
Synchronization 2:
Lock Implementation
Lecture 8

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: Producer-Consumer
• Problem Definition

 Producers puts things into a shared buffer

 Consumers takes them out

• Don’t want producers and consumers to have to work in lockstep, so
put a buffer (bounded) between them

 Need synchronization to maintain integrity of the data structure and
coordinate producers/consumers

 Producer needs to wait if buffer is full

 Consumer needs to wait if buffer is empty

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

2

Consumer
Consumer

Producer ConsumerBuffer
Producer

Recall: Producer-Consumer
(Semaphores)

Semaphore usedSlots = 0; // No slots used

Semaphore freeSlots = bufSize; // All slots free

Lock mutex = <initially unlocked>; // Nobody in critical sec.

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

3

Consumer() {

usedSlots.P();

mutex.acquire();

item = Dequeue();

mutex.release();

freeSlots.V();

return item;

}

Producer(item) {

freeSlots.P();

mutex.acquire();

Enqueue(item);

mutex.release();

usedSlots.V();

}

Recall: Problems with Semaphores
• More powerful (and primitive) than locks

• Argument: Clearer to have separate constructs for

 Mutual Exclusion: One thread can do something at a time

 Waiting for a condition to become true

• Need to make sure a thread calls P() for every V()

 Other tools are more flexible than this

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

4

Recall: Condition Variables
• Queue of threads waiting inside a critical section

 Typically, waiting until a condition on some variables becomes true

 Variables typically are protected by a mutex

• Operations:

 wait(&lock): Atomically release lock and go to sleep until condition
variable is signaled. Re-acquire the lock before returning.

 signal(): Wake up one waiting thread (if there is one)

 broadcast(): Wake up all waiting threads

• Rule: Hold lock when using a condition variable

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

5

Recall: Monitors
• A monitor consists of a lock and zero or more condition variables used

for managing concurrent access to shared data

• Lock: the lock provides mutual
exclusion to shared data

• Condition Variable: a queue of
threads waiting for something
inside a critical section

 Key idea: make it possible to go to
sleep inside critical section by
atomically releasing lock at time we
go to sleep

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

6

Recall: Mesa Monitors vs. Hoare
Monitors

Mesa Monitor

while (buffer empty) {

cond_wait(¬_empty, &buf_lock);

}

Hoare Monitor

if (buffer empty) {

cond_wait(¬_empty, &buf_lock);

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

7

• In practice, almost all OSes implement Mesa monitors

Recall: Why the while Loop?
• When a thread is woken up by signal(), it is simply marked as

eligible to run

• It may or may not reacquire the lock immediately!

 Another thread could be scheduled and “sneak in” make the condition it’s
waiting for no longer true

 Need a loop to re-check condition on wakeup

• This is called Mesa Scheduling (Mesa-style Monitors)

• Most operating systems use Mesa-style Monitors!

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

8

Concurrency and Synchronization in C
• Harder with more locks

void Rtn() {
lock1.acquire();
…
if (error) {

lock1.release();
return;

}

…

lock2.acquire();

…

if (error) {

lock2.release()

lock1.release();

return;

}

…

lock2.release();

lock1.release();
}

• Is goto a solution???

void Rtn() {
lock1.acquire();
…
if (error) {

goto release_lock1_and_return;
}

…

lock2.acquire();

…

if (error) {

goto release_both_and_return;

}

…

release_both_and_return:

lock2.release();

release_lock1_and_return:

lock1.release();
}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

9

C++ Lock Guards
#include <mutex>

int global_i = 0;

std::mutex global_mutex;

void safe_increment() {

std::lock_guard<std::mutex> lock(global_mutex);

…

++global_i;

// Mutex released when ‘lock’ goes out of scope

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

10

Today: How to
implement
synchronization
primitives?
For now, just consider locks inside the kernel.

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

11

Recall: Race Conditions
• What are the possible values of x below?

