Creating the Process
Abstraction

Lecture 6
Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: Process

Definition: execution environment with restricted rights
* One or more threads executing in a single address space
* Owns file descriptors, network connections

Instance of a running program
* When you run an executable, it runs in its own process
- Application: one or more processes working together

Protected from each other; OS protected from them

In modern OSes, anything that runs outside of the kernel runs in a
process

Application
-~ -

Operating system
] [

Hardware

2/24/2025, Lecture 6

g
©
o=
-
]
<
=]
)
0
~
<G
w0
w0
D)
o
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
<t
©)
N
<

Today: How Does the OS Support the
Process Abstraction?

- How does the kernel build the abstractions we have studied?
* Dual-Mode Operation and Address Spaces?
* Threads?
- File I/0?

2/24/2025, Lecture 6

- What role does hardware play in serving syscalls/interrupts/traps?
- How 1s the kernel structured?

- And, along the way, getting you ready to tackle Project 1 ...

=)
©
o=
-
]
(o]
=]
)
0
~
<G
w0
w0
D)
o
o
~
Te)
AN
S
(A
on

CSC4103, Sprin

Today: How Does the OS Support the
Process Abstraction?

- Support for threads and kernel structure

©
Qv
S~
]
=
O
@
—
Yol
(o]
(@)
N
=
N
<2
[a]

- Memory layout
- Support for process operations

- Support for I/0

Abstraction

- Influence of IPC/RPC on kernel structure

, Process

g 2025

CSC4103, Sprin

3o
o
~
=

+~
Q
<)

—

Yol

AN

(e}

N

-~

<

N

~

A

Recall: Kernel Stacks

Interrupt handlers want a stack

running ready to run waiting for I/0

- System call handlers want a stack — p— —

User Stack proci proct proct

- Can't just use the user stack [why?] proc2 proc2 proc?
- One Solution: two-stack model E
- Each thread has user stack and a N z
kernel stack user CPU user CPU 2
state state g
- Kernel stack stores user’s registers Kernel Stack 7 syscall 3}
during an exception handler =
. /0 driver o
- Kernel stack used to execute exception] top half k=
handler in the kernel &
Application %
©

] L

Operating system
- -

Hardware

Recall: Single and Multithreaded

Processes

- Threads encapsulate concurrency
« “Active” component

- Address space encapsulate
protection:

« “Passive” component

- Keeps bugs from crashing the
entire system

- Why have multiple threads per
address space?

code

data

filas

registers

stack

thread —>» 3

code data files
registers ||| registers ||| registers
stack stack stack
ey

— thread

single-threaded process

multithreaded process

Application

] L

Operati

ng system

- -

Har

rdware

2/24/2025, Lecture 6

=
S)
o
+
O
&
=~
5
wn
=
wn
wn
[¢D)
Q
S
S
[a W
Yol
N
S
N
o0
(@}
=
~
Q
N
o
S
—
(@)
(2
O

User/Kernel Threading Models

Almost all current
jmp]emen tations

<«—— user thread

SR

Simple One-to-One

34— user thread

<—— Kkernel thread

k) «— kernel thread

Threading Model

Many-to-One

Many-to-Many

2/24/2025, Lecture 6

=)
=]
Of
-
]
(o]
=
-
0
=
9]
wn
)
O
o
~
A
N
S
(A
on

CSC4103, Sprin

Thread State in the Kernel

- For every thread in a process, the kernel maintains:
- The thread’s “thread control block” (TCB)
- A kernel stack used for syscalls/interrupts/traps

- Additionally, some threads just do work in the kernel
- Still has TCB

- Still has kernel stack
- But not part of any process, and never executes in user mode

Application

-~ -

Operating system
] [

Hardware

2/24/2025, Lecture 6

g
©
o
-
O
<
=]
-
0
~
<G
195}
w0
o)
Q
o
~
Te)
AN
=
(A
on
=]
ol
o
[oR
N
o
&)
—
<t
©)
N
o

PintOS Thread

thread

krnl stack

regs

magic
priority
*stack

name
status
tid

O

- Single page (4 KiB)

- Stack growing from the top (high
addresses)

- struct thread at the bottom (low
addresses)

- struct thread defines the TCB
structure in PintOS

- thread_current() retrieves
pointer to current thread’s TCB

Application

-~ -

Operating system

PintOS: thread.c, thread.h g

2/24/2025, Lecture 6

g
©
e
-
]
<
=
45
[92]
S
<
wn
w0
o)
o
o
~
10
N
S
(A
on
=i
o
o
oF
N
5]
)
—
~
@)
N
©

In PintOS, Processes are Single-
Threaded (for now)

- Processes can contain exactly one thread, for simplicity

2/24/2025, Lecture 6

- Approach used by older systems

- Project 2 adds thread support

g
©
Of
-
]
<
=]
45
[92]
~
<G
w
w0
o)
Q
o
~
Te)
AN
=
(A
on

CSC4103, Sprin

2/24/2025, Lecture 6

PintOS Thread

- Single page (4 KiB)
- Stack growing from the top (high

krnl stack addresses)
regs + struct thread at the bottom (low
addresses)

- struct thread defines the TCB
structure and should refer to PCB
structure in PintOS

=)
©
o=
-
Q
<
~
-
0
~
<G
w0
n
o)
Q
o
~
Te)
N
S
N
on
=)
o=
~
(o
n
o
©)
—
QO
7
<

magic

*pcb PCB (process) Page Table

priority - E—

*stack I —

name .. <fds> /

user/s S SR

S'FatUS pagedir\ :.: Application

thread | tid =

Operating system

3

PintOS: thread.c

2/24/2025, Lecture 6

Linux “Task”

