
Synchronization 2:
Lock Implementation
Lecture 8

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: Producer-Consumer
• Problem Definition

 Producers puts things into a shared buffer

 Consumers takes them out

• Don’t want producers and consumers to have to work in lockstep, so
put a buffer (bounded) between them

 Need synchronization to maintain integrity of the data structure and
coordinate producers/consumers

 Producer needs to wait if buffer is full

 Consumer needs to wait if buffer is empty

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

2

Consumer
Consumer

Producer ConsumerBuffer
Producer

Recall: Producer-Consumer
(Semaphores)

Semaphore usedSlots = 0; // No slots used

Semaphore freeSlots = bufSize; // All slots free

Lock mutex = <initially unlocked>; // Nobody in critical sec.

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

3

Consumer() {

usedSlots.P();

mutex.acquire();

item = Dequeue();

mutex.release();

freeSlots.V();

return item;

}

Producer(item) {

freeSlots.P();

mutex.acquire();

Enqueue(item);

mutex.release();

usedSlots.V();

}

Recall: Problems with Semaphores
• More powerful (and primitive) than locks

• Argument: Clearer to have separate constructs for

 Mutual Exclusion: One thread can do something at a time

 Waiting for a condition to become true

• Need to make sure a thread calls P() for every V()

 Other tools are more flexible than this

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

4

Recall: Condition Variables
• Queue of threads waiting inside a critical section

 Typically, waiting until a condition on some variables becomes true

 Variables typically are protected by a mutex

• Operations:

 wait(&lock): Atomically release lock and go to sleep until condition
variable is signaled. Re-acquire the lock before returning.

 signal(): Wake up one waiting thread (if there is one)

 broadcast(): Wake up all waiting threads

• Rule: Hold lock when using a condition variable

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

5

Recall: Monitors
• A monitor consists of a lock and zero or more condition variables used

for managing concurrent access to shared data

• Lock: the lock provides mutual
exclusion to shared data

• Condition Variable: a queue of
threads waiting for something
inside a critical section

 Key idea: make it possible to go to
sleep inside critical section by
atomically releasing lock at time we
go to sleep

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

6

Recall: Mesa Monitors vs. Hoare
Monitors

Mesa Monitor

while (buffer empty) {

cond_wait(¬_empty, &buf_lock);

}

Hoare Monitor

if (buffer empty) {

cond_wait(¬_empty, &buf_lock);

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

7

• In practice, almost all OSes implement Mesa monitors

Recall: Why the while Loop?
• When a thread is woken up by signal(), it is simply marked as

eligible to run

• It may or may not reacquire the lock immediately!

 Another thread could be scheduled and “sneak in” make the condition it’s
waiting for no longer true

 Need a loop to re-check condition on wakeup

• This is called Mesa Scheduling (Mesa-style Monitors)

• Most operating systems use Mesa-style Monitors!

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

8

Concurrency and Synchronization in C
• Harder with more locks

void Rtn() {
lock1.acquire();
…
if (error) {

lock1.release();
return;

}

…

lock2.acquire();

…

if (error) {

lock2.release()

lock1.release();

return;

}

…

lock2.release();

lock1.release();
}

• Is goto a solution???

void Rtn() {
lock1.acquire();
…
if (error) {

goto release_lock1_and_return;
}

…

lock2.acquire();

…

if (error) {

goto release_both_and_return;

}

…

release_both_and_return:

lock2.release();

release_lock1_and_return:

lock1.release();
}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

9

C++ Lock Guards
#include <mutex>

int global_i = 0;

std::mutex global_mutex;

void safe_increment() {

std::lock_guard<std::mutex> lock(global_mutex);

…

++global_i;

// Mutex released when ‘lock’ goes out of scope

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

10

Today: How to
implement
synchronization
primitives?
For now, just consider locks inside the kernel.

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

11

Recall: Race Conditions
• What are the possible values of x below?

• Initially x == 0

• 1 or 2 (non-deterministic)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

12

Thread A

x += 1;

Thread B

x += 1;

Thread A

ld r1, &x

add r1, r1, 1

st r1, &x

Thread B

ld r1, &x

add r1, r1, 1

st r1, &x

Recall: Race Conditions
• What are the possible values of x below?

• Initially x == 0

• 0x1 or 0x400 (non-deterministic)

 Note: on some architectures (ARM) we could see 0x401

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

13

Thread A

x = 0x1;

Thread B

x = 0x400;

Atomic Operations
• To understand a concurrent program, we need to know what the

underlying indivisible operations are!

