Abstractions 3: Pipes
and Sockets

Lecture 5

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: I/0O and Storage Layers

Application / Service

High Level /O Streams

Low Level I/0 File Descriptors

open(), read(), write(), close(),
Open File Descriptions

Files/Directories/Indexes

I/O Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA

Application

] L

Operating system
- -

Hardware

2/19/2025, Lecture 5

-
+
o}
4
Q
s}
0p)
el
=
<
n
)
2,
.-
A
Ye)
N
S
N
on
=
2
~
2,
n
50}
S
—
S
D)
<

2/19/2025, Lecture 5

C High-Level File API — Streams

- Operates on “streams” — sequence of bytes, either text or data, with a
position

#include <stdio.h>
FILE *fopen(const char *filename, const char|*mode ;
int fclose(FILE *fp);

Mode Text Descriptions é
r rb Open existing file for reading =
\ wb Open for writing; created if does not exist %
a ab Open for appending; created if does not exist i
r+ rb+ Open existing file for reading & writing. 2
wt wb+ Open for reading & writing; truncated to zero if exists, create otherwise ;
a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, -
write as append

2/19/2025, Lecture 5

Low-Level File I/O

- Operations on file descriptors

 Integer that corresponds to an object in the kernel called an open file
description

* Open file description object in the kernel represents an instance of an open file
- Why not just use a pointer?

#tinclude <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags |[|, mode_t mode])
int creat (const char *filename, mode_t mode)
int close (int file

w
+
Q
4
O
o
s
e
=]
<
n
)
o8
.-
A
S
N
o
N
o0
=]
=
~
[oR
N
o
o
—
o
95}
o

- . VAppIicatior;
Bit vector of? Bit vector of Permission Bits: -~
° ACCQSS modes (Rd, WI', .o) o User | Group | Other xR | W | X Operating system

« Open Flags (Create, ...)
« Operating modes (Appends, ...)

- -

Hardware

Recall: Key Unix I/O Design
Concepts

Uniformity — everything is a file

. fille operations, device I/0, and interprocess communication through open, read/write,
close

+ Allows simple composition of programs
- find | grep | wc ...

2/19/2025, Lecture 5

Open before use
+ Provides opportunity for access control and arbitration
+ Sets up the underlying machinery, i1.e., data structures

Byte-oriented
+ Even if blocks are transferred, addressing is in bytes

Kernel buffered reads
+ Streaming and block devices looks the same, read blocks yielding processor to other task

Kernel buffered writes
+ Completion of out-going transfer decoupled from the application, allowing it to continue

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wn
o}
(o}
o=
ol
Yol
N
=
(o]
o0
=)
o
o
(o
n
o
(@)
—
<t
(@)
N
(@)

Application

Explicit close -

Operating system
] [

Hardware

Recall: Abstract Representation of a
Process

0
Y
~
=

+~
Q
<)

—

Te)

N

S

N

-~

(o))

—

-~

(2]

Process - Suppose that we execute
\ open("foo.txt")
Threads - and that the result is 3
Regs Address
Space s
(Memory) E
User Space
- S S S S S i I S S S S S e e .. Q%
rnel Space . . E
File D?)eSCI'lptOI’S Open File Description P
Not shown: 1 - %
Initially contains — Fﬂe,' .fOO..tXt S
0, 1, and 2 (stdin, Position: 0 <
O

stdout, stderr) K j

Recall: What happens on fork()?

User Space

rnel Space

Not shown:
Initially contains
0, 1, and 2 (stdin,
stdout, stderr)

Process 1
Thread’s \
Regs Address
Space
(Memory)

File Descriptors
3

File descriptor 1s
copiled

Open file description

1s aliased

Open File Description

—

File: foo.txt
Position: 100

10
o
=

i
(&}
)

—

el

(o]

(@)

N

~

>

—

~—

o

Process 2
Thread’s \
Regs Address
Space
(Memory)

File Descriptors

<

CSC4103, Spring 2025, Pipes and Sockets

T

I E
Oper.ing system

-~ -

Hardware

0
2
-
=

+~
Q
<)

—

Lf::\

N

S

N

-~

(o))

—

-~

(2]

Recall: Open File Description 1s Aliasec

read(3, buf, 100) Process 1 Process 2
Thread’s \ Glread’s \
Regs Address Regs Address

