
Memory 1: Address 
Translation
Lecture 13

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/



Goals for Today
• Finish up discussion of highly concurrent systems

• Start exploring OS memory management (if time permits)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

2



System Performance 
and Highly 
Concurrent Systems
Part 2

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

18



Concurrent, Well-Conditioned 
Systems
• Thread Pools

• User-Mode Threads

• Event-Driven Execution

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

19



Thread Pools
• Key idea: limit the number of threads

 Before throughput starts to degrade

• Instead, allocate a bounded “pool” of worker threads, representing 
the maximum level of multiprogramming

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

20

Master

Thread

Thread Pool

q
u

e
u

e



Thread Pools
master() {

allocThreads(worker, queue);
while(TRUE) {

con = AcceptCon();
Enqueue(queue, con);

}
}

worker(queue) {
while(TRUE) {

// Blocks if empty
con = Dequeue(queue);
ServiceWebPage(con);

}
}

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

21

Master

Thread

Thread Pool

q
u

e
u

e



Highly Concurrent Well-Conditioned 
Systems
• Thread pools work well, but they somewhat limit concurrency

• Is there a good alternative?

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

22



We’ve Looked At: Kernel-Supported 
Threads
• Threads run and block (e.g., on I/O) independently

• One process may have multiple threads waiting on different things

• Two mode switches for every context switch (expensive)

• Create threads with syscalls

• Alternative: multiplex several streams of execution (at user level) on 
top of a single OS thread

 E.g., Java, Go, … (and many many user-level threads libraries before it)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

23



Concurrent, Well-Conditioned 
Systems
• Thread Pools

• User-Mode Threads

• Event-Driven Execution

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

24



User-Mode Threads
• User program contains its own

scheduler

• Several user threads per kernel thread

• User threads may be scheduled
non-preemptively

 Only switch on yield

• Context switches cheaper

 Copy registers and jump (switch in userspace)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

25



Thread Yield 4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

26

yield (syscall)

ComputePI

S
ta

c
k
 g

ro
w

th

run_new_kernel_
thread

kernel_yield

Trap to OS

(Expensive)

switch

Kernel-Supported Threads

yield

ComputePI

S
ta

c
k
 g

ro
w

th

run_new_user_
thread

Library Function

Call (Cheap)

switch

User-Mode Threads



Thread I/O 4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

27

Kernel-Supported Threads User-Mode Threads

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

S
ta

c
k
 g

ro
w

th

CopyFile

run_new_thread

kernel_read
Trap to OS

switch

S
ta

c
k
 g

ro
w

th

read

• Selects a new kernel thread to run

• Bypassing user-level scheduler



User-Mode Threads: Problems
• One user-level thread blocks on I/O: they all do

 Kernel cannot adjust scheduling among threads it doesn’t know about

• Multiple Cores?

• Can’t completely avoid blocking (syscalls, page fault)

• One Solution: Scheduler Activations

 Have kernel inform user-level scheduler when a thread blocks

 Evolving the contract between OS and application

• Alternative Solution: Language Support?

 Make the scheduler aware of the blocking operation

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

28



Go Goroutines
• Goroutines are lightweight, user-level threads

 Scheduling not preemptive (relies on goroutines to yield)

 Yield statements inserted by compiler

• Advantages relative to regular threads (e.g., pthreads)

 More lightweight

 Faster context-switch time

• Disadvantages

 Less sophisticated scheduling at the user-level

 OS is not aware of user-level threads

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

29



Go User-Level Scheduler
• Why this approach?

• 1 OS (kernel-supported) thread per CPU core: allows Go program to 
achieve parallelism not just concurrency

 Fewer OS threads? Not utilizing all CPUs

 More OS threads? No additional benefit

 We’ll see one exception to this involving syscalls

• Keep goroutine on same OS thread: affinity, nice for caching and 
performance

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

30



Go User-Level Thread Scheduler 4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

31

CPU Core CPU Core CPU Core…

OS Thread 

(M)
OS Thread 

(M)
OS Thread 

(M)

Local Run Queue Local Run Queue Local Run Queue

Global Run Queue
Newly created 

goroutines

• Why not just have a single 

global run queue?



Dealing with Blocking Syscalls
• What if a goroutine wants to make a 

blocking syscall?