- 2 pages (8 KiB)

- Stack and thread information on
opposite sides

« Containing stack and thread
information + process descriptor

task struct
(process descr)

g
©
.=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
~
QO
N
<

state
- riorit
status Eid y -
'F]. d g S ' | Application)
address space
*task g) 1 L
eee Operating system
list elems (_D oS

Hardware

Multithreaded Processes

- Traditional implementation strategy:
- One PCB (struct process) per process
- Each PCB stores pointer to main thread’s TCB
- Each TCB stores pointer to PCB

- Linux’s strategy:
* One task_struct per thread

- Threads belonging to the same process happen to share some
resources

- Like address space, file descriptor table, etc.

Application
-~ -
Operating system
] [

Hardware

2/24/2025, Lecture 6

g
©
o=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
<t
QO
N
<

Process Creation (Projects 0 and 1)

- Allocate and initialize Process object

e Aﬁlocate and 1nitialize kernel thread mini-stack and associated Thread
object

Allocate and initialize page table for process
* Referenced by process object

Load code and static data into user pages

Build 1nitial User Stack .
g : Part of project 1
- Initial register contents, argyv, ...

Schedule (post) process/thread for execution

Eventually switch to user mode (switching to user stack and registers)

Application

1 L°

Operating system
] [

Hardware

2/24/2025, Lecture 6

g
©
o=
-
Q
(o]
=]
)
0
o
<o
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
~
QO
N
<

Aside: Polymorphic Linked Lists in C

- Many places in the kernel need to
maintain a “list of X”

* This 1s tricky in C, which has no
polymorphism

- Essentially adding an interface to a package

+ In Linux and PintOS this is done by
embedding a 1ist_elemin the struct

« Macros allow shift of view between object
and list

* You saw this in Assignment 1

all threads

ready_ threads

- Needed for building and maintaining a list

of child processes
s Part of project 1

all_threads
ready_threads
| . <fds>
pagedir
priority
stack
name
status
tid

ication

=g system

Ly

Hardware

2/24/2025, Lecture 6

)
©
=
-
5}
<
=
5
0
~
<
()
0
D
o
o
=
ol
Te)
AN
=
(A
on
=
o=
~
=3
N
o
&)
—
<t
©)
7
<

NeJ
2
-
=

+~
Q
<)

—

Lf::\

N

S

N

-~

<t

N

~

(2]

Kernel Structure So Far (1/3)

Code Process 1 Process 2
= PCB 1 PCB 2
£ Globals
)
N4
Kernel Kernel
Stack Stack g
Heap =
<
Process 1 Process 2 é
Thread Thread 8
A
=
(o]
(@)
Stack Stack al
Code Code 2
S
' ~
Application 5))
Globals Globals =z
1 [°
Operating system
Heap Heap T <
Hardware

Kernel Structure So Far (2/3)

Process 1 Process 2
Code
PCB1 PCB 2
Gé Globals TCB 1.A TCB 1.B TCB 2.A
5y
i
Kernel Kernel Kernel
Heap Stack Stack Stack
Process 1 Process 2
Thread A Thread B Thread A
Stack Stack Stack
Code Code
Globals Globals
Heap Heap

Application

] L

Operating system

-~ -

Hardware

2/24/2025, Lecture 6

g
o
Bt
)
3]
(o]
&
55
w0
=
()
0
)
Q
©
=
[a W
(&
o
N
on
o
e
~
oF
n
S
—
O
n
(@)

Kernel Structure So Far (3/3)

Ne)
o
=

i
O
o}

—

5

(o]

o

N

=

<F

N

=3

[a]

Process 1 Process 2
Code
Kernel Kernel PCB 1 PCB 2
_ Thread 1 Thread 2
)
& TCB 1.A TCB 1.B
N4
g
Kernel Kernel Kernel Kernel Kernel g
Heap Stack Stack Stack Stack Stack £
é}
Process 1 Process 2 E
Thread A Thread B Thread A "
These threads: 5
* Are used internally by the kernel Stack Stack Stack k]
* Don’t correspond to any particular =
user thread or process Code Code o}
5
Globals Application %
-
Globals P
Operating system
Heap Heap S
Hardware

Today: How Does the OS Support the
Process Abstraction?

- Support for threads and kernel structure

©
Qv
S~
]
=
O
@
—
Yol
(o]
(@)
N
=
N
<2
[a]

- Memory layout

- Support for process operations

- Support for I/0

Abstraction

- Influence of IPC/RPC on kernel structure

, Process

g 2025

CSC4103, Sprin

2/24/2025, Lecture 6

Recall: Process Control Block (PCB)

- Kernel representation of each process
- Status (running, ready, blocked)
- Pointer to thread control block (TCB) of main thread
- Register state (if not running)

* Process ID
« Execution time

- Address space How is this represented?
- List of open file descriptions

- List of pointers to child process PCBs

- Pointer to parent process PCB

- Exit code

* Semaphore to synchronize with parent on wait

=)
©
o=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
~
QO
N
<

Application

- Etc. -~ -

Operating system
] [

Hardware

Recall: Address Space

- Program operates in an address space that is distinct from the
physical memory space of the machine

Processor

Registers

-

translator

0x000...