• Atomic Operation: an operation that always runs to completion or
not at all

 It is indivisible: it cannot be stopped in the middle and state cannot be
modified by someone else in the middle

 It is thread-safe by design

• On most machines, memory references and assignments (i.e. loads
and stores) of words are atomic

• On other architectures (ARM!) load/store of a byte is atomic

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

14

Concurrency is Hard!
• Even for practicing engineers trying to write mission-critical,

bulletproof code!

 Threaded programs must work for all inter-leavings of thread instruction
sequences

 Cooperating threads inherently non-deterministic and non-reproducible

 Really hard to debug unless carefully designed!

• Therac-25: Radiation Therapy Machine with Unintended Overdoses

• Mars Pathfinder Priority Inversion (JPL Account)

• Toyota Uncontrolled Acceleration (CMU Talk)

 256.6K Lines of C Code, ~9-11K global variables

 Inconsistent mutual exclusion on reads/writes

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

15

https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html
https://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html

Motivating Example: “Too Much
Milk”
• Analogy between problems in OS and problems in real life

• Example: People need to coordinate:

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

16

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Too Much Milk: Correctness
• Safety: At most one person buys milk.

• Liveness: If milk is needed, at least one person buys it.

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

17

Attempt #1
• Leave a note

 Place on fridge before buying

 Remove after buying

 Don’t go to store if there’s already a note

• Leaving/checking a note is atomic (word load/store)

if (noMilk) {

if (noNote) {

leave Note;

buy milk;

remove Note;

}

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

18

Attempt #1 in Action

Thread A

if (noMilk) {

if (noNote) {

leave Note;

buy milk;

remove Note;

}

}

Thread B

if (noMilk) {

if (noNote) {

leave Note;

buy milk;

remove note;

}

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

19

Achieves

liveness but

not safety

Attempt #1.5
• Idea: leave note, then check for milk

leave Note;

if (noMilk) {

if (noNote) {

buy milk;

}

}

remove Note;

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

20

But there’s always

a note – you just

left one!

Attempt #2: Use Named Notes

Thread A

leave note A

if (noMilk) {

if (noNote B) {

buy milk

}

}

remove note A

Thread B

leave note B

if (noMilk) {

if (noNote A) {

buy milk

}

}

remove note B

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

21

Attempt #2 in Action

Thread A

leave note A

if (noMilk) {

if (noNote B) {

buy milk

}

}

remove note A

Thread B

leave note B

if (noMilk) {

if (noNote A) {

buy milk

}

}

remove note B

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

22

Achieves

safety but

not liveness

Attempt #3: Wait

Thread A

leave note A

while (note B) {

do nothing

}

if (noMilk) {

buy milk

}

remove note A

Thread B

leave note B

while (note A) {

do nothing

}

if (noMilk) {

buy milk

}

remove note B

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

23

This is a correct

solution!

This Generalizes to 𝑛 Threads…
• Leslie Lamport’s “Bakery

Algorithm” (1974)

• Allows one to protect a critical
section like:

if (noMilk) {
buy milk;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

24

Solution #3 Discussion
• Solution #3 works, but it’s not great

 Really complex – even for this simple example

 Hard to convince yourself that this really works

 While a thread is waiting, it is consuming CPU time

 This is called “busy-waiting”

• There’s a better way

 Have hardware provide more primitives than simple atomic load & store

 Build even higher-level programming abstractions on this hardware
support

 Make sure the OS scheduler never allows another thread to enter the critical
section

 The other thread becomes blocked if it tries to enter

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

25

Where are we going with
Synchronization?
• Building an efficient, easy-to-use API

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

26

Hardware

Higher-
level
API

Programs

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Announcements
• Project 1 design document due March 10

 You have started talking to the TA, hopefully

• Assignment 2 now published, due April 7

• Project 1 due March 24

• Mid-term examination March 12, 5.00pm, 1200 PFT

 Mid-term review March 10

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

27

Implementing Locks: Single Core
• How can we make lock.Acquire() and lock.Release() appear

atomic to other threads?

• Idea: A context switch can only happen (assuming threads don’t
yield) if there’s an interrupt

• “Solution”: Disable interrupts while holding lock

• x86 has cli and sti instructions that only operate in system mode
(PL=0)

 Interrupts enabled bit in FLAGS register

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

28

Naïve Interrupt Enable/Disable

• Problem: can stall the entire system

Lock.Acquire()

While (1) {}

• Problem: What if we want to do I/O?

Lock.Acquire()

Read from disk

/* OS waits for (disabled) interrupt! */

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

29

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

Implementing Locks: Single Core
int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

• Key idea: maintain a lock variable (value) and disable interrupts only
during operations on that variable

Release() {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue;
Place on ready queue;

}

value = FREE;
enable interrupts;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

30

Discussion
• Why do we need to disable interrupts at all?

