Four Fundamental
OS Concepts

Lecture 2

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

G 9INnj09r| spdeouo))

‘G203/LG/T ‘G30T/ST/T SO [ByueWwEpUN IO ‘GZ0g Sulidg ‘€01¥DSD

1via

Admistratr

Lecture 2

1/15/2025, 1/27/2025,

Homework and Early Drop Deadline

- Assignment 0: due January 27, 11:59pm
+ Project 0: due February 17t 11:59pm

- You should be working on both already!

« Get familiar with all the CSC4103 tools, set up environment, submitting to
autograder via git

- Early drop deadline: January 27t

@)
—
<
<+
=
o
=)
<
o]
=
=)
=
~
=}
o
=
el
(%]
=
(A
i)
=
e
o
Q
n
5]
©
—
<t
— O
Application wn
O

n
+~
(o}
)
]
=
=2
O

Group Projects are Looming

« Group Formation is due Wednesday January 29t

* Send email with preferences, each group will consist of four students
(three students in exceptional cases)

- I will assign remaining students arbitrarily

- Start working through Study Guide 0: C/x86

« Answer all questions!

Application

-~ -

Operating system
] [

Hardware

1/15/2025, 1/27/2025,

n
O
r—
<
+
g
2
=}
<
o)
(@)
=)
£
~
=
o
=
el
AN
=
(A
on
g
e
o
Q
N
o
&)
—
&
@

n
+~
(o}
)
]
=
=2
O

Lecture 2

Lecture 2

Recall: What 1s an Operating
System?

- Special layer of software that provides application software access to
hardware resources

« Convenient abstraction of complex hardware devices
* Protected access to shared resources
* Security and authentication

+ Communication

= 1

n
O
r—
<
+
g
2
=}
<
o)
(@)
=)
£
~
=
o
=
el
AN
=
(A
on
g
e
o
Q
N
o
&)
—
&
@

n
+~
(o}
)
]
=
=2
O

Application

-~ -

Operating system
] [

Hardware

Lecture 2

Recall: What 1s an Operating
System?

- Referee \9
- Manage protection, isolation, and sharing of resources
* Resource allocation and communication

- I1lusionist
- Provide clean, easy-to-use abstractions of physical resources
+ Infinite memory, dedicated machine

1/15/2025, 1/27/2025,

- Higher level objects: files, users, messages
- Masking limitations, virtualization

o Glue

+ Common services
+ Storage, Window system, Networking
» Sharing, Authorization

° LOOk and feel '-'-.5:-.:- - . A;.)plication

n
@)
—
<
-+
=
=
g
<
<
=
=)
<
~
S
o
~
el
(%]
S
(A
o
=
35
5
Q
D)
)
S
i
@)
n
@)

n
+~
o8
)
]
=
©)
(@)

] L

Operating system
- -

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

-~ -

Operating system
] [

Hardware

o
r—
<
+
o
<
=]
<
s
<!
=)
=
~
=}
o
e
Yol
AN
(@)
(A
a0
o
o]
=
Q
wm
o3
S
—
Q
0
(@)

n
>
Q,
)
Q
=
)
S
O

Lecture 2

OS Bottom Line: Run Programs

Program Source Executable

Compiler and

Editor Linker

data

Vv

1instructions

fOO.C a.out
Create “PCB”, address space, stack and heap

Load instruction and data segments of executable file into memory

- “Transfer control to program”

Provide services to program

While protecting OS and program

OS Loader

PC:

OxFFF...
OS
0xCO00...
stack
\ >
¢
A E
heap 2
data
instructions
0x000...
registers
Processor Operating system

- -

Hardware

1/15/2025, 1/27/2025,

N
@)
—
[a]
it}
o
2
e
<
")
o
=}
=
=
-
o
e
el
]
(@)
o}
a0
o
o]
g
o,
N
o3
(@]
—
<t
O
0
(@)

n
25
(o}
)
]
=
©)
(@)

Lecture 2

OxFFF...
Executable o
N 0xCO00...
data stack ! .
OS Loader :
instructions heap A E
data
instructi‘:ns
Creates a <
process from a :
p I'ng‘ am registers

Processor

Lecture 2

1/15/2025, 1/27/2025,

Recall: CPU Instruction Cycle

PC:
instruction

Instruction fetch

Decode

Registers

Execute

n
O
—
<
+
g
o
=}
&t
o)
(@)
=
<
~
)
[}
=
Yol
N
=
(A
on
=
=~
(o}
n
&)
i
~t
— O
Application wn
@)

n
25
(o}
)
]
=
©)
(@)

data T b

Operating system

-~ -

Hardware

Lecture 2

el
N
©
N
-~
L~
N
~
—
e
N
S
N
=
le)]
—
~
i

Review: How Programs Execute

Addr 232-1 « Execution sequence:

* Fetch Instruction at PC
* Decode

Execute (possibly using registers)
Write results to registers/mem
PC = Next Instruction(PC)
Repeat

Datal
DataO
Inst237
InSt236

Inst4
Inst3
Inst2
Instl
InstO

N
=
(A

on

o
gs!

