
Abstractions 1:
Threads and
Processes
Lecture 3

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

2

Recall: Thread
• Definition: A single, unique execution context

 Program counter, registers, stack

• A thread is the OS abstraction for a CPU core

 A “virtual CPU” of sorts

• Registers hold the root state of the thread:

 Including program counter – pointer to the currently executing instruction

 The rest is “in memory”

• Registers point to thread state in memory:

 Stack pointer to the top of the thread’s (own) stack

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

3

Recall: Illusion of Multiple
Processors

• Threads are virtual cores

• Multiple threads: Multiplex hardware in time

• A thread is executing on a processor when it is
resident in that processor's registers

• Each virtual core (thread) has PC, SP, Registers

• Where is it?

 On the real (physical) core, or

 Saved in memory – called the Thread Control
Block (TCB)

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

4

vCPU3vCPU2vCPU1

Shared Memory

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

On a single physical CPU:

Recall: Address Space
• Program operates in an address space that is distinct from the

physical memory space of the machine

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

5

Processor
Memory

0x000…

0xFFF…

Translator
Registers

Recall: Process
• Definition: execution environment with restricted rights

 One or more threads executing in a single address space

 Owns file descriptors, network connections

• Instance of a running program

 When you run an executable, it runs in its own process

 Application: one or more processes working together

• Protected from each other; OS protected from them

• In modern OSes, anything that runs outside of the kernel runs in a
process

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

6

Recall: Dual-Mode Operation
• Processes (i.e., programs you run) execute in user mode

 To perform privileged actions, processes request services from the OS
kernel

 Carefully controlled transition from user to kernel mode

• Kernel executes in kernel mode

 Performs privileged actions to support running processes

 … and configures hardware to properly protect them (e.g., address
translation)

• Together, address translation and dual-mode operation allow the
kernel to protect processes from each other and itself from processes

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

7

Today: The Thread Abstraction
• What threads are

 And what they are not

• Why threads are useful (motivation)

• How to write a program using threads

• Alternatives to using threads

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

8

Threads

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

9

What Threads Are
• Definition from before: A single unique execution context

 Describes its representation

• It provides the abstraction of: A single execution sequence that
represents a separately schedulable task

 Also a valid definition!

• Threads are a mechanism for concurrency

• Protection is an orthogonal concept

 A protection domain can contain one thread or many

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

10

Motivation for Threads
• Operating systems must handle multiple things at once (MTAO)

 Processes, interrupts, background system maintenance

• Networked servers must handle MTAO

 Multiple connections handled simultaneously

• Parallel programs must handle MTAO

 To achieve better performance

• Programs with user interface often must handle MTAO

 To achieve user responsiveness while doing computation

• Network and disk bound programs must handle MTAO

 To hide network/disk latency

 Sequence steps in access or communicatoin

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

11

Threads Allow Handling MTAO
• Threads are a unit of concurrency provided by the OS

• Each thread can represent one thing or one task

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

12

Multiprocessing vs.
Multiprogramming
• Multiprocessing: Multiple cores

• Multiprogramming: Multiple jobs/processes

• Multithreading: Multiple threads/processes

• What does it mean to run two threads concurrently?

 Scheduler is free to run threads in any order and interleaving

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

14

A B C

BA ACB C BMultiprogramming

A

B

C
Multiprocessing

Silly Example for Threads
• Imagine the following program:

int main() {

compute_pi("pi.txt");

print_class_list("classlist.txt");

}

• What is the behavior here?

• Program would never print out class list

• Why? compute_pi would never finish

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

15

Adding Threads
• Version of program with threads (loose syntax):

int main() {

create_thread(compute_pi, "pi.txt");

create_thread(print_class_list, "classlist.txt");

}

• create_thread: Spawns a new thread running the given procedure
 Should behave as if another CPU is running the given procedure

• Now, you would actually see the
class list

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

16

CPU1 CPU2 CPU1 CPU2

Time

CPU1 CPU2

More Practical Motivation 2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

17

Handle I/O in

separate thread,

avoid blocking

other progress

Threads Mask I/O Latency
• A thread is in one of the following three states:

 RUNNING – running

 READY – eligible to run, but not currently running

 BLOCKED – ineligible to run

• If a thread is waiting for an I/O to finish, the OS marks it as BLOCKED

• Once the I/O finally finishes, the OS marks it as READY

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

18

vCPU1 vCPU2 vCPU1 vCPU2

Time

vCPU1 vCPU2

• If thread 1 performs a blocking I/O operation:

Threads Mask I/O Latency
• If no thread performs I/O:

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

19

vCPU1 vCPU2 vCPU1 vCPU2

Time

vCPU1 vCPU2

vCPU1 vCPU2

Time

vCPU1 vCPU2

vCPU1 starts I/O operation I/O operation completes

Little Better Example for Threads
• Version of program with threads (loose syntax):

main() {

create_thread(read_large_file, "pi.txt");

create_thread(render_user_interface);

}

• What is the behavior here?

 Still respond to user input

 While reading file in the background

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

20

Multithreaded Programs
• You know how to compile a C program and run the executable

 This creates a process that is executing that program

• Initially, this new process has one thread in its own address space

 With code, globals, etc. as specified in the executable

 This thread runs main()

• Q: How can we make a multithreaded process?

• A: Once the process starts, it issues system calls to create new threads

 These new threads are part of the process: they share its address space

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

21

System Calls (“Syscalls”) 2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

22

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call

Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

“But, I’ve never seen a syscall!”

• OS library issues system call

• Language runtime uses OS

library…

OS Library Issues Syscalls 2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

23

OS

Proc

1

Proc

2

Proc

n…

OS

App login Window

Manager

…

OS library OS library OS librarylibc:

OS Library API for Threads:
pthreads
• int pthread_create(pthread_t* thread,

pthread_attr_t const* attr,
void* (*start_routine)(void*), void* arg);

 thread is created executing start_routine with arg as its sole argument.

 Attributes attr are often NULL

• void pthread_exit(void* value_ptr);
 terminates the thread and makes value_ptr available to any successful join

 Return of start_routine is implicit call to pthread_exit

• int pthread_join(pthread_t thread, void** value_ptr);
 suspends execution of the calling thread until the target thread terminates.

 On return with a non-NULL value_ptr the value passed to pthread_exit
by the terminating thread is made available in the location referenced
by value_ptr.

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

24https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Peeking Ahead: System Call
Example
• What happens when pthread_create(…) is called in a process?

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

25

Library:
int pthread_create(…) {

Do some work like a normal function…

asm code …
syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from registers
Do some more work like a normal fn…

};

get args from registers dispatch
to system function
Do the work to spawn the new thread
Store return value in %eax

Kernel:

Threads Example 2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

26

• How many threads are in this

program?

• Does the main thread join with

the threads in the same order

that they were created?

• Do the threads exit in the same

order they were created?

• If we run the program again,

would the result change?

Fork-Join Pattern
• Main thread creates (forks) collection of sub-threads passing them

arguments to work on…

• … and then joins with them, collecting results.

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

27

create

exit

join

Memory Layout with Two Threads
• Two sets of CPU registers

• Two sets of Stacks

• Issues:

 How do we position stacks relative to
each other?

 What maximum size should we choose
for the stacks?

 What happens if threads violate this?

 How might you catch violations?

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

28

Code

Global Data

Heap

Stack 1

Stack 2

A
d

d
re

ss S
p

a
ce

0x000…

0xFFF…

Announcements
• Project 0 is due Monday, February 17

 Attend next lecture for a walk through

 Work through Study Guide: x86

• Assignment 1 was posted

 Due Monday, February 24

• Project 1 will be posted soon

 Groups have been assigned

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

29

Interleaving and
Nondeterminism

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

30

Thread Abstraction
• Illusion: Infinite number of processors

• Reality: Threads execute with variable “speed”

 Programs must be designed to work with any schedule

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

31

Programmer vs. Processor View 2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

32

Possible Executions 2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

33

Correctness with Concurrent Threads
• Non-determinism:

 Scheduler can run threads in any order

 Scheduler can switch threads at any time

 This can make testing very difficult

• Independent Threads

 No state shared with other threads

 Deterministic, reproducible conditions

• Cooperating Threads

 Shared state between multiple threads

• Goal: Correctness by Design

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

34

Race Conditions
• What are the possible values of x below after all threads finish?