Space Space s
(Memory) (Memory) E
User Space
19 Sl e B e — ~
rne ace .] . . &
P File Descriptors : o File Descriptors =
5 Open File Description 5 A
Not shown: 1. JJ %
Initially contains — Fﬂef .fOO..tXt < S
0, 1, and 2 (stdin, Position: 100 S
Z

stdout, stderr) \ / \

0
2
-
=

+~
Q
<)

—

Lf::\

N

S

N

-~

(o))

—

-~

(2]

Recall: Open File Description 1s Aliasec

read(3, buf, 100) Process 1 Process 2
Thread’s \ Glread’s \
Regs Address Regs Address

Space Space s
(Memory) (Memory) E
User Space
19 Sl e B e — ~
rne ace .] . . &
P File Descriptors : o File Descriptors =
5 Open File Description 5 A
Not shown: 1. JJ %
Initially contains — Fﬂef .fOO..tXt < S
0, 1, and 2 (stdin, Position: 200 g
Z

stdout, stderr) \ / \

0
2
-
=

+~
Q
<)

—

Lf::\

N

S

N

-~

(o))

—

-~

(2]

Recall: Open File Description 1s Aliasec

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
Thread’s \ Glread’s \
Regs Address Regs Address

Space Space s
(Memory) (Memory) <
User Space
1S S e e = ~ S
rne ace .] . . &
P File Descriptors : o File Descriptors =
5 Open File Description 5 A
Not shown: 1 - JJ %
Initially contains — Fﬂef .fOO..tXt < S
0, 1, and 2 (stdin, Position: 200 3
%

stdout, stderr) \ / \

0
2
-
=

+~
Q
<)

—

Lf::\

N

S

N

-~

(o))

—

-~

(2]

Open File Description 1s Aliased

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
Thread’s \ Glread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

CSC4103, Spring 2025, Pipes and Sockets

rnel Space ; . . .
P File Descriptors : L File Descriptors
5 Open File Description 5
Not shown: oo ‘ ‘
Initially contains — Flle.' .fOO..tXt wa
0, 1, and 2 (stdin, Position: 300

stdout, stderr) L
\ / \ Oper.dng system

- -

Hardware

0
2
-
=

+~
Q
<)

—

Lf::\

N

S

N

-~

(o))

—

-~

(2]

Recall: File Descriptor 1s Copied

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
close(3)
Gu‘ead’s \ Glread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

rnel Space ; . . .
P File Descriptors : L File Descriptors
5 Open File Description 5
Not shown: oo ‘ ‘
Initially contains — Flle.' .fOO..tXt wa
0, 1, and 2 (stdin, Position: 300

(SC4103, Spring 2025, Pipes and Sockets

stdout, stderr) L
\ / \ Oper.dng system

- -

Hardware

Recall: In POSIX,
Everything is a “File”

- Identical interface for:
* Files on disk
- Devices (terminals, printers, etc.)

2/19/2025, Lecture 5

« Regular files on disk
- Networking (sockets)
- Local interprocess communication (pipes, sockets)

- Based on the system calls open(), read(), write(), and close()

®
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
(o}
o=
o
Yol
N
=
(o]
o0
=)
o
o
(o
n
o
(@)
—
<t
(@)
N
O

Application

-~ -

Operating system
] [

Hardware

Recall: Shared Terminal Emulator

User Space

rnel Space

Process 1
Thread’s \
Regs Address
Space
(Memory)

Terminal Emulator

Process 2
Thread’s \
Regs Address
Space
(Memory)

-

File Descriptors

L |

/
2

_

Ie]
<
5

5
Q
(D)

—

S

N

(@)

N

=

(o))

—

~

N

CSC4103, Spring 2025, Pipes and Sockets

2/19/2025, Lecture 5

Other Syscalls: dup and dup2

- They allow you to duplicate the file descriptor

- But the open file description remains aliased

Application

-~ -

Operating system
] [

Hardware

®
-~
|5
4
S}
@)
N
)
o
fay]
)
o}
(o}
.-
o
Yol
N
=
(o]
o0
=)
-
o
(o
n
o
(@)
—
j*
(@)
N
O