=

Q
N
5]
©
i
O
R
&)

n
+
o8
]
]
<!
=2
O

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application
-~ -

Operating system
] [

Hardware

1/15/2025, 1/27/2025,

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

wn
-
o,
)
Q
=
S)
©)

Lecture 2

Lecture 2

1/15/2025, 1/27/2025,

Key OS Concept: Thread

- Definition: A single, unique execution context
- Program counter, registers, stack, execution state

- A thread is the OS abstraction for a CPU core
« A “virtual CPU” of sorts

- Registers hold the root state of the thread:
* Including program counter — pointer to the currently executing instruction
* The rest is “in memory”

- Registers point to thread state in memory:
- Stack pointer to the top of the thread’s (own) stack

n
@)
—
<
-+
o
2
=)
<
.=
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

n
+~
(o}
)
]
=
©)
(@)

Application
1 L

Operating system
] [

Hardware

Lecture 2

1/15/2025, 1/27/2025,

Illusion of Multiple Processors

- Threads are virtual cores
- Multiple threads: Multiplex hardware in time

- A thread is executing on a processor when it 1s
resident in that processor's registers

- Each virtual core (thread) has PC, SP, Registers

- Where 1s it?
- On the real (physical) core, or

On a single physical CPU:

- Saved in memory — called the Thread Control
Block (TCB)

N
o
—
<
=
o
=
=}
[oo!
e
=
=)
£
=
-
(=}
=
Yol
N
=
]
on
o
i
o
(o
)]
on)
&)
i
o— QO
Application wn
@

n
25
o8
)
]
=
=2
O

Lecture 2

1/15/2025, 1/27/2025,

OS Object Representing a Thread

. Traditional term: Thread Control Block (TCB)

- Holds contents of registers when thread is not running...

. ... And other information the kernel needs to keep track of the thread
and 1its state.

n
O
r—
<
+
g
2
=}
<
e
(@)
=)
£
~
=
o
=
el
AN
=
(A
on
g
e
o
Q
N
o
&)
—
&
@

n
+~
(o}
)
]
=
=2
O

S A
o)
—
=
[
=
<O
3}
—

Registers: x86

Basic Program Execution Registers Memory Management Registers e el
)) S 3R-
gt 32-0i LS
General-Purpose Registers
Registers T
P Control Registers
Registers | SeomentRegisters E’E‘: .
CR2 9
| 32-bits | EFLAGS Reglster CRs [
o
{ 32-bits] € (Instruction Pointer Register) g
FPU Registers MMX Registers E
=)
3
Elght BO-biIt Floating-Point "
Reglsters Data Registers Togers MMX Registers 0 E
Control Register S
LIREE] Swtsfugur XMM Registers 2
[CTEBE] Tag Register 3
wm
L) Opcode Regiseer (11-003) y XMM Reglsters oS o
| 48 bits] FPU Instruction Pointer Register g2
(48 bits] FPU Data (Operand) Pointer Register 3 8
(Thin] MXCSR Reglster Application 8 YS
3
Debug Registers -~ -
Extended Control Register :
Operating system

] -

Hardware

Complex memory architecture with specialized registers and “segments”

Lecture 2

1/15/2025, 1/27/2025,

Illusion of Multiple Processors

- At T1: vCPU1 on real core

@ - At T2: vCPU2 on real core

- What happened?
- OS ran [how?]

» Saved PC, SP, ... in vCPU1’s thread control
block

« Loaded PC, SP, ... from vCPU2’s thread control
block

On a single physical CPU:
T1T2

N
@)
r—
[a]
-+
o
3
e
I
")
o
)
£
S~
=}
o
=
el
]
(@)
o}
60
g
35
g
o,
N
o
(@]
—
O
0
(@)

n
+
o8
]
]
<!
=2
O

 This 1s called context switch

Lecture 2

1/15/2025, 1/27/2025,

Very Simple Multiprogramming
- All vCPUs share non-CPU resources
« Memory, I/0 Devices

- Each thread can read/write memory
* Including data of others

* And the OS!