J

Page Table

<Frame Addr>

Application

] L

Operating system
- -

Hardware

2/24/2025, Lecture 6

=
S)
o
+
O
&
=~
5
wn
=
wn
wn
[¢D)
Q
S
S
[a W
Yol
N
S
N
o0
(@}
-
~
Q
N
o
S
—
(@)
(2
O

2/24/2025, Lecture 6

Understanding “Address Space”

- Page table is the primary mechanism

- Privilege Level determines which regions can be accessed
« Which entries can be used

- System (PL=0) can access all, User (PL=3) only part
- Each process has its own address space
- The “System” part of all of them is the same

- All system threads share the same system address space and same
memory

Application

g
©
o=
-
]
<
=]
)
0
~
<G
w0
w0
D)
o
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
<t
©)
N
<

2/24/2025, Lecture 6

Aside: x86 (32-bit) Page Table Entry

Page Table Page-Table Entry (4-KByte Page)
31 1211 9876543210
_ PIP|U|R
Page Base Address Avail. (G|O|D|A|C|W|/|/|P
I B - (72 |w
”
”
i - g |
P - Available for system programmer’s use -
- ” Global page g
A Reserved (set to 0) &
u/s s
= Dirty =
l Accessed -
Cache disabled 3
User/Supervisor § e
Read/Write S
Present '

on
: (3

- Controls many aspects of access

- Later — discuss page table organization
- For 32 (64?) bit VAS, how large? vs size of memory?
1 b
‘ Used Sparse]‘y Operating system

. . . - -
Plnto S ° p age_dlr. C Hardware

Application

©
2
=
5
Q
)
—
5
N
=)
N
N
<H
N
L
N

Page Table Mapping (Rough Idea)

(user process view of

Code Code "~ memory)
Data Data T~ 0x000...
Heap Heap | Code | é
Stack Stack ——— :
|| Static Data 2
<
\ 2
Prog 1 Prog 2 \\ Heap g
Virtual Virtual | v .
Address Address N S
Space 1 \
pace OS code Space 2 AN 4 UET
: OS data . \\\ |
Translation Map Translation Map N =
\ w—
PI'OCGSS]_ OSS heap/ Process 2 \ Application 8
tacks : 0xFFF... 3

Operating system

-~ -

Physical Address Space

Hardware

2/24/2025, Lecture 6

User Process View of Memory

Process Virtual Address Space

OxXFFFFffff Physical Memory

Page Table ~ |-zz-mmmv

Processor
registers 9xC0000000

=)
©
e
-
]
(o]
=
45
[92]
=
wn
n
)
O
o
~
A

\
\

\

25

\
T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

%

\
~ o
te)

user data

user code . T

0x08048000] L

0xX0000000O Operating system
1 -

Hardware

2/24/2025, Lecture 6

Processor Mode (Privilege Level)

Process Virtual Address Space

OxXFFFFffff Physical Memory

Page Table ~ |-zz-mmmv

Processor
registers 9xC0000000

user data

user code . T

0x08048000] L

0xX0000000O Operating system
1 -

=
S)
-
+
O
&
=~
5
wn
=
wn
wn
[¢D)
Q
S
S
[a W
Yol
N
S
N
o0
(@}
=
~
Q
N
o
S
—
(@)
N
O

Hardware

2/24/2025, Lecture 6

User — Kernel

Process Virtual Address Space

OxXFFFFffff Physical Memory

Page Table ~ |-z-mmmev

Processor
registers 9xC0000000

user data

user code . T

0x08048000] L

0xX00000O Operating system
1 -

=
S)
-
+
O
&
=~
5
wn
=
wn
wn
[¢D)
Q
S
S
[a W
Yol
N
S
N
o0
(@}
=
~
Q
N
o
S
—
(@)
N
O

Hardware

2/24/2025, Lecture 6

User — Kernel

Process Virtual Address Space

OxXFFFFffff Physical Memory
kernel

Page Table ~ |-zz-mmmv

kknl data ®®# @ =0 2000 9 o tgsE]
krnl code .

argv

Processor
registers

OXZ0P0V0000

=)
=]
o
+
]
(o]
=
+
42}
=
w0
192]
)
Q
]
~
A
L[D'\
AN
S
N
on
=i
s
~
oF
N
C‘Ot\
©
—
@)
0
@)

e]
u/s Pt
Cheap | e
user data
CPL:| O - sys :
y user Code Application
0x08048000 -~ -
exeeeeee@e Operating system

- -

Hardware

Page Table Resides in Memory*

* In the simplest case.

Process Virtual Address Space
Actually more complex. More

OxFEEFFEEF later. Physical Memory
kernel
Page Table [---- Bage
kenldata ®@®# =000 age |
Processor krnl code
registers OxZ0900000 l
argv
stacky 1 i I S
," __________________
U/S ,»"/ ______ - — I
= L~ I —
____________ t l F-----| us --=-=--
heap — | 1 | L4]
user data
CPL:| O - svs
Y user code . A
0x08048000 1 [°
exeeeeeeee Operating system

-~ -

Hardware

PTBR:

2/24/2025, Lecture 6

=)
=]
Of
-
]
<
=
-
0
=
9]
192]
]
Q
]
~
A
L{D"
AN
S
N
on
=}
s
~
-~
N
C‘OT
©
—
©)
0
@)

2/24/2025, Lecture 6

Kernel Portion of Address Space

- Kernel memory 1s mapped into address space of every process
+ Just only accessible in kernel mode

- Contains the kernel code
* Loaded when the machine booted

- Explicitly mapped to physical memory
* OS creates the page table

- Used to contain all kernel data structures
* Lists of processes/threads
- Page tables
* Open file descriptions, sockets, ttys, ...