 Avoid interruption between checking and setting lock value

 Otherwise two threads could think that they both have lock

• Unlike the naïve solution, interrupts are disabled for a short time only

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

31

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical

Section

• Disabling interrupts

prevents preemption

• Locks disable interrupts to

provide another critical

section

Implementing Locks: Single Core
int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

• Key idea: maintain a lock variable (value) and disable interrupts only
during operations on that variable

Release() {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue;
Place on ready queue;

}

value = FREE;
enable interrupts;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

32

Re-enabling Interrupts when Waiting

• Before on the queue?

 Release might not wake up this thread!

• After putting the thread on the queue?

 Gets woken up, but immediately switches away

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

33

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

run_new_thread()

} else {

value = BUSY;

}

enable interrupts;

}

enable interrupts

enable interrupts

Re-enabling Interrupts when Waiting

• Best solution: after the current thread
suspends

• How?

 run_new_thread() should do it!

 Part of returning from switch()

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

34

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

run_new_thread()

} else {

value = BUSY;

}

enable interrupts;

}

enable interrupts

How to Re-enable Interrupts when
Waiting
• In scheduler, since interrupts are disabled when switching threads:

 Responsibility of the next thread is to re-enable interrupts

 When the sleeping thread wakes up, returns and re-enables interrupts

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

35

Thread A
...

disable ints

call run_new_thread

run_new_thread returns

enable ints

...

Thread B

run_new_thread returns

enable ints

...

disable ints

call run_new_thread

Enabling Interrupts vs. Restoring
Interrupts
• 99% of the time, you want to restore interrupts, not enable them

• We used “enable interrupts” in this lecture since we were assuming
interrupts are enabled when acquiring the lock

• In PintOS:

enum intr_level state = intr_disable();
<code manipulating shared data>
intr_set_level(state);

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

36

When does this Lock Implementation
Work?
• Answer: For threads in the kernel on a single-core machine.

• What about multi-core machines?

• What about user threads?

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

37

Multi-Core Machines
• How to synchronize with threads executing in parallel on other

cores?

 Disable interrupts on all cores?

 Prevent other cores from making progress?

• Implement locks in hardware?

 What’s the interface between hardware lock and OS scheduler?

• Solution: Use hardware support for atomic operations

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

38

Atomic Operations
• Definition: An operation runs to completion or not at all

 Foundation for synchronization primitives

• Example: Loading or storing a word (on most modern architectures)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

39

Atomic Read-Modify-Write
Instructions
• These instructions read a value and write a new value atomically

• Hardware is responsible for implementing this correctly

 On both uniprocessors (not too hard)

 And multiprocessors (requires help from cache coherence protocol)

• Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

• Natural extensions to user-level locking

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

40

Examples of Read-Modify Write
test&set (&address) { /* most architectures */

result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;

}

swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

41

Examples of Read-Modify Write
compare&swap (&address, reg1, reg2) { /* 68000, x86 */

if (reg1 == M[address]) { // If memory still == reg1,
M[address] = reg2; // then put reg2 => memory
return success;

} else { // Otherwise do not change memory
return failure;

}
}

load-linked&store-conditional(&address) { /* R4000, alpha */
loop:
ll r1, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

42

Implementing Locks with test&set
• Simple, but flawed, solution:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Explanation:
 If lock is free, test&set reads 0 and sets value=1, so lock is now busy. It returns 0 so while exits.

 If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1, so while loop continues.

 When we set value = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting

• For multiprocessor cache coherence: every test&set() is a write, which makes value
ping-pong around in cache (using lots of memory BW)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

43

This is Called a Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Spinlock doesn’t put the calling thread to sleep --- it just busy waits

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

44

Problem: Busy-Waiting for Lock
• Positives for this solution

 Machine can receive interrupts

 User code can use this lock (poorly)

 Works on a multiprocessor

• Negatives
 Very inefficient: thread will consume cycles waiting

 Waiting thread takes cycles away from thread holding lock (no one wins!)

 Priority Inversion: If busy-waiting thread has higher priority than thread
holding lock no progress!

• For semaphores (and monitors), waiting thread may wait for an
arbitrary long time!
 Thus even if busy-waiting was OK for locks, definitely not OK for other

primitives

 Homework/exam solutions should avoid busy-waiting!

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

45

Better Locks Using test&set
• Can we build test&set locks without busy-waiting?

 Can’t entirely, but can minimize!

 Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
 Why can’t we do it just before or just after the sleep?

