
Scheduling 1:
Concepts and Classic
Policies
Lecture 9

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: “Too Much Milk”
• Analogy between problems in OS and problems in real life

• Example: People need to coordinate:

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

2

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Recall: Single-Core Lock
Implementation

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

• Key idea: maintain a lock variable (value) and disable interrupts only
during operations on that variable

Release() {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue;
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

3

Recall: Re-enable Interrupts when
Waiting
• In scheduler, since interrupts are disabled when switching threads:

 Responsibility of the next thread is to re-enable interrupts

 When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

4

Thread A
...

disable ints

call run_new_thread

run_new_thread return

enable ints

...

Thread B

run_new_thread return

enable ints

...

disable int

call run_new_thread

Recall: Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits

 When might this be preferable?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

5

Recall: Multi-Core Lock
Implementation
• Can we build test&set locks without busy-waiting?

 Can’t entirely, but can minimize!

 Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
 Why can’t we do it just before or just after the sleep?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

6

Release() {
// Short busy-wait time
while (test&set(guard)) /**/;
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

}

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard)) /**/;
if (value == BUSY) {

put thread on wait queue;
run_new_thread() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Recall: test&test&set
• A better spinlock solution:

int mylock = 0; // Free

Acquire() {

do {

while(mylock) /**/; // Wait until might be free

} while(test&set(&mylock)); // exit if get lock

}

Release() {

mylock = 0;

}

• Explanation:
 Wait until lock might be free (only reading – stays in cache)

 Then, try to grab lock with test&set

 Repeat if fail to actually get lock

• Busy-Waiting: no longer impacts other processors!

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

7

Recall: Linux futex: Fast Userspace
Mutex

• uaddr points to a 32-bit value in user space

• futex_op
 FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAIT

 Atomic check that condition still holds

 FUTEX_WAKE – wake up at most val waiting threads

 FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE

• timeout
 ptr to a timespec structure that specifies a timeout for the op

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

8

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout);

int value = 0; // free
bool maybe_waiters = false;

Acquire() {
while (test&set(value)) {

maybe_waiters = true;
futex(&value, FUTEX_WAIT, 1);
// futex: sleep if lock is acquired
maybe_waiters = true;

}
}

Recall: Userspace Locks with futex

• This is syscall-free in the uncontended case
 Temporarily falls back to syscalls if multiple waiters, or concurrent

acquire/release

• But it can be considerably optimized!
 See “Futexes are Tricky” by Ulrich Drepper

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

9

Release() {
value = 0;
if (maybe_waiters) {

maybe_waiters = false;
futex(&value, FUTEX_WAKE, 1);
// futex: wake up a sleeping thread

}
}

https://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf

Scheduling

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

10

Today: Scheduling

• Scheduling: Mechanism for deciding which processes/threads receive the
CPU

• Lots of different scheduling policies provide …
 Fairness or

 Realtime guarantees or

 Latency optimization or …

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

11

if (readyProcesses(PCBs)) {

nextPCB = selectProcess(PCBs);

run(nextPCB);

} else {

run_idle_process();

}

Scheduling Opportunities
• Every “yield”

• Every timer tick (interrupt)

• But also:

 Every syscall

 Every interrupt (even if not due to timer)

• Whenever you enter the kernel, for any reason…

• The kernel could switch the running thread at any of these times!

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

12

Broader Take on Scheduling
• Scheduling: deciding which threads are given access to resources

from moment to moment

 Often, we think in terms of CPU time, but could also think about access to
resources like network BW or disk access

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

13

Scheduling: All About Queues 3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

14

Useful formulation of scheduling: How is the OS to decide

which of several tasks to take off a queue?

Scheduling: All About Trade-Offs
• Individuals care about getting their task done quickly

• System cares about overall efficiency

 Utilize multiple HW resources well, low overhead, …

• Huge variation in job characteristics

• Fairness???

• What is our utility function?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

15

CPU and I/O Bursts

• Programs alternate
between bursts of CPU
and I/O activity

• Scheduler: Which thread
(CPU burst) to run next?

• Interactive programs vs.
Compute Bound vs.
Streaming

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

16

Evaluating Schedulers
• Response Time (ideally low)

 What user sees: from keypress to character on screen

 Or completion time for non-interactive

• Throughput (ideally high)

 Total operations (jobs) per second

 Overhead (e.g. context switching), artificial blocks

• Fairness

 Fraction of resources provided to each

 May conflict with best average throughput or response time

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

17

Discussion: Scheduling Assumptions
• Equal or variable job length?

• Run to completion vs. preemption?

• Arrival time (at once vs varied)?

• Resources: CPU(s), I/O, Network, …?

• Advanced Knowledge of Job characteristics or needs

 Off-line scheduling is given the entire collection of tasks and computes a
schedule

 On-line scheduling makes decisions as tasks arrive

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

18

Scheduling Assumptions
• Many implicit assumptions needed to make the problem solvable

• For instance: is “fair” about fairness among users or programs?