 Example: File I/O

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

32

CPU Core

OS Thread 

(M1)

Running Go-rtn.

Local Run Queue



Dealing with Blocking Syscalls
• What if a goroutine

wants to make a 
blocking syscall?

 Example: File I/O

• While syscall is 
blocking, allocate new 
OS thread (M2)

 M1 is blocked by 
kernel, M2 lets us 
continue using CPU

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

33

CPU Core

OS Thread 

(M2) Blocking Go-rtn.

Local Run Queue

OS Thread

(M1)



Dealing with Blocking Syscalls
• Syscall completes: Put 

invoking goroutine back 
on queue

• Keep M1 around in a 
spare pool

• Swap it with M2 upon 
next syscall, no need to 
pay thread creation cost

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

34

CPU Core

OS Thread 

(M2)

Ready Go-rtn.

Local Run Queue

OS Thread

(M1)

Running Go-rtn.



Concurrent, Well-Conditioned 
Systems
• Thread Pools

• User-Mode Threads

• Event-Driven Execution

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

37



Event-Driven Execution
• Allows a system to handle MTAO with a single thread

 Very lightweight

• Key idea: juggle different tasks within a single thread

 All tasks’ CPU bursts execute within a single thread

 I/O bursts for each task happen in the background without a backing 
thread

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

38



Event-Driven Server Concept
while (true) {

int task_id = <wait for a task to become ready>

<look up state for task_id>

<execute next CPU burst for this task>

if (task is done) {

<forget state for task_id>

continue;

}

<issue task’s next (I/O) operation>

<update state for task_id>

}

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

39



How to “Issue Task’s Next I/O 
Operation”?
• So far, we’ve seen read and write, which block the calling thread

• We can put file descriptors into non-blocking mode

 read: Just return whatever data is available

 write: Just write whatever the kernel can buffer in its memory for now

 So read/write calls may not read or write anything

• How to wait for the next task to become ready to perform its I/O?

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

40



How to “Wait for Task to Become 
Ready”?
• POSIX provides a way to wait for one of several files to have data 

available

 select/poll system calls

 Provide a list of file descriptors

 Blocks until at least one has “ready” data, then returns which ones do

 Mixes well with non-blocking I/O, especially sockets

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

41



Alternative Asynchronous I/O APIs
• Unfortunately, non-blocking mode and select/poll don’t work well 

with regular files

• Instead: there’s the asynchronous I/O interface

 io_submit issues a disk I/O

 io_getevents syscall reaps completion of disk I/Os issued with io_submit

• Newer, better APIs still emerging (e.g., io_uring)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

42



Event-Driven Server Concept
while (true) {

int task_id = <wait for a task to become ready>

<look up state for task_id>

<execute next CPU burst for this task>

if (task is done) {

<forget state for task_id>

continue;

}

<issue task’s next (I/O) operation>

<update state for task_id>

}

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

43

This looks kind of like the 

OS thread scheduler…

But it runs in the user 

program!



User-Mode Scheduler Based on 
Event Loop
• User-mode scheduler can be an event-loop

• User threads use I/O library that issues async I/O operations

• Now user-mode scheduler can properly suspend the thread…

• But only works for I/O operations for which the kernel supports an 
asynchronous interface

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

44



User-Mode Scheduling vs. Event 
Loops
• In user-mode scheduling:

 You’re still maintaining a separate stack for each thread

 Must save PC, stack, registers when switching

 Even if you use async I/O operations to properly suspend the user thread

• In pure event-driven scheduling:

 All events execute in the same stack

 All state to resume each task (e.g., which stage we’re at) must be stored 
explicitly

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

45



Final Word on Scheduling
• When do the details of the scheduling policy and fairness really matter?

• When should you simply buy a faster computer?