- Unusable?

- This approach is used in:
* Very early days of computing

- Embedded applications
- MacOS 1-9/Windows 3.1 (switch only with voluntary yield)
* Windows 95-ME . vAppIication 7‘

1 L°

N
—
<
=
o
<
]
<
ae}
o
=
=
~
S}
o
e
el
N
=)
N
an
o
o=
=~
Q
N

CSC4103
Concepts

Operating system
] [

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application
-~ -

Operating system
] [

Hardware

1/15/2025, 1/27/2025,

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

wn
-
o,
)
Q
=
S)
©)

Lecture 2

Lecture 2

1/15/2025, 1/27/2025,

Key OS Concept: Address Space

- Program operates in an address space that is distinct from the
physical memory space of the machine

0x000...

Registers

Processor (W
1 Translator J Memory

OxFFF...

n
@)
—
<
-+
=
dr:‘)
g
<
<
=
=
<
~
S
o
~
el
(%]
S
(A
o
=
35
5
Q
D)
)
S
i
@)
n
@)

wn

+~

joN

)

) &
Application)
O

] L

Operating system
- -

Hardware

Lecture 2

10
(o]
©
N
~
IE=
N
~
—
el
(%]
=
N
==
o)
—
~
i

Address Space

- Definition: Set of accessible addresses and the state associated with

OxFFF...

them
+ 232 = ~4 billion on a 32-bit machine 0x000...
Code

- What happens when you read or write to an address? . z
+ Perhaps acts like regular memory Static Data £
* Perhaps causes I/0 operation o —%
- (Memory-mapped I/0) =
- Causes program to abort (segfault)? N 2
+ Communicate with another program Stack 9}

Concepts

Application

] L

Operating system
- -

Hardware

Typical Address Space Structure

0x000...

> Code

PC: o=

SP: Static Data

Heap

Processor

registers

Stack

OxFFF...

1/15/2025, 1/27/2025,

n
@)
—
<
-+
=
=
g
<
<
=
=)
<
~
S
o
~
el
(%]
S
(A
o
=
35
5
Q
D)
)
S
i
@)
n
@)

n
+~
o8
)
]
=
©)
(@)

Lecture 2

Lecture 2

Address Space

- What can the hardware do to help the OS protect itself from
programs? And programs from each other?

* Prevent processes from reading or writing to physical addresses 1t should
not have access to!

« Allow processes to read and write to physical addresses it should have
access to!

n
O
r—
<
+
g
2
=}
<
o)
(@)
=)
£
~
=
o
=
el
AN
=
(A
on
g
e
o
Q
N
o
&)
—
&
@

n
+~
(o}
)
]
=
=2
O

Application

-~ -

Operating system
] [

Hardware

Lecture 2

1/15/2025, 1/27/2025,

Base and Bound (no Translation)

e (Can the program touch OS? Can it touch other 0000...
programs? Code
* Requires relocation, causes fragmentation Static Data Original Program
« Stack and heap have unknown sizes Heap
 Memory sharing impossible 0000... 2
Base Address 1000... code 5
1000 Static Data é
0010... Code =
Program 1010... Static Data heap | z
address o A 5
S stack é
A
Bound 0100... 1100... — S g
.- (ONE)
FFFF o Operating system

- -

Hardware

Issues with Simple Base and Bound

process 6 process 6 process 6 process 6
process 5 process 5 process 5
process 9 process 9 process 11
process 2 —> —> "> | process 10
0S OS 0S 0S

Lecture 2

el
N
(@]
x
~
=
N
~~
=
el
(o]
(@)
AN
~—~
Yo
=
~—~
—

- Fragmentation problem over time

- Hard to do interprocess sharing
- E.g., to share code

Application

CSC4103, Spring 2025, Four Fundamental

)

+~
[oh
)
]
=
©)

o

Lecture 2

Te)
N
(@]
x
~
=
N
~~
—
el
]
(@)
(a\
Q
e
—
~—
—

Base and Bound (with Translation)

0000...
* (Can the program touch OS? Can it touch other Code
programs?
« Fragmentation still an issue! Static Data
 Still no sharing! Heap
* Stack and heaps are of variable size! 0000... S
code %
Base Address . E
1000. .. Static Data :
0010... 1000... Code - <
Program 0010... S Static Data °ep iy -
address — A 2
L stack é
Bound 100 ae
01 OO . o V Application % Qé
1 b
FFFF o Operating system

- -

Hardware

Lecture 2

1/15/2025, 1/27/2025,

Paged Virtual Address Space

- What if we break the entire virtual address space into equally sized
chunks (.e., pages) and have a base and bound for each?