2/19/2025, Lecture 5

Other Syscalls: dup and dup2

Process - Suppose that we execute
\ open("foo.txt")
Thread’s - and that the result 1s 3
Regs Address
Space - Next, suppose that we execute
(Memory) read(3, buf, 100)
- and that the result 1s 100

User Space

Next, suppose that we execute

CSC4103, Spring 2025, Pipes and Sockets

rnel Space ; .
File Descriptors Open File Description dup(3)
3 :
: : - And that th It 1s 4
Initially contains 1| N { File: oot .
0, 1, and 2 (stdin, 162 | Position: 100 - Finally, suppose that jEerexes

stdout, stderr) \ j dup2(3, 162) T T -
Operating system

- -

Hardware

G 9IN3097 ‘GZ03/61/3 2RI . g SuLdg ‘e01¥

).

D

Q,
=
al

2/19/2025, Lecture 5

Communication Between Processes

write(wfd, wbuf, wlen);

Process A Process B

Persistent " n = pead(rfd, rbuf, rmax);
Storage

. Producer (writer) and consumer (reader) may be distinct processes

- Potentially separated in time

w
+
)
i
3]
o)
N
]
=
<
wn
)
[oN
el
ol
s
N
S
N
o0
=)
=
~
(o
N
o
©)
—
o
95}
O

- Why might it be wasteful to use a file in this way?

2/19/2025, Lecture 5

Communication Between Processes

write(wfd, wbuf, wlen);

Process A Process B

Intermediate

= read(rfd, rbuf, rmax);
Storage

- Data written by A is held in memory until B reads it

-
+
9]
4
O
s}
0p)
el
=
<
n
)
2,
.-
A
5
N
S
N
on
=
2
~
2,
n
50
S
—
S
D)
<

- What if A generates data faster than B can process it?

2/19/2025, Lecture 5

Communication Between Processes

write(wfd, wbuf, wlen);

Process A Process B

Intermediate
Storage

= read(rfd, rbuf, rmax);

- Data written by A is held in memory until B reads it

- Queue has a fixed capacity
- Writing to the queue blocks if the queue if full
* Reading from the queue blocks if the queue 1s empty

»
+
o}
A4
Q
o
n
e
c
(ay]
n
)
2,
.-
oW
o
N
S
(o]
on
c
-
~
2,
47
o
©)
—
3
n
<

- POSIX provides this abstraction in the form of pipes

2/19/2025, Lecture 5

Pipes

- int pipe(int fileds[2]);
+ Allocates two new file descriptors in the process
* Writes to fileds[1] read from fileds[9]
- Implemented as a fixed-size queue

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
(o}
o=
o
Yol
N
=
(o]
o0
=)
o
=
(o
n
o
(@)
—
~
(@)
N
O

Application

-~ -

Operating system
] [

Hardware

2/19/2025, Lecture 5

Single-Process Pipe Example

#include <unistd.h>
int main(int argc, char *argv[]) {
char *msg = "Message in a pipe.\n";
char buf[BUFSIZE] = { '\@' };
int pipe_fd[2];
if (pipe(pipe_fd) == -1) {
fprintf (stderr, "Pipe creation failed.\n"); return EXIT_FAILURE;

ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);
printf("Sent: %s [%1d, %1d]\n", msg, strlen(msg)+l, writelen);

ssize t readlen = read(pipe_fd[@], buf, BUFSIZE);

printf("Rcvd: %s [%1d]\n", buf, readlen);

close(pipe_fd[1]); close(pipe_fd[@]); A —
} T ©__

®
-~
|5
4
S}
@)
N
)
o
fay]
)
o}
(o}
.-
o
Yol
N
=
(o]
o0
=)
-
o
(o
n
o
(@)
—
j*
(@)
N
O

Operating system
] [

Hardware

2/19/2025, Lecture 5

Inter-Process Communication (IPC)

pid t pid = fork();

if (pid < 9) {
fprintf (stderr, "Fork failed.\n");
return EXIT_FAILURE;

}

if (pid !'= 0) {
ssize t writelen = write(pipe_fd[1], msg, msglen);
printf("Parent: %s [%1ld, %1ld]\n", msg, msglen, writelen);
close(pipe_fd[0]);
close(pipe_fd[1]);