 One approach: Buy it when it will pay 
for itself in improved response time

 Perhaps you’re paying for worse response 
time in reduced productivity, customer angst, 
etc…

 Might think that you should buy a faster X 
when X is utilized 100%, but usually, response 
time goes to infinity as utilization100%

• An interesting implication of this curve:

 Most scheduling algorithms work fine in the “linear” portion of the load curve, 
fail otherwise

 Argues for buying a faster X when hit “knee” of curve

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

46

Utilization

R
e

s
p

o
n

s
e

tim
e 1

0
0
%



Announcements
• Assignment 2, due Monday April 14

• Project 1, due Monday April 21

• Assignment 3 will be posted asap, due May 2

• No further deadline extensions for any of those will be possible

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

47



Address Translation

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

48



Next Objective
• Dive deeper into the concepts and mechanisms of memory sharing 

and address translation

• Enabler of many key aspects of operating systems

 Protection

 Multi-programming

 Isolation

 Memory resource management

 I/O efficiency

 Sharing

 Inter-process communication

 Debugging

 Demand paging

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

49



Recall: Four Fundamental OS 
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

50



Key OS Concept: Address Space
• Program operates in an address space that is distinct from the 

physical memory space of the machine

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

51

Processor Memory

0x000…

0xFFF…

Translator
Registers



Recall: Address Space
• Definition: Set of accessible addresses and the state 

associated with them

 232 = ~4 billion on a 32-bit machine

• What happens when you read or write to an address?

 Perhaps acts like regular memory

 Perhaps causes I/O operation

 (Memory-mapped I/O)

 Causes program to abort (segfault)?

 Communicate with another program

 …

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

52

0x000…

0xFFF…

Code

Static Data

Heap

Stack



Recall: Typical Address Space 
Structure 4

/9
/2

0
2

5
, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

53

Processor

registers

PC:

SP:

0x000…

0xFFF…

Code

Static Data

Heap

Stack



Recall: Single and Multithreaded 
Processes

• Threads encapsulate 
concurrency

 “Active” component

• Address space encapsulate 
protection:

 “Passive” component

 Keeps bugs from crashing the 
entire system

• Why have multiple threads per 
address space?

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

54



Important Aspects of Memory 
Multiplexing
• Protection

 Prevent access to private memory of other process or kernel

• Translation

 Gives uniform view of memory to programs

 Allows for efficient “tricks”

 E.g., in implementation of fork()

• Controlled Overlap

 Read-only data, execute-only shared libraries

 Inter-process communication

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

55



Alternative View: Interposing on 
Process Behavior
• OS interposes on process’ I/O operations

 How? All I/O happens via syscalls.

• OS interposes on process’ CPU usage

 How? Interrupt lets OS preempt current thread

• Question: How can the OS interpose on process’ memory accesses?

 Too slow for the OS to interpose every memory access

 Translation: hardware support to accelerate the common case

 Page fault: uncommon cases trap to the OS to handle

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

56



From Program to Process
• Preparation of a program for execution involves 

components at:
 Compile time (i.e., “gcc”)

 Link/Load time (UNIX “ld” does link)

 Execution time (e.g., dynamic libs)

• Addresses can be bound to final values anywhere in this 
path
 Depends on hardware support 

 Also depends on operating system

• Dynamic Libraries
 Linking postponed until execution

 Small piece of code (i.e. the stub), locates appropriate 
memory-resident library routine

 Stub replaces itself with the address of the routine, and 
executes routine

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

57



Uniprogramming: One Process at a 
Time
• No Translation or Protection

 Application always runs at same 
place in physical memory since only 
one application at a time

 Application can access any physical 
address

 Application given illusion of 
dedicated machine by giving it 
reality of a dedicated machine

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

58
0x00000000

0xFFFFFFFF

Application

Operating

System

V
a
lid

 3
2
-b

it

A
d
d

re
s
s
e
s



Primitive Multiprogramming
• Multiprogramming without 

Translation or Protection

• Use Loader/Linker: Adjust addresses 
while program loaded into memory 
(loads, stores, jumps)

 Everything adjusted to memory location 
where OS put program

 Translation done by a linker-loader 
(relocation)

• No protection!

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

59
0x00000000

0xFFFFFFFF

Application1

Operating

System

Application2 0x00020000



Multiprogramming with Protection
• Can we protect programs from each other without translation?

 Yes: Base and Bound!

 Used by, e.g., Cray-1 supercomputer

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

60
0x00000000

0xFFFFFFFF

Application1

Operating

System

Application2 0x00020000BaseAddr=0x20000

LimitAddr=0x10000



Recall: Base and Bound (no 
Translation) 4

/9
/2

0
2

5
, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

61

Code

Static Data

Heap

Stack

Code

Static Data

Heap

Stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program

address

Base Address

Bound <

1000…

1100…
0100…

• Requires relocation

• Can the program touch OS?