g

=)

]

<+~

Q

[y}

~

i)

)

~

<

()

wn

o)

Q

o

=

ol

Yol

N

()

(o]

o0

=]

o

~

o

n

o

)

—

v <
— O
Application wn
©

- Kernel stack for each thread

Ne)
Y
~
=]

=
Q
(D)

—

S

(o]

(@)

N

=~

<

N

N

N

1 Kernel Code, Many Kernel Stacks

Process Virtual Address Space

OxFEEEEEEE Physical Memory
kernel

Page Table ~ |-----omoeeo
krnl data ______I_D_a_lgg ______

Processor krnl code g
registers OxZ0900000 l £
argv @
<
stack l‘ l %
=
u/s Pl 2=—=11 S
-1~ | ';}
____________ n 1 S e HE-
heap — | | L e e
user data g
CPL:| O - SYS - 3
user COde Application 8

0x08048000] b

exeeeeeeee Operating system
PTBR:] L
Hardware

How to (Get to the Correct Kernel
Stack?

- The hardware helps us out!

2/24/2025, Lecture 6

g
©
o
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
10
N
S
(o]
o0

CSC4103, Sprin

Recall: Where do User — Kernel
Mode Transfers Go?

- Cannot let user programs specify
the exact address!

I Address and . Solution: Interrupt Vector
properties of each * OS kernel specifies a set of functions
_ iterrupt handler that are entry points to kernel mode

« Appropriate function is chosen

_ depending on the type of transition

— - Interrupt Number (i)

_ * OS may do additional dispatch

intrpHandler_i () {

<

interrupt number

}...

Application

] L

Operating system
- -

Hardware

2/24/2025, Lecture 6

g
©
Ol
-
Q
(o]
=]
)
0
~
<G
w0
10)]
D)
Q
o
~
[a®
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
QO
<

Hardware Support for Switching

Stacks

Syscall/Intr (U - K)
- PL3—0;
+ TSS « EFLAGS, CS:EIP;
- SS:ESP « k-thread stack (TSS PL 0);
- push (old) SS:ESP onto (new) k-stack
- push (old) EFLAGS, CS:EIP, <err>
« CS:EIP « <k target handler>

« Then
- Handler then saves other regs, etc.

* Does all its work, poss1bly choosing other
threads, changing PTBR(CR 38)

+ Kernel thread has set up user GPRs

. iret (K — U)
- PLO— 3;
+ Eflags, CS:EIP < popped off k-stack
« SS:ESP « user thread stack (TSS PL 3);

Code

’_> Segment

Task-State Data
Segment I—» Segment
(TSS) Stack

«| Segment
| (Current Priv.

Level)
Stack Seg.
»| Priv. Level 0
Stack Seg.
_:l » Priv. Level 1
Task Register Stack
E— > _Segment
CR3 (Priv. Level 2)

Figure 7-1. Structure of a Task

Application

-~ -

Operating system

3

PintOS: tss.c, intr-stubs.S g

2/24/2025, Lecture 6

=)
©
o=
-
Q
<
~
-
0
~
<G
w0
n
o)
Q
o
~
Te)
N
S
N
on
=)
o=
~
(o
n
o
©)
—
QO
<

2/24/2025, Lecture 6

Recall: The Process

- Definition: execution environment with restricted rights
« Address Space with One or More Threads
- Page table per process!
- Owns memory (mapped pages)
* Owns file descriptors, file system context, ...
- Encapsulates one or more threads sharing process resources

- Application program executes as a process
- Complex applications can fork/exec child processes [later]

- Why processes?
* Protected from each other. OS Protected from them.

- Execute concurrently [trade-offs with threads? later]

=)
©
o=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
~
QO
N
<

Application

« Basic unit OS deals with ~

Operating system
] [

Hardware

Context Switch

- Diagram assumes single-

threaded processes

- For multi-threaded

process, substitute process
— thread and PCB — TCB

Privilege Level: 3 - user

process P, operating system
interrupt or system call
fexecuting ﬂ
¥) L
N save state into PCB,
reload state from PCB,
)
P
- fle interrupt or system call
(.
S8
b
save state into PCB;
) reload state from PCB,
executing 4 ’

Privilege Level: O - sys

process P,

idle

l executing

idle

Privilege Level: 3 - user

Application

] L

Operating system
- -

Hardware

2/24/2025, Lecture 6

=
o
o
+~
13}
fa]
=~
e
wn
=
wn
wn
O
O
S
<
[a W
5
(&
(@)
(o]
a0
(@}
o]
~
Q
N
o3
(@)
—
(@)
(2
O

2/24/2025, Lecture 6

Recall: Scheduling

if (readyProcesses (PCBs)) {
nextPCB = selectProcess (PCBs) ;
run(nextPCB);

} else {
run idle process();

- Scheduling: Mechanism for deciding which processes/threads receive the

CPU

- Lots of different scheduling policies provide ...
- Fairness or
* Realtime guarantees or
- Latency optimization or ... -

Operating system
- -

Hardware

g
o
Ol
<+~
3}
oot
=
)
0
Q
<
w0
wn
o)
o
o
&
o
e}
N
S
N
on
o
s
~
=
N
o
©)
—
= <t
)
Application wn
©

2/24/2025, Lecture 6

Scheduling: All About Queues

- TCBs move from queue to queue

- Scheduling: which order to remove from queue of “ready” threads

» ready queue CPU

I/O queue

F 3

I/O request [

time slice
expired

g
o
Ol
<+~
3}
<
=
)
n
2
n
wn
o5}
o
o
&
o
.
N
S
N
on
o
s
~
=
n
o
©)
—
— O
Application wn
©

-~
e Operating system
- -

Hardware

interrupt wait for an
occurs interrupt

child fork a
@7 child ‘

Announcements

- Assignment 1 due tonight
* Please finish submitting in time

2/24/2025, Lecture 6

. Project 1 was posted, due March 24 (design document due March 10)
« Walkthrough for project 1 will be March 17

* Don’t postpone work for this

- Assignment 2 will be available later this week
- Mardi-Gras break: March 3

- Midterm review: March 10, midterm exam: March 12

Application

=)
©
o=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
~
QO
N
<

Today: How Does the OS Support the
Process Abstraction?