} else {
ssize t readlen = read(pipe_fd[©], buf, BUFSIZE);
printf("Child Rcvd: %s [%1d]\n", msg, readlen);
close(pipe_fd[0]);
close(pipe_fd[1]); —~

} Operating system
] [

Hardware

1)}
-~
|5
4
S}
@)
N
)
=
fay]
)
o}
(o}
.-
ol
Yol
N
=
(o]
o0
=)
or
o
(o
n
o
(@)
—
(@)
N
(@)

Application

2/19/2025, Lecture 5

Pipes Between Processes

Process 1 Process 2
pipe(...)
fork () Gmead’s \ Glread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space_

CSC4103, Spring 2025, Pipes and Sockets

rnel Space File Descriptors
3 CSwe
In
4 .
Pipe

N——

2/19/2025, Lecture 5

Channel from Child to Parent

Process 1 Process 2
pipe(...)
fork () Gmead’s \ Glread’s \

Regs A Regs Add
close(4) ddress close(3) reSs
Space Space g
(Memory) (Memory) 7
User Space g
rnel Space File Descriptors S
4 | In %
Pipe 2

N——

2/19/2025, Lecture 5

Channel from Parent to Child

Process 1 Process 2
pipe(...)
fork () Gmead’s \ Glread’s \
Regs Regs
close(3) Address close(4) Address w
Space Space g
(Memory) (Memory) 7
User Space g
rnel Space File Descriptors S
4 | In %
Pipe 2

N——

2/19/2025, Lecture 5

When do we get EOF on a pipe?

- When there a no more open file descriptors for the “write” end of the
pipe

0
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
(o}
el
o
Yol
N
=
(o]
o0
=)
-
o
(o
n
o
(@)
—
<ff
(@)
N
O

2/19/2025, Lecture 5

EOF on a Pipe

Process 1 Process 2
pipe(...)
fork () Gmead’s \ Glread’s \
1 3 Regs Address Regs Address
close(3) Space Space
close(4) (Memory) close(4) (Memory)

User Space

rnel Space File Descriptors

T
- / o

CSC4103, Spring 2025, Pipes and Sockets

2/19/2025, Lecture 5

EOF on a Pipe

Process 1 Process 2
pipe(..) [| \ [| \
fork () Thread’s Thread’s

Regs Address Regs Address
close(3) Space Space
close(4) (Memory) (Memory)

User Space

CSC4103, Spring 2025, Pipes and Sockets

rnel Space File Descriptors
3 CSwe
In
4 .
Pipe

N——

2/19/2025, Lecture 5

Announcements

- Assignment 1 due next Monday
* You should be finishing work on this

- Project 0 was due early this week
- If you need an extension, please get in contact

-« Project 1 will be posted soon

Application

-~ -

Operating system
] [

Hardware

®
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
(o}
o=
o
Yol
N
=
(o]
o0
=)
o
o
(o
n
o
(@)
—
<t
(@)
N
O

G 9IN309T "GZ03/61/¢ sje300Q pue sadiJ ‘¢g0g surtdg ‘e01

),
+>
D
—_
>
o
).

2/19/2025, Lecture 5

Today: The Socket Abstraction

- Key Idea: Communication across the world looks like File I/0

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

- Sockets: Connected queues over the Internet
- How to open()? Filenames?
* How are the endpoints connected in time?

1))
=
[}
v—‘d
3}
o
N
s
(=
o]
wn
o)
o,
el
oW
Yol
N
=
N
o0
o
o
~
(=F
N
o
(@)
—
— O
Application wn
(@)

2/19/2025, Lecture 5

Sockets

- Socket: An abstraction for one endpoint of a network connection
* Mechanism for inter-process communication

- First introduced in 4.2 BSD Unix

- Most operating systems (Linux, Mac OS X, Windows) provide this, even if
they don’t copy rest of UNIX I/O

« Standardized by POSIX

- Same abstraction for any kind of network
- Local (within same machine)
- The Internet (TCP/IP, UDP/IP)

- Things “no one” uses anymore (OSI, Appletalk, IPX, ...)

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wn
o}
(o}
o=
ol
Yol
N
=
(o]
o0
=)
o=
o
(o
n
o
(@)
—
(@)
N
(@)

Application
] L
Operating system
] [

Hardware

2/19/2025, Lecture 5

What 1s a Network Connection?

