
Scheduling 1: 
Concepts and Classic 
Policies
Lecture 9
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Recall: “Too Much Milk”
• Analogy between problems in OS and problems in real life

• Example: People need to coordinate:
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Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10
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Recall: Single-Core Lock 
Implementation

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

• Key idea: maintain a lock variable (value) and disable interrupts only 
during operations on that variable

Release() {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue;
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}
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Recall: Re-enable Interrupts when 
Waiting
• In scheduler, since interrupts are disabled when switching threads:

 Responsibility of the next thread is to re-enable interrupts

 When the sleeping thread wakes up, returns to acquire and 
re-enables interrupts
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Thread A
...

disable ints

call run_new_thread

run_new_thread return

enable ints

...

Thread B

run_new_thread return

enable ints

...

disable int

call run_new_thread



Recall: Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0;                  // atomic store

}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits

 When might this be preferable?
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Recall: Multi-Core Lock 
Implementation
• Can we build test&set locks without busy-waiting?

 Can’t entirely, but can minimize!

 Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
 Why can’t we do it just before or just after the sleep?
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Release() {
// Short busy-wait time
while (test&set(guard)) /**/;
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

}

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard)) /**/;
if (value == BUSY) {

put thread on wait queue;
run_new_thread() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}



Recall: test&test&set
• A better spinlock solution:

int mylock = 0; // Free

Acquire() {

do {

while(mylock) /**/;       // Wait until might be free

} while(test&set(&mylock)); // exit if get lock

}

Release() {

mylock = 0;

}

• Explanation:
 Wait until lock might be free (only reading – stays in cache)

 Then, try to grab lock with test&set

 Repeat if fail to actually get lock

• Busy-Waiting: no longer impacts other processors!
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Recall: Linux futex: Fast Userspace
Mutex

• uaddr points to a 32-bit value in user space

• futex_op
 FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAIT

 Atomic check that condition still holds

 FUTEX_WAKE – wake up at most val waiting threads

 FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE

• timeout
 ptr to a timespec structure that specifies a timeout for the op
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#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout );



int value = 0; // free
bool maybe_waiters = false;

Acquire() {
while (test&set(value)) {

maybe_waiters = true;
futex(&value, FUTEX_WAIT, 1);
// futex: sleep if lock is acquired
maybe_waiters = true;

}
}

Recall: Userspace Locks with futex

• This is syscall-free in the uncontended case
 Temporarily falls back to syscalls if multiple waiters, or concurrent 

acquire/release

• But it can be considerably optimized!
 See “Futexes are Tricky” by Ulrich Drepper
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Release() {
value = 0;
if (maybe_waiters) {

maybe_waiters = false;
futex(&value, FUTEX_WAKE, 1);
// futex: wake up a sleeping thread

}
}

https://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf


Scheduling
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Today: Scheduling

• Scheduling: Mechanism for deciding which processes/threads receive the 
CPU

• Lots of different scheduling policies provide …
 Fairness or

 Realtime guarantees or

 Latency optimization or …
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if ( readyProcesses(PCBs) ) {

nextPCB = selectProcess(PCBs);

run( nextPCB );

} else {

run_idle_process();

}



Scheduling Opportunities
• Every “yield”

• Every timer tick (interrupt)

• But also:

 Every syscall

 Every interrupt (even if not due to timer)

• Whenever you enter the kernel, for any reason…

• The kernel could switch the running thread at any of these times!

3
/1

9
/2

0
2

5
, 
L

e
ct

u
re

 9
C

S
C

4
1

0
3

, 
S

p
ri

n
g
 2

0
2

5
, 
S

ch
e
d

u
li

n
g

12



Broader Take on Scheduling
• Scheduling: deciding which threads are given access to resources 

from moment to moment  

 Often, we think in terms of CPU time, but could also think about access to 
resources like network BW or disk access
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Scheduling: All About Queues 3
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Useful formulation of scheduling: How is the OS to decide 

which of several tasks to take off a queue?



Scheduling: All About Trade-Offs
• Individuals care about getting their task done quickly

• System cares about overall efficiency

 Utilize multiple HW resources well, low overhead, …

• Huge variation in job characteristics

• Fairness???

• What is our utility function?
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CPU and I/O Bursts

• Programs alternate 
between bursts of CPU 
and I/O activity

• Scheduler: Which thread 
(CPU burst) to run next?

• Interactive programs vs. 
Compute Bound vs. 
Streaming
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Evaluating Schedulers
• Response Time (ideally low)

 What user sees: from keypress to character on screen

 Or completion time for non-interactive

• Throughput (ideally high)

 Total operations (jobs) per second

 Overhead (e.g. context switching), artificial blocks

• Fairness

 Fraction of resources provided to each

 May conflict with best average throughput or response time
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Discussion: Scheduling Assumptions
• Equal or variable job length?

• Run to completion vs. preemption?

• Arrival time (at once vs varied)?

• Resources: CPU(s), I/O, Network, …?

• Advanced Knowledge of Job characteristics or needs

 Off-line scheduling is given the entire collection of tasks and computes a 
schedule

 On-line scheduling makes decisions as tasks arrive
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Scheduling Assumptions
• Many implicit assumptions needed to make the problem solvable

• For instance: is “fair” about fairness among users or programs?  