- All pages are of the same size, so it’s easy to place each page in
memory!

- Hardware translates addresses using a page table
- Each page has a separate base
* The “bound” 1s the page size
« Special hardware register stores pointer to page table

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

n
>
=%
Y
Q
=
=)
©)

Application
-~ -

Operating system
] [

Hardware

15
)
S 5
S 3
N3
<3
Paged Virtual Add S
aged Virtua ress Space —
Processor
<4
Registers <Page #f?f'[Page Table R
0 0 //I ///
___instruction | P <Page Offset> Page
<Virtual Address>= - (eg, 4 kb)
<Page #><Page Offset>
[PTAddr

- Instructions operate on virtual addresses

o Vilx;iiual addresses translated at runtime to physical addresses via a page
table

o Spbelcial register holds page table base address of current process’ page
table

N
o
—
<
-+
o
=
=}
<
e
o
o}
£
~
=
o
=
el
N
=
]
on
o
i
o
Q
)]
o
&)
i
- ~
o— QO
Application wn
S

n
+~
o8
)
]
=
©)
(@)

] L

Operating system
- -

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application
-~ -

Operating system
] [

Hardware

1/15/2025, 1/27/2025,

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

wn
-
o,
)
Q
=
S)
©)

Lecture 2

5,
2

Lecture

Key OS Concept: Process

Definition: execution environment with restricted rights
- One or more threads executing in a single address space (own page table)

- Owns file descriptors, network connections, etc.

Instance of a running program
* When you run an executable, it runs in its own process
- Application: one or more processes working together

Protected from each other; OS protected from them

In modern OSes, anything that runs outside of the kernel runs in a
process
- Even many of the OS services run in separate processes

Application
-~ -

Operating system
] [

Hardware

N
o
r—
<
=
o
o
=]
(av]
")
o
=)
=
~
=}
o
=
Yol
AN
(@)
(A
a0
o
o]
a
Q
N
o3
S
—
O
n
&

n
+~
(o}
)
]
=
©)
(@)

Single and Multithreaded Processes

- Threads encapsulate
concurrency

« “Active” component

- Address space encapsulate
protection:

« “Passive” component

- Keeps bugs from crashing the
entire system

- Why have multiple threads per
address space?

code

data

files

registers

stack

thread ———» g

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
ey

— thread

multithreaded process

Application

] L

Operating system

- -

Har

dware

1/15/2025, 1/27/2025,

N
@)
r—
=
-+
o
2
e
I
")
o
)
£
S~
=}
o
=
el
]
(@)
o}
a0
o
o
g
o,
N
o
(@]
—
<
O
0
(@)

n
25
o8
)
]
=
=2
O

Lecture 2

Lecture 2

1/15/2025, 1/27/2025,

Protection and Isolation

- Why?
« Reliability: bugs can only overwrite memory of process they are in

* Security and privacy: malicious or compromised process can’t read or write
other process’ data

- (to some degree) Fairness: enforce shares of disk, CPU

- Mechanisms:
+ Address translation: address space only contains its own data

- BUT: why can’t a process change the page table pointer?
* Or use I/O instructions to bypass the system?

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

7
~+

o,

Y

' &
Application)
S

- Hardware must support privilege levels! o

Operating system
] [

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application
-~ -

Operating system
] [

Hardware

1/15/2025, 1/27/2025,

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

wn
-
o,
)
Q
=
S)
©)

Lecture 2

Lecture 2

1/15/2025, 1/27/2025,

Dual-Mode Operation

- One bit of state: processor 1s either in user mode or kernel mode
- x86 has four privilege levels: rank 0 (kernel) ... rank 3 (user)

. Certain actions are only permitted in kernel mode (privileged
instructions), e.g.

- Changing the page table pointer (memory protection)
+ Certain entries in the page table

« Hardware I/0 instructions

- Disable interrupts (timers)

- State bit can’t be changed directly, is flipped only during execution of
special transfer operations

N
o
r—
<
=
o
(b]
—
=]
(av]
")
o
=)
=
~
=}
o
=
Yol
AN
(@)
(A
a0
o
o]
a
Q
N
o3
S
—
O
n
&

wn
+~
o
[}
o
g
S
©)

Application
1 L

Operating system
] [

Hardware

Dual-Mode Operation

What hardware i1s needed to protect applications and users from one
another?