- In this class we will study so-called “T'CP Connections”

- Bidirectional stream of bytes between two processes on possibly
different machines

- Abstractly, a connection between two endpoints A and B consists of:
- A queue (bounded buffer) for data sent from A to B
- A queue (bounded buffer) for data sent from B to A

Application

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wn
o}
(o}
el
ol
Yol
N
=
(o]
o0
=)
or
o
(o
n
o
(@)
—
(@)
N
(@)

2/19/2025, Lecture 5

Sockets

- Looks just like a file with a file descriptor
- Corresponds to a network connection (two queues)
- write adds to output queue (queue of data destined for other side)
- read removes from it input queue (queue of data destined for this side)
* Some operations do not work, e.g. 1seek

- How can we use sockets to support real applications?
« A bidirectional byte stream isn’t useful on its own...

Application
-~ -

Operating system
] [

Hardware

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wn
o}
(o}
o=
ol
Yol
N
=
(o]
o0
=)
o
=
(o
n
o
(@)
—
~
(@)
N
(@)

2/19/2025, Lecture 5

What 1s a Protocol?

- A protocol 1s an agreement on how to communicate

- Includes
* Syntax: how a communication is specified & structured
- Format and order of messages that are sent and received

« Semantics: what a communication means

+ Actions taken when transmitting, receiving, or when a timer expires

- Described formally by a state machine
+ Often represented as a message transaction diagram

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wn
o}
3,
o=
ol
Yol
N
=
(o]
o0
=)
o=
o
(o
n
o
(@)
—
<t
(@)
N
(@)

Application
1 L

Operating system
] [

Hardware

Examples of Protocols in Human
Interaction

L0
o
=
o

o
(5]
Q

—

Te)

AN

(e}

N

o

(op)

—

~

A

1. Telephone

2. (Pick up / open up the phone)

3. Listen for a dial tone / see that you have service
4. Dial

5. Should hear ringing ...

 »

6. Callee: “Hello?”

7. Caller: “Hi, it’s John....” 4 /

Or: “Hi, it’s me” (what’s that about?)

Pipes and Sockets

8. Caller: “Hey, do you think ... blah blah blah ...” pause

 +

9. ¢ - Callee: “Yeah, blah blah blah ...” pause
10. Caller: Bye »
Callee: Bye fr—

11. h
Application
12. Hang up -~ -

25,

ing 20

Operating system
] [

Hardware

2/19/2025, Lecture 5

Web Server

Request

Reply

Web Server

Application

] L

Operating system

- -

Hardware

®
+
]
4
5}
o
N
e
=}
(ay]
0
D)
o
.-
A
N
S
N
o0
=}
s
~
N
N
o
—
@)
0
®)

2/19/2025, Lecture 5

Client-Server Protocols

[Client 2 }

*k%k

[Client n

- Many clients accessing a common server

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
(o}
el
o
Yol
N
=
(o]
o0
=)
or
=
(o
n
o
(@)
—
<t
(@)
N
O

. File servers, www, FTP, databases

2/19/2025, Lecture 5

Client-Server Communication

- Client 1s “sometimes on” - Server 1s “always on”
* Sends the server requests for Services requests from many clients
services when interested - E.g., Web server for www.lsu.edu
* E.g., Web browser on laptop/phone - Doesn’t initiate contact with clients
* Doesn’t communicate directly with - Needs a fixed, well-known address

other clients
« Needs to know server’s address

GET /index.html

@
Oi ? >
W, |
T > .
C~_T

“Site under construction’

)
+
o)
4
3]
@)
o))
s
(=
fay]
0
b}
(o}
o=
oW
el
N
S
(o]
o0
o
o
=
Q
N
o
©)
—
<t
)
N
(@)

] L

Operating system
- -

Hardware

2/19/2025, Lecture 5

Simple Example: Echo Server

ﬁm “hello, world”
>

‘I/f@
(s

<

“hello, world”

Client Web Server

-
-
5}
L
3}
o
N
)
(@}
fav]
wn
5}
[oF
el
[a W
5
(&
(@)
(o]
6p
(@}
o]
~
Q
N
o3
(@)
—
(@]
(2
O

2/19/2025, Lecture 5

Simple Example: Echo Server

Server (services requests)