• Initially x == 0

• 1 or 2 (non-deterministic)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

12

Thread A

x += 1;

Thread B

x += 1;

Thread A

ld r1, &x

add r1, r1, 1

st r1, &x

Thread B

ld r1, &x

add r1, r1, 1

st r1, &x

Recall: Race Conditions
• What are the possible values of x below?

• Initially x == 0

• 0x1 or 0x400 (non-deterministic)

 Note: on some architectures (ARM) we could see 0x401

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

13

Thread A

x = 0x1;

Thread B

x = 0x400;

Atomic Operations
• To understand a concurrent program, we need to know what the

underlying indivisible operations are!

• Atomic Operation: an operation that always runs to completion or
not at all

 It is indivisible: it cannot be stopped in the middle and state cannot be
modified by someone else in the middle

 It is thread-safe by design

• On most machines, memory references and assignments (i.e. loads
and stores) of words are atomic

• On other architectures (ARM!) load/store of a byte is atomic

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

14

Concurrency is Hard!
• Even for practicing engineers trying to write mission-critical,

bulletproof code!

 Threaded programs must work for all inter-leavings of thread instruction
sequences

 Cooperating threads inherently non-deterministic and non-reproducible

 Really hard to debug unless carefully designed!

• Therac-25: Radiation Therapy Machine with Unintended Overdoses

• Mars Pathfinder Priority Inversion (JPL Account)

• Toyota Uncontrolled Acceleration (CMU Talk)

 256.6K Lines of C Code, ~9-11K global variables

 Inconsistent mutual exclusion on reads/writes

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

15

https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html
https://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html

Motivating Example: “Too Much
Milk”
• Analogy between problems in OS and problems in real life

• Example: People need to coordinate:

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

16

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Too Much Milk: Correctness
• Safety: At most one person buys milk.

• Liveness: If milk is needed, at least one person buys it.

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

17

Attempt #1
• Leave a note

 Place on fridge before buying

 Remove after buying

 Don’t go to store if there’s already a note

• Leaving/checking a note is atomic (word load/store)

if (noMilk) {

if (noNote) {

leave Note;

buy milk;

remove Note;

}

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

18

Attempt #1 in Action

Thread A

if (noMilk) {

if (noNote) {

leave Note;

buy milk;

remove Note;

}

}

Thread B

if (noMilk) {

if (noNote) {

leave Note;

buy milk;

remove note;

}

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

19

Achieves

liveness but

not safety

Attempt #1.5
• Idea: leave note, then check for milk

leave Note;

if (noMilk) {

if (noNote) {

buy milk;

}

}

remove Note;

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

20

But there’s always

a note – you just

left one!

Attempt #2: Use Named Notes

Thread A

leave note A

if (noMilk) {

if (noNote B) {

buy milk

}

}

remove note A

Thread B

leave note B

if (noMilk) {

if (noNote A) {

buy milk

}

}

remove note B

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

21

Attempt #2 in Action

Thread A

leave note A

if (noMilk) {

if (noNote B) {

buy milk

}

}

remove note A

Thread B

leave note B

if (noMilk) {

if (noNote A) {

buy milk

}

}

remove note B

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

22

Achieves

safety but

not liveness

Attempt #3: Wait

Thread A

leave note A

while (note B) {

do nothing

}

if (noMilk) {

buy milk

}

remove note A

Thread B

leave note B

while (note A) {

do nothing

}

if (noMilk) {

buy milk

}

remove note B

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

23

This is a correct

solution!