Privileged instructions
- All potentially unsafe instructions are prohibited in user mode

Memory protection

- All memory accesses outside of a process’s valid memory region are
prohibited when executing in user mode

Timer interrupts

- Regardless of what a process does, the kernel must have a way to
potentially regain control from the current process

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

n
>
=%
Y
Q
=
=)
©)

Application
-~ -

Operating system
] [

Hardware

Dual-Mode Operation

- Processes (i.e., programs you run) execute in user mode

+ To perform privileged actions, processes request services from the OS
kernel

+ Carefully controlled transition from user to kernel mode

- Kernel executes in kernel mode
« Performs privileged actions to support running processes

- ... and configures hardware to properly protect them (e.g., address
translation)

- Return to user mode through special instructions

* Return from interrupt

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

n
>
=%
Y
Q
=
=)
©)

Application
-~ -

Operating system
] [

Hardware

Lecture 2

Three Types of User — Kernel Mode
Transfer

System Call (“syscalls”)
- Process requests a system service (e.g., open a file)
+ Like a function call, but “outside” the process

Interrupt
+ External asynchronous event, independent of the process
+ e.g., Timer, I/0 device

Trap (exception)
+ Internal synchronous event in process triggers context switch
- E.g., Divide by zero, bad memory access (segmentation fault)

CONTROL TRANSFER User -> Kernel mode
« System calls constitute PROGRAMMED control transfer
 Interrupts and traps are UNPROGRAMMED control transfer mechanisms

User process can’t jump to arbitrary instruction address in kernel!

o
r—
(4]
+
o
<
=]
(av]
s
<!
=)
=
~
=}
o
e
Yol
AN
(@)
(A
a0
o
o]
=
Q
wm
o3
S
—
Q
0
(@)

n
+~
(o}
)
]
=
=2
O

Why nOt‘) Application
] L

Operating system
] [

Hardware

interrupt number ()

Where do User — Kernel Mode
Transfers Go?

Interrupt vector

_ handler
]

O\

_ Address and properties

of each interrupt

- Cannot let user programs specify
the exact address!

- Solution: Interrupt Vector

* OS kernel specifies a set of
functions that are entry points to
kernel mode

« Appropriate function is chosen
depending on the type of transition

- Interrupt Number ()

intrpHandler_i () {

}...

+ Type of interrupt

* Type of trap
+ OS may do additional dispatch

Application

] L

Operating system
- -

Hardware

1/15/2025, 1/27/2025,

n
@)
—
<
-+
=
=
g
<
<
=
=)
<
~
S
o
~
el
(%]
S
(A
o
=
35
5
Q
D)
)
S
i
@)
n
@)

n
+~
o8
)
]
=
©)
(@)

Lecture 2

LeCtLll'e 2

Te)
(o]
=)
(@]
~
o~
(@]
~~
—
Yo
N
&S
N
Q
e
—
~
—

Example: Before Exception

User-level

Registers -
Process
code: SS: ESP -
 CS:EIP |
foo () { EFLAGS handler() { %
while(...) { i e §
X =X+1: other —g
y=y-2; EAX, EBX, } LE
} ! i
Exception :
stack: .. |
VAPplicatior; % %
0O

] L

Operating system
| [

Hardware

Lecture 2

1/15/2025, 1/27/2025,

Example: After Exception

User-level

Registers Kernel
Process

code: SS: ESP code:

CS: EIP
foo () { EFLAGS handler() {
while(...) { other pusha
x=x+l; _ . registers:
y=y2 e EAX, EBX, J

}
}

) Exception
stack:
............................. :": Stack

........
"y,
L

‘-"“r" o, R S S
ESP
EFLAGS

‘e
‘e
0

N
@)
r—
[a]
-+
o
2
e
&
")
o
)
£
S~
=}
o
=
el
]
(@)
o}
60
g
o
g
o,
N
o
(@]
—
<t
O
0
(@)

n
25
o8
)
]
=
=2
O

Application

9 o "'n
Why don’t we just use cS -
the user stack? EIP TR
error -~

Hardware

Lecture 2

Life of a Process

1/15/2025, 1/27/2025,

N
o
=
<
+~
o
2
=]
<
g
o
=}
=
~
=
o
=
Yol
(o]
(@)
A
on
=
=~
(o}
)]
o5
S
—
v{i
O
9P,
(@)

)

+~
(o}
)
]
=
©)

o

Application

] L

Operating system

-~ -

Hardware

Limited HW access Full HW access

Lecture 2

Implementing Safe User — Kernel
Mode Transfers

- Carefully constructed kernel code packs up the user process state
and sets it aside

1/15/2025, 1/27/2025,

- Must handle weird/buggy/malicious user state
+ Syscalls with null pointers
« Return instruction out of bounds
+ User stack pointer out of bounds