()
+
O
i
Q
o
N
e
<
(ay]
n
Q
(o
o=
[a®
o)
(o]
S
N
on
=)
O]
=~
(o
N
o
©)
—
&)
P
(@)

2/19/2025, Lecture 5

Echo Server (One Request)

client

char buf[BUF_SIZE];

fgets(buf, BUF_SIZE, stdin); // prompt

write(sockfd, buf, strlen(sndbuf));&// send request

memset(buf, ©, BUF SIZE); / ear

read(sockfd, buf, §UF_SIZE-1); | // redeive response s

printt(sAs\n , but); cho E

.[;::7

server 8
char buf[BUF_SIZE]; P
memset (buf, O, BUF SIZE); &
read(consockfd, regbuf, MAXREQ-l);l / receive]
printf("%s\n", buf); // echo — S
write(consockfd, buf, strlen(regbuf)); // send response T - =

Operating system

-~ -

Hardware

2/19/2025, Lecture 5

What Assumptions are we Making?

- Reliable
« Write to a file => Read 1t back. Nothing is lost.
- Write to a (TCP) socket => Read from the other side, same.
- Like pipes

- In order (sequential stream)
* Write X then write Y => read gets X then read gets Y

- When ready?

* File read gets whatever is there at the time. Assumes writing already took
place.

- Like pipes!

0
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
(o}
el
o
Yol
N
=
(o]
o0
=)
-
o
(o
n
o
(@)
—
<t
(@)
N
O

Application

-~ -

Operating system
] [

Hardware

2/19/2025, Lecture 5

Socket Creation

- Files: permanent objects
* Files exist independently of processes
- Easy to name what file to open()

- Pipes: descriptors inherited from parent process

. Sockets are transient, tied to particular processes (the two
endpoints!)
« Processes are on separate machines: no common ancestor
- How do we name the objects we are opening?

* How do these completely independent programs know that the other wants
to “talk” to them?

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wn
o}
(o}
el
ol
Yol
N
=
(o]
o0
=)
or
o
(o
n
o
(@)
—
~
(@)
N
(@)

Application
-~ -

Operating system
] [

Hardware

Namespaces for Communication
over IP

- Hostname
- www.lsu.edu

- IP address
- 130.39.6.220 (IPv4, 32-bit Integer)
- 2600:1702:4930:cb0::1(IPv6, 128-bit Integer)

2/19/2025, Lecture 5

- Port Number
* 0— 1023 are “well known” or “system” ports

« Superuser privileges to bind to one
- 1024 — 49151 are “registered” ports (registry)
+ Assigned by IANA for specific services
- 49152 — 65535 (215+214 to 216—1) are “dynamic” or “private”

- Automatically allocated as “ephemeral ports”

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wn
o}
(o}
o=
ol
Yol
N
=
(o]
o0
=)
o
o
(o
n
o
(@)
—
<t
(@)
N
(@)

Application

-~ -

Operating system
] [

Hardware

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

2/19/2025, Lecture 5

Connection Setup

I accept

new
socket

Client Server

- Special kind of socket: server socket
- Has file descriptor
« Can’t read or write

- Two operations:
- listen(): Start allowing clients to connect —
- accept(): Create a new socket for a particular client T T -

)
+
o)
4
3]
@)
N
s
(=
fay]
0
b}
(o}
o=
oW
el
N
S
(o]
o0
o
o
~
(=F
N
o
©)
—
<t
)
N
(@)

Operating system
- -

Hardware

2/19/2025, Lecture 5

Connection Setup

I accept

new
socket

Client Server
- 5-Tuple identifies each connection: - Often, Client Port “randomly” assigned
+ Source IP Address * Done by OS during client socket setup

* Destination IP Address

. Source Port Number - Server Port often “well known”

- 80 (web), 443 (secure web), 25 (sendmail), etc.
+ Well-known ports from 0...1023 ——
-~ -

Operating system

+ Destination Port Number
- Protocol (always TCP here)

)
+
o)
4
3]
@)
o))
s
(=
fay]
0
b}
(o}
o=
oW
el
N
S
(o]
o0
o
o
=
Q
N
o
©)
—
<t
)
N
(@)

Ly

Hardware

Sockets 1n Schematic Server

Client Create Server Socket

Create Client Socket Bind it to an Address

i (host:port)