- Support for threads and kernel structure

©
Qv
S~
]
=
O
@
—
Yol
(o]
(@)
N
=
N
<2
[a]

- Memory layout

- Support for process operations

- Support for I/0

Abstraction

- Influence of IPC/RPC on kernel structure

, Process

g 2025

CSC4103, Sprin

2/24/2025, Lecture 6

Operations on Process State

- Process related
- fork()/exec() (PintOS: process_create())
« wait()

- File-system related
* open()/close()

g
©
Of
-
]
<
=
45
[92]
~
<
9]
w0
o)
o
o
~
10
N
S
(A
on

CSC4103, Sprin

Ne)
2
-
=

+~
Q
Q

—

LC;\

N

S

N

-~

<t

N

~

(2]

Recall: Run Programs

OxFFF...
Program Source Executable 0S
. Editor Compciler data stack |, =
an
- e OS Loader S .
Instructions hea i\ o g
f data &
00.C a.out 3
« Create OS “PCB”, address space, stack and heap) £
- Load instruction and data segments of executable file into memory instructions §
- “Transfer control to program” 0x(00. E;
- Provide services to program PC: — =
(@)
- While protecting OS and program registers =

Processor

Hardware

©
o
=~
=
=
Q
<)
—
Yol
AN
(e}
N
=
<f
N
=
A

Recall: Run Programs

OxFFF...
Program Source Executable 0S
Compdiller data stack I =
an
ke OS Loader g .
1nke Instructions h T o S
eap 3 g
foo.c a.out data 8
« Create OS “PCB”, address space, stack and heap) £
- Load instruction and data segments of executable file into memory instructions §
0x000.. S
PC: —] =
registers -

Processor

2/24/2025, Lecture 6

How to fork() efficiently?

- Alias the pages
« Same physical address!
- If we stopped here, the data would be shared (not what we want)

- Mark PTEs read-only

- If a process tries to write — trap to the OS

- On first write to a page after fork(), kernel copies the page, marks
PTEs as writeable

- Illusion of separate memory, but really aliased until first write

PintOS doesn’t support
-For\k(), just Application
process_create() ik

g
©
o=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
<t
QO
N
<

Recall: Open File Description is
Aliased

NeJ
2
-
=

+~
Q
<)

—

Lf::\

N

S

N

-~

<t

N

~

(2]

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
Thread’s \ Glread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

rnel Space : :
File Descriptors Open File Description

3 3
Not shown: File: foo.txt

Initially contains > ce <
0, 1, and 2 (stdin, Position: 300 ‘

stdout, stderr) \ / \

CSC4103, Spring 2025, Process Abstraction

Ne)
o
i
=

=
)
<)

—

s

N

o

N

N

<A

N

N

[a]

Solution: Reference Counting

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
Thread’s \ Glread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

CSC4103, Spring 2025, Process Abstraction

rnel Space ; . . .
File D3escr1ptors Open File Description File Descriptors
Not shown: File: foo.txt
Initially contains Position: 300
. —p> T :
0, 1, and 2 (stdin, Reference Count: 2
stdout, stderr) K j Lock K >~
Oper.ing system

-~ -

Hardware

Ne)
&
~
=

=
Q
Q

—

&

AN

&)

N

~

<f

N

N

A

Solution: Reference Counting

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2

close(3) / \ / \

Thread’s Thread’s
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

rnel Space ; . ; .
File D?()escrlptors Open File Description File Descriptors
Not shown: File: foo.txt
Initially contains — Position: 300 1

0, 1, and 2 (stdin,
stdout, stderr)

Lock

Reference Count: 1

IR

Oper .ting system

- -

Hardware

CSC4103, Spring 2025, Process Abstraction

Solution: Reference Counting

read(3, buf, 100) Process 1

close(3)

User Space

rnel Space

Not shown:
Initially contains
0, 1, and 2 (stdin,
stdout, stderr)

~

Thread’s
Regs Address
Space
(Memory)

File Descriptors

read(3, buf, 100)
close(3)

Open File Description

File: foo.txt
Position: 300
Reference Count: 0

Ne)
&
~
=

=
Q
Q

—

&

AN

&)

N

~

<f

N

N

A

Process 2
Thread’s \
Regs Address
Space
(Memory)

File Descriptors

Lock

CSC4103, Spring 2025, Process Abstraction

I E
Oper .ting system

- -

Hardware

o
o
~
=

=
Q
Q

—

Yol

AN

(e}

N

~

<f

N

N

A

Solution: Reference Counting

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
close(3) close(3)
Glread’s \ Glread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

rnel Space File Descriptors File Descriptors

Not shown:
Initially contains
0, 1, and 2 (stdin,

stdout, stderr) e
\ / \ Oper .ing system

- -

Hardware

CSC4103, Spring 2025, Process Abstraction

©
o
=~
=]
=
Q
b}
—
Te)
AN
(e}
N
=
N
=
A

What about wait()?