- Should be impossible for buggy or malicious user program to cause
the kernel to corrupt itself

- User program should not know that an interrupt has occurred
(transparency)

Application

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

n
+~
(o}
)
]
=
©)
(@)

Lecture 2

1/15/2025, 1/27/2025,

Kernel System Call Handler

- Vector through well-defined syscall entry points!
« Table mapping system call number to handler

- Locate arguments
- In registers or on user (!) stack

- Copy arguments
* From user memory into kernel memory — carefully checking locations!
* Protect kernel from malicious code evading checks

- Validate arguments
« Protect kernel from errors in user code

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

wn
-
o
[}
o
g
S
©)

- Copy results back
 Into user memory — carefully checking locations! -~

Operating system
] [

Hardware

Application

Lecture 2

Kernel Stacks

- Interrupt handlers want a stack
- System call handlers want a stack

- Can't just use the user stack [why?]

« More convenient to store execution state of kernel if additional interrupt is
required (i.e. waiting for I/O operation, etc.)

« User-stack 1s 1n user-space

* Other user-threads could maliciously modify entries the kernel put on the stack
of the interrupted thread

- Works regardless of state of user-process

« User data could be corrupt or compromised

Application
-~ -

Operating system
] [

Hardware

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

wn
+~
o
[}
o
g
S
©)

5,
2

N
=
-
o
15}
D
—

Kernel Stacks

- One Solution: two-stack model
- Each thread has user stack and a kernel stack
+ Kernel stack stores user’s registers during an exception
- Kernel stack used to execute exception handler in the kernel

o
running ready to run waiting for I/0 o
b}
. . (=]
main main main =
User Stack procl procl procl <
=)
proc2 proc2 proc2 <3
~
E E syscall é
Yol
AN
(@)
(A
'r::_{J
N\ -
user CPU user CPU 2
state state o~
) wm
o ¥
Kernel StaCk E Sysca” :(h %
))
handler Application é S
.) O
I/O driver ST
% top half Operating system
1 -

Hardware

Hardware Support: Interrupt Control

- Interrupt processing not visible to the user process:
* Occurs between instructions, restarted transparently
* No change to process state

- Happens transparently to the process—user program does not know it was
interrupted

- Interrupt Handler invoked with interrupts ‘disabled’
* Re-enabled upon completion
- Non-blocking (run to completion, no waits)

« Pack up in a queue and pass off to an OS thread for hard work
- wake up an existing OS thread

Application

1 L°

Operating system
] [

Hardware

1/15/2025, 1/27/2025,

n
@)
—
<
-+
o
2
=)
<
!
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

n
+~
(o}
)
]
=
©)
(@)

Lecture 2

Hardware Support: Interrupt Control

- Interrupt processing not visible to the user process:
* Occurs between instructions, restarted transparently
* No change to process state
« What can be observed even with perfect interrupt processing?

- Execution time!

- Interrupt Handler invoked with interrupts ‘disabled’
* Re-enabled upon completion
- Non-blocking (run to completion, no waits)

« Pack up in a queue and pass off to an OS thread for hard work
- wake up an existing OS thread

Application

-~ -

Operating system
] [

Hardware

1/15/2025, 1/27/2025,

n
O
r—
<
+
g
2
=}
<
o)
(@)
=)
£
~
=
o
=
el
AN
=
(A
on
g
e
o
Q
N
o
&)
—
&
@

n
+~
(o}
)
]
=
=2
O

Lecture 2

How do we take Interrupts Safely?

Interrupt vector
+ Limited number of entry points into kernel

Kernel interrupt stack
* Handler works regardless of state of user code

Interrupt masking
- Handler is non-blocking

Atomic transfer of control
« “Single instruction”-like to change:
* Program counter
+ Stack pointer
+ Memory protection
+ Kernel/user mode

Transparent restartable execution
« User program does not know interrupt occurred

n
@)
—
<
-+
o
2
=)
<
.=
<
=)
=
~
=}
o
=
el
(%]
=
(A
on
o
e
=
Q
)
o
©
i
O
R
&)

7
i

o,

)

' &
Application)
o

-~ -

Operating system
] [

Hardware

Lecture 2

Kernel — User Mode Transfers

- “Return from interrupt” instruction
* Drops mode from kernel to user privilege
* Restores user PC and stack

- Transfer to user mode happens for:
* Creation of a new process
- Switching to a different process
- User-level upcalls (signal handling, etc.)