Connect it to server (host:port) - __ > Listen for Connection
\\\\\\ l L,/’\\\\
“~ Accept syscall() \
Connection Socket €= Connection Socket / et

A\
7 uwrite request --------ommoommiiooooooos > read request ¥,
! \
! \
. -read response <-----------ooooooooooooooo write response ..

l \L Applicatior;

. . -
Close Client Socket Close Connection Socket o;nng .
Y -~ -

Hardware

Close Server Socket

2/19/2025, Lecture 5

-
+
o}
4
Q
s}
0p)
el
=
<
n
)
2,
o=
A
Ye)
N
S
N
on
=
2
~
2,
n
50}
S
—
S
D)
<

2/19/2025, Lecture 5

Client Protocol

char* host _name = "www.lsu.edu";
char* port = "80";

// Create a socket

struct addrinfo *server = lookup_host(host name, port);

int sock _fd = socket(server->ai_family, server->ai_socktype,
server->ai_protocol);

// Connect to specified host and port
connect(sock fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client(sock fd);

| Application
// Clean up on termination -~

C].O se (SOC k_'Fd) ; Operating system
- -

1)}
-~
|5
4
S}
@)
N
)
=
fay]
)
o}
(o}
.-
ol
Yol
N
=
(o]
o0
=)
or
o
(o
n
o
(@)
—
(@)
N
(@)

Hardware

Server Protocol (v1)

// Create socket to listen for client connections
char *port = "80";
struct addrinfo *server = setup_address(port);

int server_socket = socket(server->ai_family, server->ai_socktype, server->ai_protocol);

// Bind socket to specific port
bind(server_socket, server->ai_addr, server->ai_addrlen);

// Start listening for new client connections
listen(server_socket, MAX QUEUE);

while (1) { // Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);
close(conn_socket);

}

close(server_socket);

Application

] L
Operating system
] [

Hardware

L0
o
=
o

o
(5]
Q

—

Te)

AN

(e}

N

o

(op)

—

~

A

Pipes and Sockets

25,

ring 2(

2/19/2025, Lecture 5

How Does the Server Protect Itself?

- Handle each connection in a separate process

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
(o}
.-
o
Yol
N
=
(o]
o0

CSC4103, Sprin

Sockets with Protection Server

Client

Create Client Socket

l

Connect it to server (host:port)

T ywrite request - -

4
1
1
1

«.__.~ read response «------------

l

Close Client Socket

Create Server Socket

Bind 1t to an Address
(host:port)

-------------- > Listen for Connection

~
~
~
~
~
S
-~
\\\ \L / b
~ L/ N

- Accept syscall()

Close Connection
Socket l

Wait for child _

Application
1 L

Operating system
] -

Hardware

Close Server Socket

2/19/2025, Lecture 5

+
)
4
)
@)
0P}
]
&
=
)
)
(o}
.ﬂH
el
Yol
N
S
(o]
o0
=)
ot
~
(o
o
2L
S
—
~
O
N
O

2/19/2025, Lecture 5

Server Protocol (v2)

// Socket setup code elided..
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server socket, NULL, NULL);
pid t pid = fork();
if (pid == 0) { // child
close(server_socket);
serve _client(conn_socket);
close(conn_socket);

1)}
-~
|5
4
S}
@)
N
)
o
=
wn
o}
(o}
o=
ol
Yol
N
=
(o]
o0
=)
o=
o
(o
n
o
(@)
—
<t
(@)
N
(@)

exit(9);
} else { // parent
close(conn_socket);
wait (NULL);
} —
} =
close(server_socket); Operating system

3

Hardware

2/19/2025, Lecture 5

Concurrent Server

.« So far, 1n the server:
- Listen will queue requests
- Buffering present elsewhere
* But server waits for each connection to terminate before servicing the next

- A concurrent server can handle and service a new connection before
the previous client disconnects

0
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
(o}
el
o
Yol
N
=
(o]
o0
=)
-
o
(o
n
o
(@)
—
<ff
(@)
N
O

Application

-~ -

Operating system
] [

Hardware

Sockets with Protection and Concurrency

Server

Client Create Server Socket
Create Client Socket Bind 1t to an Address
(host:port)
\4
Connect it to server (host:port) ---—---_______ > Listen for Connection

e Accepi syscall() g \\\

Ty write request -

/!
I

~.__. read response <-------------

l

Close Client Socket

2/19/2025, Lecture 5

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wm
)
(o}
o=
ol
Yol
N
=
(o]
o0
=)
-
o
(o
n
o
(@)
—
~
(@)
N
O

