?

- POSIX provides a way to wait for one of several files to have data
available
- select/poll system calls

4/9/2025, Lecture 13

* Provide a list of file descriptors
 Blocks until at least one has “ready” data, then returns which ones do
« Mixes well with non-blocking I/0, especially sockets
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4/9/2025, Lecture 13

Alternative Asynchronous 1/O APIs

- Unfortunately, non-blocking mode and select/poll don’t work well
with regular files

- Instead: there’s the asynchronous I/O interface
« io_submit issues a disk I/O
- io_getevents syscall reaps completion of disk I/Os issued with io _submit

- Newer, better APIs still emerging (e.g., io_uring)
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4/9/2025, Lecture 13

Event-Driven Server Concept

while (true) {
int task id = <wait for a task to become ready>
<look up state for task id>
<execute next CPU burst for this task>
if (task is done) {
<forget state for task id>
continue;
}
<issue task’s next (I/0) operation>
<update state for task id>
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User-Mode Scheduler Based on
Event Loop

- User-mode scheduler can be an event-loop

4/9/2025, Lecture 13

- User threads use I/0 library that 1issues async I/O operations

- Now user-mode scheduler can properly suspend the thread...

- But only works for I/0 operations for which the kernel supports an
asynchronous interface
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User-Mode Scheduling vs. Event
Loops

 In user-mode scheduling:
* You're still maintaining a separate stack for each thread
« Must save PC, stack, registers when switching
« Even if you use async I/0 operations to properly suspend the user thread

« In pure event-driven scheduling:
- All events execute 1n the same stack

- All state to resume each task (e.g., which stage we're at) must be stored
explicitly
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4/9/2025, Lecture 13

Final Word on Scheduling

- When do the details of the scheduling policy and fairness really matter?

- When should you simply buy a faster computer?

* One approach: Buy it when 1t will pay
for itself in improved response time
+ Perhaps you're paying for worse response

time in reduced productivity, customer angst,
etc...

+ Might think that you should buy a faster X
when X is utilized 100%, but usually, response
time goes to infinity as utilization=100%

oWl
asuodsa

%00T

Utilization

- An interesting implication of this curve:

* Most scheduling algorithms work fine in the “linear” portion of the load curve,
fail otherwise
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4/9/2025, Lecture 13

Announcements

- Assignment 2, due Monday April 14
- Project 1, due Monday April 21

- Assignment 3 will be posted asap, due May 2

- No further deadline extensions for any of those will be possible
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4/9/2025, Lecture 13

Next Objective

- Dive deeper into the concepts and mechanisms of memory sharing
and address translation

- Enabler of many key aspects of operating systems
* Protection
« Multi-programming

Isolation
* Memory resource management

I/0 efficiency

Sharing

Inter-process communication

Debugging
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Recall: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application
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4/9/2025, Lecture 13

Key OS Concept: Address Space

- Program operates in an address space that is distinct from the
physical memory space of the machine

0x000...

N
e

Translator
Registers

Processor ( W Memory

OxFFF...
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Recall: Address Space

- Definition: Set of accessible addresses and the state
associated with them

« 232 = ~4 billion on a 32-bit machine

- What happens when you read or write to an address?
« Perhaps acts like regular memory

* Perhaps causes I/0 operation
- (Memory-mapped 1/0)

- Causes program to abort (segfault)?
* Communicate with another program

Code

Static Data

Heap

Stack

0x000...

Application
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Recall: Typical Address Space
Structure

PC:

SP: o > Code

Static Data

Processor Heap

reqgisters

Stack

0x000...

4/9/2025, Lecture 13
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Recall: Single and Multithreaded
Processes

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread —— ;

3

é

;._

— thread

single-threaded process

multithreaded process

- Threads encapsulate
concurrency

« “Active” component

- Address space encapsulate
protection:

+ “Passive” component

- Keeps bugs from crashing the
entire system

- Why have multiple threads per
address space?
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Important Aspects of Memory
Multiplexing

- Protection
- Prevent access to private memory of other process or kernel

4/9/2025, Lecture 13

- Translation
* Gives uniform view of memory to programs

- Allows for efficient “tricks”
- E.g., in implementation of fork()

 Controlled Overlap
- Read-only data, execute-only shared libraries
* Inter-process communication
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Alternative View: Interposing on
Process Behavior

- OS interposes on process’ I/O operations
- How? All I/O happens via syscalls.