- The parent process needs to get the exit code

. The following events may happen in any order (or concurrently)
« Parent process calls wait() or exit()
« Child process calls exit()

- Where should the child put its exit code? Pr{)}'ect 1
ser

* Needs to work even if the parent has exited
Programs

- Where should the parent search for the exit code?
* Needs to work even if the child has exited already

Application

CSC4103, Spring 2025, Process Abstract »m

Today: How Does the OS Support the
Process Abstraction?

- Support for threads and kernel structure

©
Qv
S~
]
=
O
@
—
Yol
(o]
(@)
N
=
N
<2
[a]

- Memory layout

- Support for process operations

- Support for I/0

Abstraction

- Influence of IPC/RPC on kernel structure

, Process

g 2025

CSC4103, Sprin

2/24/2025, Lecture 6

Recall: I/0O and Storage Layers

Application / Service

High Level 1/O Streams

Low Level I/O File Descriptors
open(), read(), write(), close(, ...

Open File Descriptions

What we’ve
covered so far...

What we’ll
peek at today

| Application

] L

g
©
Ol
-
Q
(o]
=]
)
0
~
<G
w0
10)]
D)
Q
o
~
[a®
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
QO
<

Operating system
- -

Hardware

Layers...

Application / Service

High Level 1/0O

Low Level I/0

1/0 Driver
L]

length = read(input_fd, buffer, BUFFER_SIZE); User App

ssize t read(int, void *, size t){
marshal args into registers
issue syscall

register result of syscall to rtn value
}s5

User library

Exception U2 K, interrupt processing

unmarshall call#, args from regs
dispatch : handlers[call#](args)
marshal results from syscall ret

void syscall handler (struct intr frame *f) {

Kernel

*buf, size t count, loff_t *pos)
{
User Process/File System relationship

call device driver to do the work

ssize t vfs_read(struct file *file, char __user

Device Driver

2/24/2025, Lecture 6

CSC4103, Spring 2025, Process Abstraction

https://pubs.opengroup.org/onlinepubs/007908799/xsh/read.html

Low-Level Driver

- Associated with particular hardware device
- Registers / Unregisters itself with the kernel

- Handler functions for each of the file operations

File System: From Syscall to Driver

ssize t vfs _read(struct file *file, char _ user *buf, size t count, loff_t *pos) I

1

ssize t ret;
if (!(file->f _mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio_read))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) {
count = ret;
if (file->f_op->read)
ret = file->f op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify access(file->f path.dentry);
add_rchar(current, ret);
}
inc_syscr(current);

}

return ret;

K Read up to count \

bytes from file
starting from pos
into buf.

* Return error or
number of bytes

\ read. /

Linux: fs/read write.c

Application

] L

Operating system
- -

Hardware

2/124/2025, Lecture 6

¢
p4

g
©
o=
-
]
(o]
=]
)
0
~
<
w0
10)]
D)
O
o
~
A

25,

ng 2

File System: From Syscall to Driver

ssize t vfs _read(struct file *file, char _ user *buf, size t count, loff_t *pos)
{
ssize t ret;
if (!(file->f _mode & FMODE_READ)) return -EBADF; I

'tile-> ! N ! ~Op->alo_read))
return -EINVAL;

if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count); Make sure we are

if (ret >= @) { allowed to read this file

count = ret;
if (file->f_op->read)
ret = file->f op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify access(file->f path.dentry);
add_rchar(current, ret);

}

inc_syscr(current);

}

return ret;
} ¢ -
Operating system
. ‘-
LIDU_X: -F S / r e a d_W r i t e . C Hardware

Application

2/24/2025, Lecture 6

=)
©
o=
-
Q
<
~
-
0
~
<G
w0
n
o)
Q
o
~
10
N
S
N
on
=)
o=
~
(o
n
o
©)
—
QO
<

2/24/2025, Lecture 6

File System: From Syscall to Driver

ssize t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize t ret;
i 1 (file-
if (!file->f op || (!file->f op->read && !file->f op->aio_read)) ‘

return -EINVAL;

1T (uUnlikely(laccess OK(VERITY WRITE, DuTt, countyyy return - 5
ret = rw_verify area(READ, file, pos, count);

if (ret >=0) { Check if file has read

count = ret;

if (file->f_op->read) methods
ret = file->f op->read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify access(file->f path.dentry);
add_rchar(current, ret);
}
inc_syscr(current);

}

return ret;
} ¢ -
Operating system
. ‘-
LIDU_X: -F S / r e a d_W r i t e . C Hardware

=)
©
o=
-
Q
<
~
-
0
~
<G
w0
n
o)
Q
o
~
10
N
S
N
on
=)
o=
~
(o
n
o
©)
—
QO
<

Application

©
o
=~
=
=
Q
<)
—
Yol
AN
(e}
N
=
<f
N
~~
A

File System: From Syscall to Driver

ssize t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{

ssize t ret;

if (!(file->f _mode & FMODE_READ)) return -EBADF;

if (!file->f op || (!file->f op->read && !file->f op->aio_read))
| -

if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT; I

T \

count = ret;
if (file->f_op->read) K Check whether We\

if (ret ;= 9) {_

=

ret = file->f op->read(file, buf, count, pos); . @
else can write to buf S
ret = do_sync_read(file, buf, count, pos); (e.g., bU'F iS il’l the Q:“
if (ret > 0) { E
fsnotify access(file->f path.dentry); user space range) f}
add_rchar(current, ret); . unllkely() hint to E