2/19/2025, Lecture 5

Server Protocol (v3)

// Socket setup code elided..
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server socket, NULL, NULL);
pid t pid = fork();
if (pid == 0) { // child
close(server_socket);
serve _client(conn_socket);
close(conn_socket);

1)}
-~
|5
4
S}
@)
N
)
o
=
wn
o}
(o}
o=
ol
Yol
N
=
(o]
o0
=)
o=
o
(o
n
o
(@)
—
<t
(@)
N
(@)

exit(9);
} else { // parent
close(conn_socket);
//wait(NULL);
} _
Application
} =
close(server_socket); Oerating system

3

Hardware

Concurrent Server without
Protection

- Spawn a new thread to handle each connection

2/19/2025, Lecture 5

- Main thread initiates new client connections without waiting for
previously spawned threads

- Why give up the protection of separate processes?
« More efficient to create new threads
« More efficient to switch between threads

®
-~
|5
4
S}
@)
N
)
=
fay]
wm
o}
3,
o=
o
Yol
N
=
(o]
o0
=)
o=
o
(o
n
o
(@)
—
<t
(@)
N
O

Sockets with Concurrency, without
PrOteCtiOIl Server

Client Create Server Socket

l

Bind it to an Address
(host:port)

2/19/2025, Lecture 5

Create Client Socket

Vv

Connect it to server (hostiport) . __________ > Listen\ /for Connection

\
~~ Accept syscall()

Vv \l/

Connection Socket —G— Connection Socket
Spawned Thread

pthtead_create Main Thread

Vv

7 "ywrlte request - ____________

Application
1 L

Operating system

] [

.. read response = «-------------

-

Close Client Socket

CSC4103, Spring 2025, Pipes and Sockets

Close Server Socket

Hardware

2/19/2025, Lecture 5

Server Address: Itself

struct addrinfo *setup_address(char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, @, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai socktype = SOCK_STREAM;
hints.ai_flags = AI PASSIVE;
getaddrinfo(NULL, port, &hints, &server);
return server;

1)}
-~
|5
4
S}
@)
N
)
o
=
wn
o}
(o}
o=
ol
Yol
N
=
(o]
o0
=)
o=
o
(o
n
o
(@)
—
<t
(@)
N
(@)

- Accepts any connections on the specified port -
-

Operating system
] [

Hardware

2/19/2025, Lecture 5

Client: Getting the Server Address

struct addrinfo *lookup host(char *host name, char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, @, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai socktype = SOCK_ STREAM;
// hints.ai_flags = AI PASSIVE;

int rv = getaddrinfo(host name, port, &hints, &server);
if (rv 1= 0) {
printf("getaddrinfo failed: %s\n", gai strerror(rv));
return NULL;
}

return server;

1)}
-~
|5
4
S}
@)
N
)
=
fay]
)
o}
(o}
.-
ol
Yol
N
=
(o]
o0
=)
or
o
(o
n
o
(@)
—
(@)
N
(@)

Application

} Tt

Operating system
] [

Hardware

2/19/2025, Lecture 5

Conclusion

- Pipes are an abstraction of a single queue
* One end write-only, another end read-only
+ Used for communication between multiple processes on one machine
- File descriptors obtained via inheritance

- Sockets are an abstraction of two queues, one 1n each direction
« Can read or write to either end
+ Used for communication between multiple processes on different machines
+ File descriptors obtained via socket/bind/connect/listen/accept

- Inheritance of file descriptors on fork() facilitates handling each connection
In a separate process

- Both support read/write system calls, just like File I/O

1)}
-~
|5
4
S}
@)
N
)
=
fay]
wn
o}
(o}
o=
ol
Yol
N
=
(o]
o0
=)
o
=
(o
n
o
(@)
—
~
(@)
N
(@)

Application

1 L°

Operating system
] [

Hardware

CENTER FOR COMPUTATION
& TECHNOLOGY

2/19/2025, Lecture 5

CSC4103, Spring 2025, Pipes and Sockets

o)
Qo