• Initially x == 0 and y == 0

• Must be 1. Thread B does not interfere.

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

35

Thread A

x = 1;

Thread B

y = 2;

Race Conditions
• What are the possible values of x below?

• Initially x == 0 and y == 0

• 1 or 3 or 5 (non-deterministic)

• Race Condition: Thread A races against Thread B

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

36

Thread A

x = y + 1;

Thread B

y = 2;

y = y * 2;

Relevant Definitions
• Synchronization: Coordination among threads, usually regarding

shared data

• Mutual Exclusion: Ensuring only one thread does a particular thing
at a time (one thread excludes the others)

 Type of synchronization

• Critical Section: Code exactly one thread can execute at once

 Result of mutual exclusion

• Lock: An object only one thread can hold at a time

 Provides mutual exclusion

 Also called Mutex

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

37

Locks (Mutexes)
• Locks provide two atomic operations:

 Lock.acquire() – wait until lock is free; then mark it as busy

 After this returns, we say the calling thread holds the lock

 Lock.release() – mark lock as free

 Should only be called by a thread that currently holds the lock

 After this returns, the calling thread no longer holds the lock

• For now, don’t worry about how to implement locks!

 We’ll cover that in substantial depth later on in the class

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

38

Example: Shared Data Structure
• Thread A

• Insert(3)

• Thread B

• Insert(4)

• Get(6)

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

39

Tree-Based Set Data Structure

Example: Shared Data Structure
• Thread A

• Insert(3):

 Lock.acquire()

 Insert 3 into the data
structure

 Lock.release()

• Thread B

• Insert(4):

 Lock.acquire()

 Insert 4 into the
data structure

 Lock.release()

• Get(6):

 Lock.acquire()

 Check for
membership

 Lock.release()

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

40Tree-Based Set Data Structure

OS Library Locks: pthreads
• int pthread_mutex_init(

pthread_mutex_t* mutex,
pthread_mutexattr_t const* attr)

 Attributes are most of the time NULL

• int pthread_mutex_lock(pthread_mutex_t* mutex);

• int pthread_mutex_unlock(pthread_mutex_t* mutex);

• You’ll get a chance to use these in Assignment 1

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

41

Our Example 2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

42

Critical section

Note: pthread_mutex_init was called once in main thread

Semaphore
• Semaphores are a kind of generalized lock

 First defined by Dijkstra in late 60s

 Main synchronization primitive used in original UNIX (& Pintos)

• Definition: a Semaphore has an integer value and supports the
following two operations:

 P() or down(): atomic operation that waits for semaphore to become
positive, then decrements it by 1

 V() or up(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any

• P() stands for “proberen” (to test) and V() stands for “verhogen” (to

increment) in Dutch

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

43

Two Important Semaphore Patterns
• Mutual Exclusion: (Like lock)

 Called a "binary semaphore“

initial value of semaphore = 1;

semaphore.down();
// Critical section goes here

semaphore.up();

• Signaling other threads, e.g. ThreadJoin

initial value of semaphore = 0

ThreadJoin {

semaphore.down();
}

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

44

ThreadFinish {
semaphore.up();

}

Processes

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

45

Recall: Process
• Definition: execution environment with restricted rights

 One or more threads executing in a single address space

 Owns file descriptors, network connections

• Instance of a running program

 When you run an executable, it runs in its own process

 Application: one or more processes working together

• Protected from each other; OS protected from them

• In modern OSes, anything that runs outside of the kernel runs in a
process

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

46

Recall: Life of a Process 2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

47

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit

rtn

interrupt

rfi

exception

Processes
• How to manage process state?

 How to create a process?

 How to exit from a process?

• Remember: Everything outside of the kernel is running in a process!

 Including the shell! (Assignment 2)

• Processes are created and managed… by processes!

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

48

Bootstrapping
• If processes are created by other processes, how does the first process

start?