This Generalizes to 𝑛 Threads…
• Leslie Lamport’s “Bakery

Algorithm” (1974)

• Allows one to protect a critical
section like:

if (noMilk) {
buy milk;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

24

Solution #3 Discussion
• Solution #3 works, but it’s not great

 Really complex – even for this simple example

 Hard to convince yourself that this really works

 While a thread is waiting, it is consuming CPU time

 This is called “busy-waiting”

• There’s a better way

 Have hardware provide more primitives than simple atomic load & store

 Build even higher-level programming abstractions on this hardware
support

 Make sure the OS scheduler never allows another thread to enter the critical
section

 The other thread becomes blocked if it tries to enter

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

25

Where are we going with
Synchronization?
• Building an efficient, easy-to-use API

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

26

Hardware

Higher-
level
API

Programs

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Announcements
• Project 1 design document due March 10

 You have started talking to the TA, hopefully

• Assignment 2 now published, due April 7

• Project 1 due March 24

• Mid-term examination March 12, 5.00pm, 1200 PFT

 Mid-term review March 10

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

27

Implementing Locks: Single Core
• How can we make lock.Acquire() and lock.Release() appear

atomic to other threads?

• Idea: A context switch can only happen (assuming threads don’t
yield) if there’s an interrupt

• “Solution”: Disable interrupts while holding lock

• x86 has cli and sti instructions that only operate in system mode
(PL=0)

 Interrupts enabled bit in FLAGS register

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

28

Naïve Interrupt Enable/Disable

• Problem: can stall the entire system

Lock.Acquire()

While (1) {}

• Problem: What if we want to do I/O?

Lock.Acquire()

Read from disk

/* OS waits for (disabled) interrupt! */

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

29

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

Implementing Locks: Single Core
int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

• Key idea: maintain a lock variable (value) and disable interrupts only
during operations on that variable

Release() {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue;
Place on ready queue;

}

value = FREE;
enable interrupts;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

30

Discussion
• Why do we need to disable interrupts at all?

 Avoid interruption between checking and setting lock value

 Otherwise two threads could think that they both have lock

• Unlike the naïve solution, interrupts are disabled for a short time only

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

31

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical

Section

• Disabling interrupts

prevents preemption

• Locks disable interrupts to

provide another critical

section

Implementing Locks: Single Core
int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

• Key idea: maintain a lock variable (value) and disable interrupts only
during operations on that variable

Release() {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue;
Place on ready queue;

}

value = FREE;
enable interrupts;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

32

Re-enabling Interrupts when Waiting

• Before on the queue?

 Release might not wake up this thread!

• After putting the thread on the queue?

 Gets woken up, but immediately switches away

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

33

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

run_new_thread()

} else {

value = BUSY;

}

enable interrupts;

}

enable interrupts

enable interrupts

Re-enabling Interrupts when Waiting

• Best solution: after the current thread
suspends

• How?

 run_new_thread() should do it!

 Part of returning from switch()

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

34

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

run_new_thread()

} else {

value = BUSY;

}

enable interrupts;

}

enable interrupts

How to Re-enable Interrupts when
Waiting
• In scheduler, since interrupts are disabled when switching threads:

 Responsibility of the next thread is to re-enable interrupts

 When the sleeping thread wakes up, returns and re-enables interrupts

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

35

Thread A
...

disable ints

call run_new_thread

run_new_thread returns

enable ints

...

Thread B

run_new_thread returns

enable ints

...

disable ints

call run_new_thread

Enabling Interrupts vs. Restoring
Interrupts
• 99% of the time, you want to restore interrupts, not enable them

• We used “enable interrupts” in this lecture since we were assuming
interrupts are enabled when acquiring the lock

• In PintOS:

enum intr_level state = intr_disable();
<code manipulating shared data>
intr_set_level(state);

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

36

When does this Lock Implementation
Work?
• Answer: For threads in the kernel on a single-core machine.

• What about multi-core machines?

• What about user threads?

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

37

Multi-Core Machines
• How to synchronize with threads executing in parallel on other

cores?

 Disable interrupts on all cores?

 Prevent other cores from making progress?

• Implement locks in hardware?

 What’s the interface between hardware lock and OS scheduler?