} . . o
Inc_syscr(current)s branch prediction o
} this condition is x
n

&)

return ret; . Application
’ unlikel
) \ Y ~ -

Operating system

. . {1 -
Linux: fs/read write.c p—

2/124/2025, Lecture 6

¢
p4

File System: From Syscall to Driver

ssize t vfs _read(struct file *file, char _ user *buf, size t count, loff_t *pos)
{
ssize t ret;
if (!(file->f _mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio_read))
return -EINVAL;
i unlikely(laccace gk (VERTEY WRITE _buf _countd)) _retyuen —FEAULT.

| ret = rw_verify area(READ, file, pos, count); I
2!
count = ret;

if (file->f_op->read)
ret = file->f _op->read(file, buf, count, pos); Check whether we read

else f 1.(1 .
ret = do_sync_read(file, buf, count, pos); I'OHl.a valld range 1n
if (ret > 9) { the file.

fsnotify access(file->f path.dentry);
add_rchar(current, ret);

}

inc_syscr(current);

}

return ret;
} { T
Operating system
. ‘-
LIDU_X: -F S / r e a d_W r i t e . C Hardware

g
©
Ol
-
Q
(o]
=]
)
0
~
<
w0
10)]
D)
Q
o
~
[a®
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
QO
<

Application

o
o
~
=

=
Q
Q

—

Te)

AN

(@)

N

~

<

N

N

o

¢
p4

File System: From Syscall to Driver

ssize t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)

{

ssize t ret; . .

if (!(file->f_mode & FMODE_READ)) return -EBADF; If driver pI'OVlde a read

if (!file->f op || (!file->f op->read && !file->f op->aio_read)) fllIlCtiOl’l (-F 0p->r'ead)
return -EINVAL; .. - .

if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT; use 1t; otherwise use

ret = rw_verify_area(READ, file, pos, count); do sync r‘ead()

if (ret >= 0) { \ B B)

if (file->f_op->read)

ret = file->f op->read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);

Process Abstraction

=
L),

2

S ——————
fsnotify access(file->f path.dentry);
add_rchar(current, ret);

ng 2

¥
inc_syscr(current);
¥ .
return ret; Application
¥] L

Operating system

. . {1 -
Linux: fs/read write.c p—

File System: From Syscall to Driver

ssize t vfs _read(struct file *file, char _ user *buf, size t count, loff_t *pos)
{
ssize t ret;
if (!(file->f _mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio_read))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) {
count = ret;

if (file->f op-sread) Notify the parent of this file that the file was read
lret = file->f_op->read(file, | (gee http://www.fieldses.org/~bfields/kernel/vfs.txt)
else

ret = do_sync_read(file, buf, count, pos); ‘///,

if (ret > 0) {

| fsnotify access(file->f path.dentry); I
— E) V)

}

inc_syscr(current);

}

return ret; Application

} - -

Operating system

. . {1 -
Linux: fs/read write.c p—

2/24/2025, Lecture 6

=)
©
=
-
5}
(o]
=
5
0
=
)
0
o5}
o
o
=
ol
Te)
AN
=
(A
on
=
=
~
=3
N
50
&)
—
<t
©)
&
<

http://www.fieldses.org/~bfields/kernel/vfs.txt

2/124/2025, Lecture 6

¢
p4

File System: From Syscall to Driver

ssize t vfs _read(struct file *file, char _ user *buf, size t count, loff_t *pos)
{

ssize t ret;

if (!(file->f _mode & FMODE_READ)) return -EBADF;

if (!file->f op || (!file->f op->read && !file->f op->aio_read))

return -EINVAL;

if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT; (ijdate the number of \
;e__t(:ezw;\:e;ﬂ{/_ar‘ea(READ, file, pos, count); bytes read by “current” g
count = ret; task (fOI' Scheduling ;
if (file->f_op->read) purposes) &
ret = file->f op->read(file, buf, count, pos); \\¥ 4‘) %
else S
A

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

ile- ntryv):
add_rchar(current, ret); I

Te)

2

ng 2

)
inc_syscr(current);
¥ .
return ret; Application
¥] L

Operating system

. . {1 -
Linux: fs/read write.c p—

File System: From Syscall to Driver

ssize t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)

{
ssize t ret;
if (!(file->f _mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio_read))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) {
count = ret;
if (file->f_op->read)
ret = file->f op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify access(file->f path.dentry);
add_rchar(current, ret);

(Update the number of
read syscalls by
“current” task (for
scheduling purposes)

3

inc_syscr(current); I
i)
return ret;

Application

] L
Operating system
. ‘-
LIDU_X: -FS/ r‘ead_Wr‘ite . C Hardware

2/124/2025, Lecture 6

¢
p4

g
©
o=
-
]
(o]
=]
)
0
~
<
w0
10)]
D)
O
o
~
A

25,

ng 2

2/24/2025, Lecture 6

Device Drivers

- Device-specific code in the kernel that interacts directly with the
device hardware

* Supports a standard, internal interface
- Same kernel I/0 system can interact easily with different device drivers

« Special device-specific configuration supported with the ioctl() system
call

- Device Drivers typically divided into two pieces:
« Top half: accessed 1n call path from system calls

- Implements a set of standard, cross-device calls like open(), close(, read(,
write(), ioctl(), strategy()