o
r—
<
+
o
<
=]
<
s
<!
=)
=
~
=}
o
e
Yol
AN
(@)
(A
a0
o
o]
=
Q
wm
o3
S
—
Q
0
(@)

n
>
Q,
)
Q
=
)
S
O

Application
] L

Operating system
] [

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

-~ -

Operating system
] [

Hardware

o
r—
<
+
o
<
=]
<
s
<!
=)
=
~
=}
o
e
Yol
AN
(@)
(A
a0
o
o]
=
Q
wm
o3
S
—
Q
0
(@)

n
>
Q,
)
Q
=
)
S
O

Lecture 2

G 9IN39] sydaouo))
‘GZ0B/LT/T ‘SB0%/ST/T SO TeyueWEpPUN] O] ‘G503 SULdS ‘C0TFDS!

ot
—
v
<+
o =i
<+
-
Q
3S
3
D
—
=
o
Z.

T
D
<
<+
D
o0
-
+

Lecture 2

1/15/2025, 1/27/2025,

Illusion of Multiple Processors

-« At T1: vCPU1 on real core
- At T2: vCPU2 on real core

Scheduling

- How did the OS get to run?

- Earlier, OS configured a hardware timer to
periodically generate an interrupt

* On the interrupt, the hardware switches to
kernel mode and the OS’s timer interrupt
handler runs

On a single physical CPU:
T1T2

N
o
—
<
-+
=
o
g
<
s
=
=)
=
~
=
o
=
el
(%]
S
(A
6o
c
35
=
Q
N

* Timer interrupt handler decides whether to
switch threads or not according to a policy

Operating system

Application

CSC4103
Concepts

3

Hardware

Lecture 2

1/15/2025, 1/27/2025,

Scheduling

if (readyProcesses (PCBs)) {
nextPCB = selectProcess (PCBs) ;
run(nextPCB);

} else {
run idle process();

- Scheduling: Mechanism for deciding which processes/threads receive the

CPU

- Lots of different scheduling policies provide ...
- Fairness or
* Realtime guarantees or
- Latency optimization or ... -

Operating system
- -

Hardware

N
o
—
<
-+
o
=
=}
<
e
o
o}
£
~
=
o
=
el
N
=
]
on
o
i
o
Q
)]
o
&)
i
- ~
o— QO
Application wn
S

n
+~
o8
)
]
=
©)
(@)

Lecture 2

What’s 1n a Process?

. Process Control Block (PCB): Kernel representation of each process
* Process ID
Thread control block(s)

- Program pointer, stack pointer, and registers for each thread

1/15/2025, 1/27/2025,

Page table (information for address space translation)

Necessary state to process system calls
* Which files are open and which network connections are accessible to the process

All information that pertains to a process and has to be shared between all
threads of said process

+ User information

- File path of executable eon disk

* Current home directory of the process
* Process privileges

N
@)
—
2y
-+
=
o
=)
<
o]
=
)
=
~
=}
o
=
el
N
=
N
i)
=
e
o
Q
n
5]
©
i
v <t
— O
Application R
S

n
>
=%
Y
Q
=
=)
©)

- Etc. -

Operating system
] [

Hardware

Lecture 2

Mode Transfer and Translation

- Mode transfer should change address translation mapping

- Examples:
 Ignore base and bound in kernel mode

- Page tables:
- Either switch to kernel page table...
* Or mark some pages as only accessible in kernel mode

o
r—
(4]
+
o
<
=]
(av]
s
<!
=)
=
~
=}
o
e
Yol
AN
(@)
(A
a0
o
o]
=
Q
wm
o3
S
—
Q
0
(@)

n
+~
(o}
)
]
=
©)
()
<

Application

-~ -

Operating system
] [

Hardware

Lecture 2

1/15/2025, 1/27/2025,

Base and Bound: OS Loads Process

, 0000...
. . III /I\ COde

2 .. /,/'/ / Static Data
‘ 0S ‘

heap

| pstack |

sysmode -

1000...
)/ / code
Base | xxxx ... ,/ 0000... Static Data
Bound | xxxx... / FFFF... heap
Stored User PC | xxxx... / _I
,' stack 1100...
PC

regs /

N
@)
=
=
it}
o
2
e
<
")
o
=}
=
)
-
o
e
el
]
(@)
o}
a0
o
g
g
o,
N
o
(@]
—
O
0
(@)

n
25
(o}
)
]
=
©)
(@)

Base and Bound: About to Switch

0000...
2). / Static Data
L

hea 0

sysmode -

1000...
Base [1000 ... Static Data
Bound | 1100 ... heap
Stored User PC | 0011) _I
stack 1100...
PC