• Solution: Use hardware support for atomic operations

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

38

Atomic Operations
• Definition: An operation runs to completion or not at all

 Foundation for synchronization primitives

• Example: Loading or storing a word (on most modern architectures)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

39

Atomic Read-Modify-Write
Instructions
• These instructions read a value and write a new value atomically

• Hardware is responsible for implementing this correctly

 On both uniprocessors (not too hard)

 And multiprocessors (requires help from cache coherence protocol)

• Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

• Natural extensions to user-level locking

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

40

Examples of Read-Modify Write
test&set (&address) { /* most architectures */

result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;

}

swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

41

Examples of Read-Modify Write
compare&swap (&address, reg1, reg2) { /* 68000, x86 */

if (reg1 == M[address]) { // If memory still == reg1,
M[address] = reg2; // then put reg2 => memory
return success;

} else { // Otherwise do not change memory
return failure;

}
}

load-linked&store-conditional(&address) { /* R4000, alpha */
loop:
ll r1, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;

}

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

42

Implementing Locks with test&set
• Simple, but flawed, solution:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Explanation:
 If lock is free, test&set reads 0 and sets value=1, so lock is now busy. It returns 0 so while exits.

 If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1, so while loop continues.

 When we set value = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting

• For multiprocessor cache coherence: every test&set() is a write, which makes value
ping-pong around in cache (using lots of memory BW)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

43

This is Called a Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Spinlock doesn’t put the calling thread to sleep --- it just busy waits

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

44

Problem: Busy-Waiting for Lock
• Positives for this solution

 Machine can receive interrupts

 User code can use this lock (poorly)

 Works on a multiprocessor

• Negatives
 Very inefficient: thread will consume cycles waiting

 Waiting thread takes cycles away from thread holding lock (no one wins!)

 Priority Inversion: If busy-waiting thread has higher priority than thread
holding lock  no progress!

• For semaphores (and monitors), waiting thread may wait for an
arbitrary long time!
 Thus even if busy-waiting was OK for locks, definitely not OK for other

primitives

 Homework/exam solutions should avoid busy-waiting!

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

45

Better Locks Using test&set
• Can we build test&set locks without busy-waiting?

 Can’t entirely, but can minimize!

 Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
 Why can’t we do it just before or just after the sleep?

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

46

Release() {
// Short busy-wait time
while (test&set(guard)) /**/;
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

}

value = FREE;
guard = 0;

}

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard)) /**/;
if (value == BUSY) {

put thread on wait queue;
run_new_thread() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Alternative View: Bootstrapping a
Spinlock 3

/5
/2

0
2

5
,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

47

Release() {
// Short busy-wait time
guard.Acquire();
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

}

value = FREE;
guard.Release();

}

SpinLock guard = FREE;
int value = FREE;

Acquire() {
// Short busy-wait time
guard.Acquire();
if (value == BUSY) {

put thread on wait queue;
run_new_thread() & guard.Release();

} else {
value = BUSY;
guard.Release();

}
}

Comparison to Disabling Interrupts 3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

48

Release() {
disable interrupts;
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

}

value = FREE;
enable interrupts;

int value = FREE;

Acquire() {
// Short busy-wait time
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
run_new_thread();

// scheduler enables interrupts
} else {

value = BUSY;
enable interrupts;

}
}

• We changed disable interrupts → spinlock.Acquire() [while (test&set(guard)]
• We changed enable interrupts → spinlock.Release() [guard = 0]

Recap: Locks Using Interrupts

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

49

int value = 0;
Acquire() {
// Short busy-wait time
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() & disable interrupts;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

}
value = 0;
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

Threads waiting to

enter critical section

busy-wait

Recap: Locks Using test&set

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

50

int guard = 0;
int value = 0;
Acquire() {
// Short busy-wait time
while(test&set(guard));
if (value == 1) {
put thread on wait-queue;
go to sleep()& guard = 0;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

}
value = 0;
guard = 0;

}

lock.Acquire();

…

critical section;

…

lock.Release();

int value = 0;
Acquire() {
while(test&set(value));

}

Release() {
value = 0;

}

Threads waiting to

enter critical section

busy-wait

Recall: Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
 When might this be preferable?