4/9/2025, Lecture 13

- OS interposes on process’ CPU usage
« How? Interrupt lets OS preempt current thread

- Question: How can the OS interpose on process’ memory accesses?
+ Too slow for the OS to interpose every memory access
- Translation: hardware support to accelerate the common case
- Page fault: uncommon cases trap to the OS to handle
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From Program to Process

- Preparation of a program for execution involves
components at-

- Compile time G.e., “gcc”)
- Link/Load time (UNIX “l1d” does link)
- Execution time (e.g., dynamic libs)

. Adog'esses can be bound to final values anywhere in this
pat

* Depends on hardware support
+ Also depends on operating system

- Dynamic Libraries
« Linking postponed until execution

- Small piece of code (i.e. the stub), locates appropriate
memory-resident library routine

« Stub replaces itself with the address of the routine, and
executes routine

other
object
modules

system
library

dynamicall
loaded
system
library
dynamic
linking

source
program

compiler or
assembler

linkage
editor

load
module

loader

Y

in-memaory
binary
memory
image

compile
time

. load
time

executio
» time (run
time)

4/9/2025, Lecture 13

=
=)
.-
)
<
—
)
=]
fav]
&
)]
n
o)
b
e}
)
<

25,

ring 20




Uniprogramming: One Process at a
Time

- No Translation or Protection

+ Application always runs at same
place in physical memory since only
one application at a time
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Primitive Multiprogramming

- Multiprogramming without
Translation or Protection

- Use Loader/Linker: Adjust addresses
while program loaded into memory
(loads, stores, jumps)

- Everything adjusted to memory location
where OS put program

* Translation done by a linker-loader
(relocation)

- No protection!

Operating
System

Application2

Applicationl

OXFFFFFFFF

0x00020000

Application

] L__¢
OXOOOOOOOO Operating system

T T -

Hardware

4/9/2025, Lecture 13

g
O
o
+
<
—
n
g
o
=
E
n
n
o
=
s
g
Te)
N
e}
N
on
=]
=
~
[
N
&)
—
<t
®)
R
@)




e
—

o

P~

=)
)

3]

o)
—
Yol
N
(@)
X
~~
(op)
s
<

Multiprogramming with Protection

- Can we protect programs from each other without translation?
* Yes: Base and Bound!

+ Used by, e.g., Cray-1 supercomputer

, OXFFFFFFFF -
Operating |
System :%n
| Limitaddr=0x10000 : > =
| BaseAddr=0x20000 : » Application2 0x00020000 &
Application %

Applicationl ] ©__-

OXOOOOOOOO Operating system
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Recall: Base and Bound (no

Translation)

* Requires relocation
e Can the program touch OS?

* Can 1t touch other programs?

Code

Static Data
Heap

Base Address
1000...
0010, Code 1000...
Program 1010... Static Data
address
Heap
Bound
0100 1100...

0000...

FFFF...

Original Program

0000...

code

Static Data

heap

stack

4/9/2025, Lecture 13
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4/9/2025, Lecture 13

General Translation

Virtual Addresses

Physical Addresses

- Two views of memory:
- View from the CPU (what program sees, virtual memory)
- View from memory (physical memory)

- Hardware translator (Memory Management Unit or MMU) converts
between the two views
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Recall: Base and Bound (with
Translation)

e Can the program touch OS?
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0000...

Code
Static Data Original Program

» Can 1t touch other programs?

Heap
: : : ;

* Fragmentation still an 1ssue! 0000. . ﬁ
code Ejj
Base Address .
1000. .. Static Data >
0010... 1000... Code hea :
Program 0010... 5 Static Data P ¥ <
address Hea A S
L stack ki
Bound 1100 3
0100... 7

FFFF...
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Issues with Simple Base and Bound

process 6 process 6 process 6 process 6

process 5 process 5 process 5

process 9 process 9

process 2 —> —> "> | process 10

process 11

0S OS OS OS

- Fragmentation problem over time
- No support for sparse address space

- Hard to do interprocess sharing

- E.g., to share code Application
¢ -

CSC4103, Spring 2025, Address Translatio
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Segmentation

- Program’s view of memory:
multiple separate segments

- Each segment is given a
region of contiguous memory

« Has a base and limit

subroutine

symbol
table

- Memory address consists of
segment ID and offset

Sqrt

main 3
program

user view of physical
memory space  memory space

logical address
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Application

] L
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Hardware Support for Segmentation

offset

Virtual
Address

- Segment map resides in

BaseO

Limit0

processor

* Segment number mapped to
base/bound pair (for translation)

- Each entry corresponds to a chunk
of physical memory

Limitl

Base3 | Limit3

Base4 | Limit4 |V
Base5 | Limits | N
Base6 | Limit6 | N
Base7 | Limit7 |V

- Segment addressed by portion of virtual address
- However, could be included in instruction instead:

- x86 Example: mov [esbx],ax.