• Can it touch other programs?

0010…
1010…

0100…

≥

Original Program



General Translation

• Two views of memory:

 View from the CPU (what program sees, virtual memory)

 View from memory (physical memory)

 Hardware translator (Memory Management Unit or MMU) converts 
between the two views

• With translation, every program can be linked/loaded into same 
region of user address space

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

62

Physical Addresses
CPU MMU

Virtual Addresses



Recall: Base and Bound (with 
Translation) 4

/9
/2

0
2

5
, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

63

Code

Static Data

Heap

Stack

Code

Static Data

Heap

Stack

0000…

FFFF…

1000…

Program

address

Base Address

Bound <

1000…

1100…
0100…

0010…
0010…

1010…

• Can the program touch OS?

• Can it touch other programs?

• Fragmentation still an issue!

code

Static Data

heap

stack

0000…

0100…

Original Program



Issues with Simple Base and Bound

• Fragmentation problem over time

• No support for sparse address space

• Hard to do interprocess sharing

 E.g., to share code

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

64

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10
process 11



Segmentation

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

65



Segmentation
• Program’s view of memory: 

multiple separate segments

• Each segment is given a 
region of contiguous memory

 Has a base and limit

• Memory address consists of 
segment ID and offset

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

66

1

3

2

4

user view of

memory space 

1

4

2

3

physical 

memory space

1

2



Hardware Support for Segmentation

• Segment map resides in 
processor
 Segment number mapped to

base/bound pair (for translation)

• Each entry corresponds to a chunk
of physical memory
 Segment addressed by portion of virtual address

 However, could be included in instruction instead:

 x86 Example: mov [es:bx],ax. 

• What is “V/N” (valid / not valid)?
 Can mark segments as invalid; requires check as well

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

67

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 V

Base5 Limit5 N

Base6 Limit6 N

Base7 Limit7 V

OffsetSeg #Virtual

Address

Base2 Limit2 V

+
Physical

Address

> Error
offset

Check Valid

Access

Error



Intel x86 Special Registers

• Segmentation can’t be just “turned off”

• What if we just want to use paging?
 Set base and bound to all of memory, in all 

segments

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

68

80386 Special Registers



Example: Four Segments 4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

69

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

OffsetSeg

014 1315

0x4000

0x0000

0x8000

0xC000

Virtual Address Space

Virtual Address Format:

0x0000

0x4800

0x5C00

0x4000

0xF000

Physical Address Space

Space for Other Apps

Shared with

Other Apps

Might be shared

SegID = 0

SegID = 1



Observations about Segmentation
• Translation on every instruction fetch, load or store

• Virtual address space has holes
 Segmentation efficient for sparse address spaces

• When it is OK to address outside valid range?
 This is how the stack (and heap?) is allowed to grow

 For instance, stack takes fault, system automatically increases size of stack

• Need protection mode in segment table
 For example, code segment would be read-only

 Data and stack would be read-write (stores allowed)

• What must be saved/restored on context switch?
 Segment table stored in CPU, not in memory (small)

 Might store all of processes memory onto disk when switched (called 
“swapping”)

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

70



What if not all segments fit in 
memory?

• Extreme form of Context Switch: 
Swapping
 In order to make room for next 

process, some or all of the previous 
process is moved to disk

 Likely need to send out complete 
segments 

 This greatly increases the cost of 
context-switching

• What might be a desirable 
alternative?
 Some way to keep only active 

portions of a process in memory at 
any one time

 Need finer granularity control over 
physical memory

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

71



Problems with Segmentation
• Must fit variable-sized chunks into physical memory

• May move processes multiple times to fit everything

• Limited options for swapping to disk

• Fragmentation: wasted space

 External: free gaps between allocated chunks

 Internal: don’t need all memory within allocated chunks

4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

72



4
/9

/2
0

2
5

, 
L

e
ct

u
re

 1
3

C
S

C
4

1
0

3
, 
S

p
ri

n
g
 2

0
2

5
, 
A

d
d

re
ss

 T
ra

n
s
la

ti
o
n

73