• For multiprocessor cache coherence: every test&set() is a write,
which makes value ping-pong around in cache (using lots of memory
BW)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

51

Better Spinlock: test&test&set
• A better spinlock solution:

int mylock = 0; // Free

Acquire() {

do {

while(mylock) /**/; // Wait until might be free

} while(test&set(&mylock)); // exit if get lock

}

Release() {

mylock = 0;

}

• Explanation:
 Wait until lock might be free (only reading – stays in cache)

 Then, try to grab lock with test&set

 Repeat if fail to actually get lock

• Busy-Waiting: no longer impacts other processors!

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

52

Locks in Userspace?
• We’ve looked at locks in the kernel

 Uniprocessor case (disable interrupts)

 Multiprocessor case (test&set)

• What about locks in userspace?

• Spinlocks just work

• Simple idea for non-busy-waiting lock:

 For each userspace lock, allocate a lock in the kernel

 Make a syscall for each acquire/release operation to acquire the lock in the
kernel

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

53

Recall: Overhead of Syscalls
• Syscalls are 25x more expensive than function calls (~100 ns)

• read/write a file byte by byte? Max throughput of ~10MB/second

• With fgetc? Keeps up with your SSD

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

54

http://arkanis.de/weblog/2017-01-05-measurements-of-system-call-performance-and-overhead

Userspace Locks: Syscall Overhead
• Can we avoid syscall overhead when acquiring a non-busy-waiting

lock in userspace?

 No: can’t put a thread to sleep (i.e., block the thread) without entering the
kernel

• What we can do: avoid system calls in the uncontended case (i.e., the
case where we can acquire the lock without blocking)

 Helps both uniprocessor case and multiprocessor case

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

55

Linux futex: Fast Userspace Mutex

• uaddr points to a 32-bit value in user space

• futex_op
 FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAKE

 Atomic check that condition still holds

 FUTEX_WAKE – wake up at most val waiting threads

 FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE

• timeout
 ptr to a timespec structure that specifies a timeout for the op

 NULL == wait forever

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

56

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout);

Linux futex: Fast Userspace Mutex
• Idea: Userspace lock is syscall-free in the uncontended case

• Lock has three states

 Free (no syscall when acquiring lock)

 Busy, no waiters (no syscall when releasing lock)

 Busy, possibly with some waiters

• futex is not exposed in libc; it is used within the implementation of
pthreads

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

57

int value = 0; // free
bool maybe_waiters = false;

Acquire() {
while (test&set(value)) {

maybe_waiters = true;
futex(&value, FUTEX_WAIT, 1);
// futex: sleep if lock is acquired
maybe_waiters = true;

}
}

Example: Userspace Locks with futex

• This is syscall-free in the uncontended case
 Temporarily falls back to syscalls if multiple waiters, or concurrent

acquire/release

• But it can be considerably optimized!
 See “Futexes are Tricky” by Ulrich Drepper

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

58

Release() {
value = 0;
if (maybe_waiters) {

maybe_waiters = false;
futex(&value, FUTEX_WAKE, 1);
// futex: wake up a sleeping thread

}
}

https://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf

Conclusion
• Important concept: Atomic Operations

 An operation that runs to completion or not at all

 These are the primitives on which to construct various synchronization
primitives

• Talked about hardware atomicity primitives:

 Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

• Showed several constructions of Locks

 Must be very careful not to waste/tie up machine resources

 Shouldn’t disable interrupts for long

 Shouldn’t spin wait for long

 Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

59

Bonus Slides (If
Time)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

60

Further Reducing Overhead
• Make locks less contended [how?]