- What is “V/N” (valid / not valid)?

- Can mark segments as invalid; requires check as well

Physical
Address

Error

Access

Application

] L

Operating system

-~ -

Hardware

4/9/2025, Lecture 13

CSC4103, Spring 2025, Address Translation



Intel x86 Special Registers

80386 Special Registers

Segiment tegisiels

15 3

|3

Lhdex

—

REFL

RBPL = Requesicr Privilege Level

TL=Table Ihdicatar
0=G0T,1=LDOT)

Ihdex =Thdex inlz 1able

Plotecied hMode segioeht seleciol

- Segmentation can’t be just “turned off”

- What if we just want to use paging?

 Set base and bound to all of memory, in all
segments

Code Seg. Cata Seg.
15 Cs o] 3 Os o]
Slack Seg. Exira Seg.
13 S5 o] 3 ES ]
Exira Seg. Exiia. Seg
13 ES ] 3 GS ]
M|l |o|Do|L|T|s|Z A P C
X|lTt|PL |F|F|F|F|E|F|X|F|X|F|X|F
15 14 13 12 11 10 9 & 7 & 5 4 3 2 1 @
P EfT|(TpMlp
& Bl o CRO Uhuosed CR1
3130 S 43210 1 0 Flags
Page Fault Page Diiveclol ot
e il Cr2 B ch-islci? Used| CR3
31 o] 3 7 0
PG=Paging Enable %fﬁﬁ;fﬁd—faﬂ

ET=Emulatich Ty

TE=Task Swilc hnf
ElWi=Emulale Coplocessol

W P=hialh coprocessolr present
PE=FP rotected MMode enable

LOPL=L'0 Privilege Level

OF=0vetflow Flag
DE=nrection Flag
T.F:T.nlcl'l'u# Flag
TE=Trap Flag
EF=Nigh Flag
EF=fero Flag
AF=foxlhaly Flag
PE=Parnity Flag
CE=Carry Flag

4/9/2025, Lecture 13
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Example: Four Segments

0x0000

0x4000

0x8000

0xC000

15

SegID =0

14 13

SegID=1

0x0000

0x4000

Virtual Address Space

> 0x4800

> 0x5C00

0xF000

SegID # | Base Limit
0 0 (code) |0x4000 | 0x0800
1 (data) 0x4800 | 0x1400
2 (shared) | OxFOOO | 0x1000
3 (stack) | 0x0000 | 0x3000

Shared with
Other Apps

Physical Address Space

13— Might be shared

Space for Other Apps

4/9/2025, Lecture 13

=)
©
o
-
<
—
9]
g
]
—
B
n
9]
)
~
o
e
<
S
AN
@]
N
on
g
~
[
N
C‘Qh
©
—
<t
®)
N
@)

Op
N©




Observations about Segmentation

- Translation on every instruction fetch, load or store

- Virtual address space has holes
- Segmentation efficient for sparse address spaces

- When 1t 1s OK to address outside valid range?
- This is how the stack (and heap?) is allowed to grow
- For instance, stack takes fault, system automatically increases size of stack

- Need protection mode in segment table
« For example, code segment would be read-only
- Data and stack would be read-write (stores allowed)

« What must be saved/restored on context switch?
- Segment table stored in CPU, not in memory (small)

- Might store all of processes memory onto disk when switched (called T caton
“swapping”) -

Operating system
] [

Hardware
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What if not all segments fit in
memory?
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—
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- Extreme form of Context Switch:
Swapping

R - * In order to make room for next
| 1 process, some or all of the previous
operating . .
system process 1s moved to disk
+ Likely need to send out complete g
@ process P, segments E
swap out ] ] %
— » This greatly increases the cost of 2
orocess | context-switching :
@swap in ::
- What might be a desirable i
user | alternative? 2
space backi )
seKing store * Some way to keep only active E
main memory portions of a process in memory at o)
any one time g
0 — - ;—}‘1
* Need finer granularity control over o -
physical memory Tt =

Operating system
- -

Hardware
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Problems with Segmentation

- Must fit variable-sized chunks into physical memory
- May move processes multiple times to fit everything
- Limited options for swapping to disk

- Fragmentation: wasted space
- External: free gaps between allocated chunks
* Internal: don’t need all memory within allocated chunks

Application
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CENTER FOR COMPUTATION
& TECHNOLOGY
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