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

46

Release() {
// Short busy-wait time
while (test&set(guard)) /**/;
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

}

value = FREE;
guard = 0;

}

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard)) /**/;
if (value == BUSY) {

put thread on wait queue;
run_new_thread() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Alternative View: Bootstrapping a
Spinlock 3

/5
/2

0
2

5
,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

47

Release() {
// Short busy-wait time
guard.Acquire();
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

}

value = FREE;
guard.Release();

}

SpinLock guard = FREE;
int value = FREE;

Acquire() {
// Short busy-wait time
guard.Acquire();
if (value == BUSY) {

put thread on wait queue;
run_new_thread() & guard.Release();

} else {
value = BUSY;
guard.Release();

}
}

Comparison to Disabling Interrupts 3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

48

Release() {
disable interrupts;
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

}

value = FREE;
enable interrupts;

int value = FREE;

Acquire() {
// Short busy-wait time
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
run_new_thread();

// scheduler enables interrupts
} else {

value = BUSY;
enable interrupts;

}
}

• We changed disable interrupts → spinlock.Acquire() [while (test&set(guard)]
• We changed enable interrupts → spinlock.Release() [guard = 0]

Recap: Locks Using Interrupts

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

49

int value = 0;
Acquire() {
// Short busy-wait time
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() & disable interrupts;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

}
value = 0;
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

Threads waiting to

enter critical section

busy-wait

Recap: Locks Using test&set

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

50

int guard = 0;
int value = 0;
Acquire() {
// Short busy-wait time
while(test&set(guard));
if (value == 1) {
put thread on wait-queue;
go to sleep()& guard = 0;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

}
value = 0;
guard = 0;

}

lock.Acquire();

…

critical section;

…

lock.Release();

int value = 0;
Acquire() {
while(test&set(value));

}

Release() {
value = 0;

}

Threads waiting to

enter critical section

busy-wait

Recall: Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
 When might this be preferable?

• For multiprocessor cache coherence: every test&set() is a write,
which makes value ping-pong around in cache (using lots of memory
BW)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

51

Better Spinlock: test&test&set
• A better spinlock solution:

int mylock = 0; // Free

Acquire() {

do {

while(mylock) /**/; // Wait until might be free

} while(test&set(&mylock)); // exit if get lock

}

Release() {

mylock = 0;

}

• Explanation:
 Wait until lock might be free (only reading – stays in cache)

 Then, try to grab lock with test&set

 Repeat if fail to actually get lock

• Busy-Waiting: no longer impacts other processors!

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

52

Locks in Userspace?
• We’ve looked at locks in the kernel

 Uniprocessor case (disable interrupts)

 Multiprocessor case (test&set)

• What about locks in userspace?

• Spinlocks just work

• Simple idea for non-busy-waiting lock:

 For each userspace lock, allocate a lock in the kernel

 Make a syscall for each acquire/release operation to acquire the lock in the
kernel

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

53

Recall: Overhead of Syscalls
• Syscalls are 25x more expensive than function calls (~100 ns)

• read/write a file byte by byte? Max throughput of ~10MB/second

• With fgetc? Keeps up with your SSD

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

54

http://arkanis.de/weblog/2017-01-05-measurements-of-system-call-performance-and-overhead

Userspace Locks: Syscall Overhead
• Can we avoid syscall overhead when acquiring a non-busy-waiting

lock in userspace?

 No: can’t put a thread to sleep (i.e., block the thread) without entering the
kernel

• What we can do: avoid system calls in the uncontended case (i.e., the
case where we can acquire the lock without blocking)

 Helps both uniprocessor case and multiprocessor case

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

55

Linux futex: Fast Userspace Mutex

• uaddr points to a 32-bit value in user space

• futex_op
 FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAKE

 Atomic check that condition still holds

 FUTEX_WAKE – wake up at most val waiting threads

 FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE

• timeout
 ptr to a timespec structure that specifies a timeout for the op

 NULL == wait forever

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

56

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout);

Linux futex: Fast Userspace Mutex
• Idea: Userspace lock is syscall-free in the uncontended case

• Lock has three states

 Free (no syscall when acquiring lock)

 Busy, no waiters (no syscall when releasing lock)

 Busy, possibly with some waiters

• futex is not exposed in libc; it is used within the implementation of
pthreads

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

57

int value = 0; // free
bool maybe_waiters = false;

Acquire() {
while (test&set(value)) {

maybe_waiters = true;
futex(&value, FUTEX_WAIT, 1);
// futex: sleep if lock is acquired
maybe_waiters = true;

}
}

Example: Userspace Locks with futex

• This is syscall-free in the uncontended case
 Temporarily falls back to syscalls if multiple waiters, or concurrent

acquire/release

• But it can be considerably optimized!
 See “Futexes are Tricky” by Ulrich Drepper