• Move synchronization and scheduling into userspace

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

61

We’ve Looked At: Kernel-Supported
Threads
• Threads run and block (e.g., on I/O) independently

• One process may have multiple threads waiting on different things

• Two mode switches for every context switch (expensive)

• Create threads with syscalls

• Alternative: multiplex several streams of execution (at user level) on
top of a single OS thread

 E.g., Java, Go, … (and many many user-level threads libraries before it)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

62

User-Mode Threads
• User program contains its own

scheduler

• Several user threads per kernel thread

• User threads may be scheduled
non-preemptively

 Only switch on yield

• Context switches cheaper

 Copy registers and jump (switch in userspace)

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

63

Thread Yield 3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

64

yield (syscall)

ComputePI

S
ta

c
k
 g

ro
w

th

run_new_kernel_
thread

kernel_yield

Trap to OS

(Expensive)

switch

Kernel-Supported Threads

yield

ComputePI

S
ta

c
k
 g

ro
w

th

run_new_user_
thread

Library Function

Call (Cheap)

switch

User-Mode Threads

Thread I/O 3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

65

Kernel-Supported Threads User-Mode Threads

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

S
ta

c
k
 g

ro
w

th

CopyFile

run_new_thread

kernel_read
Trap to OS

switch

S
ta

c
k
 g

ro
w

th

read

• Selects a new kernel thread to run

• Bypassing user-level scheduler

User-Mode Threads: Problems
• One user-level thread blocks on I/O: they all do

 Kernel cannot adjust scheduling among threads it doesn’t know about

• Multiple Cores?

• Can’t completely avoid blocking (syscalls, page fault)

• One Solution: Scheduler Activations

 Have kernel inform user-level scheduler when a thread blocks

 Evolving the contract between OS and application

• Alternative Solution: Language Support?

 Make the scheduler aware of the blocking operation

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

66

Go Goroutines
• Goroutines are lightweight, user-level threads

 Scheduling not preemptive (relies on goroutines to yield)

 Yield statements inserted by compiler

• Advantages relative to regular threads (e.g., pthreads)

 More lightweight

 Faster context-switch time

• Disadvantages

 Less sophisticated scheduling at the user-level

 OS is not aware of user-level threads

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

67

Go User-Level Scheduler
• Why this approach?

• 1 OS (kernel-supported) thread per CPU core: allows go program to
achieve parallelism not just concurrency

 Fewer OS threads? Not utilizing all CPUs

 More OS threads? No additional benefit

 We’ll see one exception to this involving syscalls

• Keep goroutine on same OS thread: affinity, nice for caching and
performance

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

68

Go User-Level Thread Scheduler 3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

69

CPU Core CPU Core CPU Core…

OS Thread

(M)
OS Thread

(M)
OS Thread

(M)

Local Run Queue Local Run Queue Local Run Queue

Global Run Queue
Newly created

goroutines

• Why not just have a

single global run

queue?

Dealing with Blocking Syscalls

• What if a goroutine wants to make a
blocking syscall?

 Example: File I/O

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

70

CPU Core

OS Thread

(M1)

Running Grtn.

Local Run Queue

Dealing with Blocking Syscalls

• What if a goroutine wants to make a
blocking syscall?

 Example: File I/O

• While syscall is blocking, allocate
new OS thread (M2)

 M1 is blocked by kernel, M2 lets us
continue using CPU

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

71

CPU Core

OS Thread

(M2) Blocking Grtn.

Local Run Queue

OS Thread

(M1)

Dealing with Blocking Syscalls

• Syscall completes: Put invoking
goroutine back on queue

• Keep M1 around in a spare pool

• Swap it with M2 upon next syscall,
no need to pay thread creation cost

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

72

CPU Core

OS Thread

(M2)

Ready Grtn.

Local Run Queue

OS Thread

(M1)

Running Grtn.

3
/5

/2
0

2
5

,
L

e
ct

u
re

 8
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
L

o
ck

 I
m

p
le

m
e
n

ta
ti

o
n

73