* OSruns in privileged yegq

mode, so 1t can set the
special registers
 “Return” to user

Application

-~ -
3080 ce e Operating system

FFFF... sl

Hardware

1/15/2025, 1/27/2025,

N
@)
—
[a]
it}
o
2
e
I
")
o
=}
=
=
]
o
=
el
(o]
(@)
A
a0
.8
~
o,
)]
(@]
—
O
xR
(@)

n
25
(o}
)
]
=
©)
(@)

Lecture 2

Base and Bound: User Code Running

0000...
2). Static Data
OS

heap

| stack |

sysmode | 0 1000...
code
Base | 1000 ... Static Data
Bound | 1100 ... heap
Stored User PC | xxxx ... _l
stack 1100...
PC |

3000...

regs

3080...
FFFF...

1/15/2025, 1/27/2025,

N
@)
=
=
it}
o
2
e
<
")
o
=}
=
)
-
o
e
el
]
(@)
o}
60
g
o]
g
o,
N
o3
(@]
—
O
0
(@)

n
25
(o}
)
]
=
©)
(@)

Lecture 2

Base and Bound: Handle Interrupt

Proc
2 ...
L%]

sysmode -

Base
Bound

Stored User PC

Switch to kernel
mode, set up
interrupt handler

PC

regs

0000...

A code

/ Static Data

heap

1000...

| stack |
/

code

1000 ... /

Static Data

1100 ... /

heap

00001234 11

| stax |

IntrpVectorli] | /

[

l

1/15/2025, 1/27/2025,

N
@)
=
=
it}
o
2
e
<
")
o
=}
=
=
-
o
e
el
]
(@)
o}
a0
o
o]
g
o,
N
o
(@]
—
O
0
(@)

n
25
(o}
)
]
=
©)
(@)

Lecture 2

Lecture 2

Base and Bound: Switch to Process 1

0000...

1/15/2025, 1/27/2025,

code | RETI

Static DAta

1000...

Static Data

heap

| stk ||

1100...
3000...

Stored User PC | 0000 0249 ',/L‘ BRI
PC | 0001 01247

* Save registers of

N
@)
=
=
it}
o
2
e
<
")
o
=}
=
)
-
o
e
el
]
(@)
o}
a0
o
g
g
o,
N
o
(@]
—
O
0
(@)

Process 2 ress &
* Restore registers of S
Process 1 3080...

e Then execute RETI FFFF...

Lecture 2

1/15/2025, 1/27/2025,

Base and Bound: Switch to Process 1

0000...
2). Static Data
OS

heap

| stack |

code
Static Data

1000...

sysmode | 1

Base (000NN
Bound | HOS0REINN

Stored User PC | xxxx ... _I
stack 1100...

PC [00000248 —
3000...

regs

heap

N
@)
=
=
it}
o
2
e
<
")
o
=}
=
)
-
o
e
el
]
(@)
o}
60
g
o]
g
o,
N
o3
(@]
—
O
0
(@)

n
25
(o}
)
]
=
©)
(@)

3080...

: Web Server

9. forma\ reply

Putting 1t all

4. parse request

Server
request reply
buffer buffer
A A
1. network 3. kernel 10. network 5 fi 3. k 1
SOCket copy SOC.ket . I1 ed . Kerne
syscall read ® write syscall. rea 4 copy
Kernel .+ RTU /11. kernel copy RTU
from user buffer v
to network buffer
interrupt o . 6 interrupt
2. copy arriving |12. format outgoing 6. disk 7 disk data
packet (DMA) packet and DMA .r equest -(DM A)
Hardware
Network
interface Disk interface
\4

Request Reply

Application

1 L~

Operating system

- -

Hardware

1/15/2025, 1/27/2025,

wn
o
=
P
+~
5]
[¢b]
g
o
[}
S|
5
=
—
)
o
=
N
&S
x
o0
g
~
o,
0
S
—
<t
Q
0
(@)

n
=
[oN
D)
Q
=
©)
O

P
NN

Lecture 2

Lecture 2

Conclusion: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

1/15/2025, 1/27/2025,

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

n
O
r—
<
+
g
2
=}
<
o)
(@)
=)
£
~
=
o
=
el
AN
=
(A
on
g
e
o
Q
N
o
&)
—
&
@

1}
=
=%
o}
>}
— =
Application o

-~ -

Operating system
] [

Hardware

CENTER FOR COMPUTATION
& TECHNOLOGY

1/15/2025, 1/27/2025,

CSC4103, Spring 2025, Four Fundamental OS

Concepts

op
oy

Lecture 2