 This is the kernel’s interface to the device driver
+ Top half will start I/O to device, may put thread to sleep until finished
- Bottom half: run as interrupt routine
+ Gets input or transfers next block of output —
« May wake sleeping threads if I/O now complete | T

g
o
]
-
Q
[y}
~
i)
)
L)
<
()
n
]
Q
o
=~
Yol
N
S
(o]
o0
=]
o=
~
o
n
o
©)
—
<t
O
(@)

Operating system
- -

Hardware

User
Program

Kernel 1/0

user 10 completed,
request /O process input data available, or

output completed

system call
y return from systern call

kernel

VO subsystem transfer data

{if appropriate) to process,

can already
satisfy request?

return completion
or error code

yes

Subsystem

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

send request to device
driver, block process if kemel
appropriate /O subsystem

process request, issue e
commands to controller, device complated, indicate state

configure controller to driver
e change to I/0 subsystem

receive interrupt, store

interrupt
device-controller commands it data In device-driver buffer

if input, signal to unblock
device driver

EEEEEEEENN IIIIIIIIIIIIIIIIIIIIIIllllllllintﬁuumlllllll EEEEN

device
monitor davice, controller
interrupt when 1/0 /0 completed,

completed

generate interrupt

2/24/2025, Lecture 6

¢
p4

=)
©
o=
-
Q
[ay]
~
55
n
2
n
n
)
Q
o
~
[a®
S
N
S

2

<
¢

3, Spring

CSC410

Today: How Does the OS Support the
Process Abstraction?

- Support for threads and kernel structure

©
Qv
S~
]
=
O
@
—
Yol
(o]
(@)
N
=
N
<2
[a]

- Memory layout
- Support for process operations

- Support for I/0

Abstraction

- Influence of IPC/RPC on kernel structure

, Process

g 2025

CSC4103, Sprin

2/24/2025, Lecture 6

Recall: IPC to Slmpllfy OS

Wmdow
Mgr

Monolithic Structure Partitioning ?7?

What if the file system is not local to the machine, but on the network?

- Is there a general mechanism for providing services to other
processes? -

* Do the protocols we run on top of IPC generalize as well? Applicaton
-

;‘
o
o
+~
3
[a]
=~
g
wn
o
<
wn
9
O
)
S
<
Ye)
(&
(@)
(o]
a0
(@}
-
5
Q
N
o
(@)
—
~
(@)
N
O

Operating system
-

Hardware

2/24/2025, Lecture 6

Microkernels

- Split OS into separate processes
- Example: File System, Network Driver are processes outside of the kernel

- Pass messages among these components (e.g., via RPC) instead of

system calls
Window
Mgr

Application

1 L

;‘
o
o
+~
3
[a]
=~
g
wn
o
<
wn
9
O
3
S
<
Ye)
(&
(@)
(o]
a0
(@}
-
5
Q
N
o
(@)
—
~
(@)
N
O

Monolithic Structure Microkernel Structure

Operating system
-

Hardware

2/24/2025, Lecture 6

Microkernels

- Microkernel itself provides only essential services
+ Communication

« Address space management
* Thread scheduling
- Almost-direct access to hardware devices (for driver processes)

Window
Mgr

Application

1 L

Operating system

] -

CSC4103, Spring 2025, Process Abstraction

Monolithic Structure

Microkernel Structure

Hardware

2/24/2025, Lecture 6

Why Microkernels?

Pros Cons

« Failure Isolation « More communication overhead and

. context switching
- Kasier to update/replace parts

, o _ - Harder to implement?
- Easier to distribute — build one OS

that encompasses multiple machines

Application

-~ -

=)
©
o=
-
]
(o]
=]
)
0
~
<G
w0
w0
D)
o
o
~
Te)
AN
S
(A
on
=]
o
o
[oR
N
o
©)
—
~
©)
N
o

Operating system
] [

Hardware

2/24/2025, Lecture 6

Flashback: What 1is an OS?

- Always:
* Memory Management

I/O Management Not provided in a
CPU Scheduling strict microkernel

« Communications

Multitasking/multiprogramming

- Maybe:
* File System?
* Multimedia Support?

- User Interface?
- Web Browser?

=)
©
o=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
~
QO
N
<

Application
-~ -

Operating system
] [

Hardware

Influence of Microkernels

- Many operating systems provide some services externally, similar to
a microkernel

- OS X and Linux: Windowing (graphics and UI)

- Some currently monolithic OSes started as microkernels
* Windows family originally had microkernel design

+ OS X! Hybrid of Mach microkernel and FreeBSD monolithic kernel

Application
-~ -
Operating system
] [

Hardware

2/24/2025, Lecture 6

g
©
.=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
~
QO
N
<

2/24/2025, Lecture 6

Conclusion

We studied the structure of the kernel
- Kernel thread backing every user thread

We saw how the kernel organizes a process’ memory
+ Kernel memory mapped into each process’ virtual address space

We saw how the kernel supports operations on processes
- fork, wait, exec, open file descriptions...

We saw how the kernel handles I/0

* Device drivers

We saw how IPC influences the structure of the kernel
* Service provide by other processes

g
©
.=
-
Q
(o]
=]
)
0
~
<G
w0
n
D)
Q
o
~
Te)
AN
S
(A
on
=]
o
~
[oR
N
o
©)
—
~
QO
N
<

Application

-~ -

Operating system
] [

Hardware

CENTER FOR COMPUTATION
& TECHNOLOGY

2/24/2025, Lecture 6

CSC4103, Spring 2025, Process Abstraction

O
DO