 If I run one compilation job and you run five, you get five times as much
CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize some desired
parameters of system

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

19

USER 1 USER 2 USER 3 USER 1 USER 2

Time

First-Come, First-Served Scheduling
(FCFS)
• Also: “First In First Out” (FIFO)

• Example: Process Burst Time

T1 24
T2 3
T3 3

• Arrival Order: T1, T2, then T3 (all arrive at time 0)

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

20

T1 T2 T3

24 27 300

First-Come, First-Served Scheduling
(FCFS)

• Response Times: T1 = 24, T2 = 27, T3 = 30

 Average Response Time = (24+27+30) / 3 = 27

• Waiting times: T1 = 0, T2 = 24, T3 = 27

 Average Wait Time = (0 + 24 + 27) / 3 = 17

• Convoy Effect: Short processes stuck behind long processes

 If T2, T3 arrive any time < 24, they must wait

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

21

T1 T2 T3

24 27 300

Slightly Different Arrival Order?

• T2 < T3 < T1

• Response Time: T1 = 30, T2 = 3, T3 = 6
 Average Response Time = (30 + 3 + 6) / 3 = 13

 Versus 27 with T1 < T2 < T3

• Waiting Time: T1 = 6, T2 = 0, T3 = 3
 Average Waiting Time = (6+0+3) / 3 = 3

 Versus 17 with T1 < T2 < T3

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

22

T1T3T2

63 300

How to Implement FCFS in the
Kernel?
• Comes down to scheduling queue data structure

 FIFO

 E.g., push_front, pop_back

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

23

Convoy Effect 3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

24

• With FCFS non-preemptive scheduling, convoys of
small tasks tend to build up when a large one is
running.

time

S
ch

e
d

u
li

n
g
 Q

u
e
u

e
Scheduled Task (process, thread)

arrivals

First-Come, First-Serve Scheduling
• FCFS Scheme: Potentially bad for short jobs!

 Depends on submit order

 If you are first in line at supermarket with milk only, you don’t care who is
behind you, on the other hand…

• Idea: What if we preempted long-running jobs to give shorter jobs a
chance to run?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

25

Announcements
• Project 1 due next Monday, March 24

 Let me know if you need an extension

• Assignment 2 due Monday, April 7

• Midterm 1 is still being graded – apologies!

 Expect grades to be available by the weekend

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

26

Round-Robin Scheduling (RR)
• Give out small units of CPU time ("time quantum")

 Typically 10 – 100 milliseconds

• When quantum expires, preempt, and schedule

 Round Robin: add to end of the queue

• Each of N processes gets ~1/N of CPU (in window)

 With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

• Downside: More context switches

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

27

Example From Earlier (𝑸 = 𝟏𝟎)

• Regardless of arrival order, short jobs gets a chance early

• Much less sensitive to arrival order

• How much context switch overhead?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

28

T1 T3

130

T2

10 16 30

T1

Another Example (𝑸 = 𝟐𝟎)
Task Burst Time
T1 53
T2 8
T3 68
T4 24

• Avg. response time = (125+28+153+112) / 4 = 104.5

• Waiting times:
 T1 = (68-20)+(112-88) = 72

 T2 = (20-0) = 20

 T3 = (28-0)+(88-48)+(125-108) = 85

 T4 = (48-0)+(108-68) = 88

• Average waiting time = (72+20+85+88) / 4 = 66.25

• And don't forget context switch overhead!

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

29

T1

0 20

T2

28

T3

48

T4

68

T1

88

T3

108

T4 T1 T3 T3

112 125 145 153

Round-Robin Quantum
• Assume that context switch overhead is 0

• What happens when we decrease Q?

• Avg. response time always decreases or stays the same?

• Avg. response time always increases or stays the same?

• Avg. response time can increase, decrease, or stays the same?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

30

Decrease Response Time
• T1: Burst Length 10

• T2: Burst Length 1

• Q = 10

• Average Response Time = (10 + 11)/2 = 10.5

• Q = 5

• Average Response Time = (6 + 11)/2 = 8.5

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

31

T1

0 10

T2

11

T1

0 6

T2

11

T1

5

Same Response Time
• T1: Burst Length 1

• T2: Burst Length 1

• Q = 10

• Average Response Time = (1 + 2)/2 = 1.5

• Q = 1

• Average Response Time = (1 + 2)/2 = 1.5

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

32

T1

0 1

T2

2

T1

0 1

T2

2

Increase Response Time
• T1: Burst Length 1

• T2: Burst Length 1

• Q = 1

• Average Response Time = (1 + 2)/2 = 1.5

• Q = 0.5

• Average Response Time = (1.5 + 2)/2 = 1.75

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

33

T1

0 1

T2

2

0 2

How to Implement RR in the Kernel?
• Round Robin – what is it?

• FIFO Queue, as in FCFS

• But preempt job after quantum expires, and send it to the back of the
queue

 How? Timer interrupt!

 And, of course, careful synchronization

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

34

Project 2:

Scheduling

Discussion: Round-Robin Scheduling
• How to choose the time quantum?