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

58

Release() {
value = 0;
if (maybe_waiters) {

maybe_waiters = false;
futex(&value, FUTEX_WAKE, 1);
// futex: wake up a sleeping thread

}
}

https://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf

Conclusion
• Important concept: Atomic Operations

 An operation that runs to completion or not at all

 These are the primitives on which to construct various synchronization
primitives

• Talked about hardware atomicity primitives:

 Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

• Showed several constructions of Locks

 Must be very careful not to waste/tie up machine resources

 Shouldn’t disable interrupts for long

 Shouldn’t spin wait for long

 Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

59

Bonus Slides (If
Time)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

60

Further Reducing Overhead
• Make locks less contended [how?]

• Move synchronization and scheduling into userspace

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

61

We’ve Looked At: Kernel-Supported
Threads
• Threads run and block (e.g., on I/O) independently

• One process may have multiple threads waiting on different things

• Two mode switches for every context switch (expensive)

• Create threads with syscalls

• Alternative: multiplex several streams of execution (at user level) on
top of a single OS thread

 E.g., Java, Go, … (and many many user-level threads libraries before it)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

62

User-Mode Threads
• User program contains its own

scheduler

• Several user threads per kernel thread

• User threads may be scheduled
non-preemptively

 Only switch on yield

• Context switches cheaper

 Copy registers and jump (switch in userspace)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

63

Thread Yield 3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

64

yield (syscall)

ComputePI

S
ta

c
k
 g

ro
w

th

run_new_kernel_
thread

kernel_yield

Trap to OS

(Expensive)

switch

Kernel-Supported Threads

yield

ComputePI

S
ta

c
k
 g

ro
w

th

run_new_user_
thread

Library Function

Call (Cheap)

switch

User-Mode Threads

Thread I/O 3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

65

Kernel-Supported Threads User-Mode Threads

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

S
ta

c
k
 g

ro
w

th

CopyFile

run_new_thread

kernel_read
Trap to OS

switch

S
ta

c
k
 g

ro
w

th

read

• Selects a new kernel thread to run

• Bypassing user-level scheduler

User-Mode Threads: Problems
• One user-level thread blocks on I/O: they all do

 Kernel cannot adjust scheduling among threads it doesn’t know about

• Multiple Cores?

• Can’t completely avoid blocking (syscalls, page fault)

• One Solution: Scheduler Activations

 Have kernel inform user-level scheduler when a thread blocks

 Evolving the contract between OS and application

• Alternative Solution: Language Support?

 Make the scheduler aware of the blocking operation

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

66

Go Goroutines
• Goroutines are lightweight, user-level threads

 Scheduling not preemptive (relies on goroutines to yield)

 Yield statements inserted by compiler

• Advantages relative to regular threads (e.g., pthreads)

 More lightweight

 Faster context-switch time

• Disadvantages

 Less sophisticated scheduling at the user-level

 OS is not aware of user-level threads

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

67

Go User-Level Scheduler
• Why this approach?

• 1 OS (kernel-supported) thread per CPU core: allows go program to
achieve parallelism not just concurrency

 Fewer OS threads? Not utilizing all CPUs

 More OS threads? No additional benefit

 We’ll see one exception to this involving syscalls

• Keep goroutine on same OS thread: affinity, nice for caching and
performance

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

68

Go User-Level Thread Scheduler 3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

69

CPU Core CPU Core CPU Core…

OS Thread

(M)
OS Thread

(M)
OS Thread

(M)

Local Run Queue Local Run Queue Local Run Queue

Global Run Queue
Newly created

goroutines

• Why not just have a

single global run

queue?

Dealing with Blocking Syscalls

• What if a goroutine wants to make a
blocking syscall?

 Example: File I/O

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

70

CPU Core

OS Thread

(M1)

Running Grtn.

Local Run Queue

Dealing with Blocking Syscalls

• What if a goroutine wants to make a
blocking syscall?

 Example: File I/O

• While syscall is blocking, allocate
new OS thread (M2)

 M1 is blocked by kernel, M2 lets us
continue using CPU

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

71

CPU Core

OS Thread

(M2) Blocking Grtn.

Local Run Queue

OS Thread

(M1)

Dealing with Blocking Syscalls

• Syscall completes: Put invoking
goroutine back on queue

• Keep M1 around in a spare pool

• Swap it with M2 upon next syscall,
no need to pay thread creation cost

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

72

CPU Core

OS Thread

(M2)

Ready Grtn.

Local Run Queue

OS Thread

(M1)

Running Grtn.

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

73