• First process is started by the kernel

 Often configured as an argument to the kernel before the kernel boots

• After this, all processes on the system are created by other processes

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

49

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

50

pid.c
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[])

{

/* get current processes PID */

pid_t pid = getpid();

printf("My pid: %d\n", pid);

exit(0);

}

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

51

Q: What if we let main return

without ever calling exit?
• The OS Library calls exit() for

us!
• The entrypoint of the executable is

in the OS library
• OS library calls main
• If main returns, OS library calls exit
• You’ll see this in Project 0:
entry.c

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

52

Creating Processes
• pid_t fork() – copy the current process

 New process has different pid

 New process contains a single thread

• State of original process duplicated in both Parent and Child!
 Address Space (Memory), File Descriptors (covered later), etc…

• Return value from fork(): pid (like an integer)

 When > 0:

 Running in (original) Parent process

 return value is pid of new child

 When = 0:

 Running in new Child process

 When < 0:

 Error! Must handle somehow

 Running in original process

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

53

fork1.c
#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

pid_t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid_t cpid = fork();

if (cpid > 0) { /* Parent Process */

printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */

printf("[%d] child\n", getpid());

} else {

perror("Fork failed");

}

}

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

54

fork1.c
#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

pid_t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid_t cpid = fork();

if (cpid > 0) { /* Parent Process */

printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */

printf("[%d] child\n", getpid());

} else {

perror("Fork failed");

}

}

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

55

p

fork1.c
#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

pid_t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid_t cpid = fork();

if (cpid > 0) { /* Parent Process */

printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */

printf("[%d] child\n", getpid());

} else {

perror("Fork failed");

}

}

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

56

p

c

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

58

fork2.c – parent waits for child to
finish
int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) { /* Parent Process */

mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

}
…

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

59

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

60

Running Another Program
• With threads, we could call pthread_create to create a new thread

executing a separate function

• With processes, the equivalent would be spawning a new process
executing a different program (i.e. fork and exec)

• How can we do this?

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

61

fork3.c
…

cpid = fork();

if (cpid > 0) { /* Parent Process */

tcpid = wait(&status);

} else if (cpid == 0) { /* Child Process */

char *args[] = {"ls", "-l", NULL};

execv("/bin/ls", args);

/* execv doesn't return when it works.

So, if we got here, it failed! */

perror("execv failed");

exit(1);

}

…

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

62

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

63

inf_loop.c
#include <stdlib.h>
#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
printf("Caught signal!\n");

exit(1);

}

int main() {

struct sigaction sa;
sa.sa_flags = 0;

sigemptyset(&sa.sa_mask);

sa.sa_handler = signal_callback_handler;
sigaction(SIGINT, &sa, NULL);

while (1) {}

}

• Q: What would happen if the process
receives a SIGINT signal, but does not
register a signal handler?

• A: The process dies!

• For each signal, there is a default
handler defined by the system

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

64

Common POSIX Signals
• SIGINT – control-C

• SIGTERM – default for kill shell command

• SIGSTP – control-Z (default action: stop process)

• SIGKILL, SIGSTOP – terminate/stop process

 Can’t be changed with sigaction

 Why?

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

65

Shell
• A shell is a job control system

 Allows programmer to create and manage a set of programs to do some
task

• You will build your own shell in Assignment 2…

 … using fork and exec system calls to create new processes…

 … and the File I/O system calls we’ll see next time to link them together

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

66

Process vs. Thread APIs
• Why have fork() and exec() system calls for processes, but just a
pthread_create() function for threads?

 Convenient to fork without exec: put code for parent and child in one
executable instead of multiple

 It will allow us to programmatically control child process’ state

 By executing code before calling exec() in the child

 We’ll see this in the case of File I/O next time

• Windows uses CreateProcess() instead of fork()

 Also works, but a more complicated interface

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

67

Threads vs. Processes
• If we have two tasks to run concurrently, do we run them in separate

threads, or do we run them in separate processes?

• Depends on how much isolation we want

 Threads are lighter weight [why?]

 Processes are more strongly isolated

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

68

Conclusion
• Threads are the OS unit of concurrency

 Abstraction of a virtual CPU core

 Can use pthread_create, etc., to manage threads within a process

 They share data → need synchronization to avoid data races

• Processes consist of one or more threads in an address space

 Abstraction of the machine: execution environment for a program

 Can use fork, exec, etc. to manage threads within a process

• We saw the role of the OS library

 Provide API to programs

 Interface with the OS to request services

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

69

2
/5

/2
0

2
5

,
2

/1
0

/2
0

2
5

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

70