 Too big? RR approaches FCFS

 Too small? Throughput suffers (due to context switches)

• Actual choices of timeslice:

 Initially, in UNIX timeslice was one second:

 Worked ok when UNIX was used by one or two people.

 When might this perform poorly?

 Need to balance short-job performance and long-job throughput:

 Typical time slice today is between 10ms – 100ms

 Typical context-switching overhead is 0.1ms – 1ms

 Roughly 1% overhead due to context-switching

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

35

Priority 3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

36

• Interactive vs. compute bound

Priority Scheduler

• Something gives jobs (processes) priority

 Usually the user sets it explicitly, perhaps based on $ rate

• Always run the ready thread with highest priority

 Low priority thread might never run!

 Starvation

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

37

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

How to Implement Priority
Scheduling in the Kernel?
• Scheduling queue data structure determines next thread of those in

the ready queue(s)

 Kernel prefers threads with more urgent priority

• Why might a thread not be in the ready queue?

 Waiting on I/O

 Locks?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

38

Adaptive Scheduling
• Modern schedulers use knowledge about program to make better

scheduling decisions

• Provided by the user (servers vs. background)

• Estimate future based on the past

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

39

Policy Based on Priority Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

40

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.

• Start with the second step. Suppose we knew the workload in
advance. What should the scheduler do?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

41

What if we knew how long each CPU
burst will be, in advance?
• Key Idea: remove convoy effect

 Short jobs always stay ahead of long ones

• Non-preemptive: Shortest Job First

 Like FCFS if we always chose the best possible ordering

• Preemptive Version: Shortest Remaining Time First

 If a job arrives and has shorter time to completion than current job,
immediately preempt CPU

 Sometimes called “Shortest Remaining Time to Completion First”

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

42

SRTF Example
(Shortest Remaining Time First)
• Three jobs in system

 A and B are CPU calculations that take a week to run

 C: Continuous loop of 1ms CPU time, 9ms of I/O time

• FCFS? A or B starve C

 I/O throughput problem: lose opportunity to do work for C while CPU runs
A or B

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

43

C

C’s

I/O

C’s

I/O

C’s

I/O

A or B

SRTF Example
(Shortest Remaining Time First) 3

/1
9

/2
0

2
5

,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

44

C’s

I/O

CABAB… C

C’s

I/O

RR 1ms time slice

C’s

I/O

C’s

I/O

CA BC

RR 100 ms time slice

C’s

I/O

AC

C’s

I/O

AA

SRTF

Disk Utilization:

~90% but lots of

wakeups!

Disk Utilization:

90%

Disk Utilization:

9/201 ~ 4.5%

Discussion: SJF and SRTF
• Provably Optimal with respect to Response Time

• But Starvation is possible

 What if new short jobs keep arriving?

• But: Need to predict the future!

 Ask the user when they submit the job? How to prevent cheating?

 SRTF useful as a benchmark to measure other policies?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

45

Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.

• Now, let’s look at the first step. How can we predict future behavior
from past behavior?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

46

Predicting Future Behavior
• Consider Round-Robin Scheduling

• If process exhausts quantum, it has to be preempted

 Consuming all of the CPU time it can: “CPU-Bound”

 Likely to remain CPU-Bound

• If process blocks on I/O before quantum exhausted

 Short CPU bursts, just to initiate I/O: “I/O-Bound”

 Often interactive tasks

 Likely to remain I/O-Bound and/or Interactive

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

47

Multi-Level Feedback Queue (MLFQ)

• Multiple queues, each of different priority
 Round Robin within each queue

 Different quantum length for each queue

• Favor I/O-bound jobs for interactivity
 Get click or kick off I/O transfer

• Low overhead for CPU bound

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

48

Long-Running Compute
Tasks Demoted to

Low Priority

Multi-Level Feedback Queue (MLFQ)

• Intuition: approximate SRTF by setting priority level proportional to
burst length

• Job Exceeds Quantum: Drop to lower queue

• Job Doesn't Exceed Quantum: Raise to higher queue

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

49

Long-Running Compute
Tasks Demoted to

Low Priority

Multi-Level Feedback Queue
• Approximates Shortest Remaining Time First

 CPU-bound have lowest priority (run last)

 I/O-bound (short CPU bursts) have highest priority
(run first)

• Low overhead

 Easy to update priority of a job

 Easy to find next ready task to run

• Can a process cheat?

 Yes, add meaningless I/O operations (but has a cost)

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

50

How to Implement MLFQ in the
Kernel?
• We could explicitly build the queue data structures

• Or, we can leverage priority-based scheduling!

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

51

Recall: Policy Based on Priority
Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

52

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Conclusion
• First-Come First-Served: Simple, vulnerable to convoy effect

• Round-Robin: Fixed CPU time quantum, cycle between ready
threads

• Priority: Respect differences in importance

• Shortest Job/Remaining Time First: Optimal for average response
time, but unrealistic

• Multi-Level Feedback Queue: Use past behavior to approximate
SRTF and mitigate overhead

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

53

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

54