 If I run one compilation job and you run five, you get five times as much 
CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize some desired 
parameters of system
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First-Come, First-Served Scheduling 
(FCFS)
• Also: “First In First Out” (FIFO)

• Example: Process Burst Time

T1 24
T2 3
T3 3 

• Arrival Order: T1, T2, then T3 (all arrive at time 0)
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First-Come, First-Served Scheduling 
(FCFS)

• Response Times: T1 = 24, T2 = 27, T3 = 30

 Average Response Time = (24+27+30) / 3 = 27

• Waiting times: T1 = 0, T2 = 24, T3 = 27

 Average Wait Time = (0 + 24 + 27) / 3 = 17

• Convoy Effect: Short processes stuck behind long processes

 If T2, T3 arrive any time < 24, they must wait
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Slightly Different Arrival Order?

• T2 < T3 < T1

• Response Time: T1 = 30, T2 = 3, T3 = 6
 Average Response Time = (30 + 3 + 6) / 3 = 13

 Versus 27 with T1 < T2 < T3

• Waiting Time: T1 = 6, T2 = 0, T3 = 3
 Average Waiting Time = (6+0+3) / 3 = 3

 Versus 17 with T1 < T2 < T3
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How to Implement FCFS in the 
Kernel?
• Comes down to scheduling queue data structure

 FIFO

 E.g., push_front, pop_back
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Convoy Effect 3
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• With FCFS non-preemptive scheduling, convoys of 
small tasks tend to build up when a large one is 
running.
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First-Come, First-Serve Scheduling
• FCFS Scheme: Potentially bad for short jobs!

 Depends on submit order

 If you are first in line at supermarket with milk only, you don’t care who is 
behind you, on the other hand…

• Idea: What if we preempted long-running jobs to give shorter jobs a 
chance to run?
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Announcements
• Project 1 due next Monday, March 24

 Let me know if you need an extension

• Assignment 2 due Monday, April 7

• Midterm 1 is still being graded – apologies!

 Expect grades to be available by the weekend
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Round-Robin Scheduling (RR)
• Give out small units of CPU time ("time quantum")

 Typically 10 – 100 milliseconds

• When quantum expires, preempt, and schedule 

 Round Robin: add to end of the queue

• Each of N processes gets ~1/N of CPU (in window)

 With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

• Downside: More context switches
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Example From Earlier (𝑸 = 𝟏𝟎)

• Regardless of arrival order, short jobs gets a chance early

• Much less sensitive to arrival order

• How much context switch overhead?
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Another Example (𝑸 = 𝟐𝟎)
Task Burst Time
T1 53
T2 8
T3 68
T4 24

• Avg. response time = (125+28+153+112) / 4 = 104.5

• Waiting times:
 T1 = (68-20)+(112-88) = 72

 T2 = (20-0) = 20

 T3 = (28-0)+(88-48)+(125-108) = 85

 T4 = (48-0)+(108-68) = 88

• Average waiting time = (72+20+85+88) / 4 = 66.25

• And don't forget context switch overhead!
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Round-Robin Quantum
• Assume that context switch overhead is 0

• What happens when we decrease Q?

• Avg. response time always decreases or stays the same?

• Avg. response time always increases or stays the same?

• Avg. response time can increase, decrease, or stays the same?
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Decrease Response Time
• T1: Burst Length 10

• T2: Burst Length 1

• Q = 10

• Average Response Time = (10 + 11)/2 = 10.5

• Q = 5

• Average Response Time = (6 + 11)/2 = 8.5
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Same Response Time
• T1: Burst Length 1

• T2: Burst Length 1

• Q = 10

• Average Response Time = (1 + 2)/2 = 1.5

• Q = 1

• Average Response Time = (1 + 2)/2 = 1.5
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Increase Response Time
• T1: Burst Length 1

• T2: Burst Length 1

• Q = 1

• Average Response Time = (1 + 2)/2 = 1.5

• Q = 0.5

• Average Response Time = (1.5 + 2)/2 = 1.75
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How to Implement RR in the Kernel?
• Round Robin – what is it?

• FIFO Queue, as in FCFS

• But preempt job after quantum expires, and send it to the back of the 
queue

 How? Timer interrupt!

 And, of course, careful synchronization
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Discussion: Round-Robin Scheduling
• How to choose the time quantum?

 Too big? RR approaches FCFS

 Too small? Throughput suffers (due to context switches)

• Actual choices of timeslice:

 Initially, in UNIX timeslice was one second:

 Worked ok when UNIX was used by one or two people.

 When might this perform poorly?

 Need to balance short-job performance and long-job throughput:

 Typical time slice today is between 10ms – 100ms

 Typical context-switching overhead is 0.1ms – 1ms

 Roughly 1% overhead due to context-switching
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Priority 3
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Priority Scheduler

• Something gives jobs (processes) priority

 Usually the user sets it explicitly, perhaps based on $ rate

• Always run the ready thread with highest priority

 Low priority thread might never run!

 Starvation
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How to Implement Priority 
Scheduling in the Kernel?
• Scheduling queue data structure determines next thread of those in 

the ready queue(s)

 Kernel prefers threads with more urgent priority

• Why might a thread not be in the ready queue?

 Waiting on I/O

 Locks?
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Adaptive Scheduling
• Modern schedulers use knowledge about program to make better 

scheduling decisions

• Provided by the user (servers vs. background)

• Estimate future based on the past
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Policy Based on Priority Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU 
time (ad-hoc, bad if system overload)
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Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past 

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.

• Start with the second step. Suppose we knew the workload in 
advance. What should the scheduler do?
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What if we knew how long each CPU 
burst will be, in advance?
• Key Idea: remove convoy effect

 Short jobs always stay ahead of long ones

• Non-preemptive: Shortest Job First

 Like FCFS if we always chose the best possible ordering

• Preemptive Version: Shortest Remaining Time First

 If a job arrives and has shorter time to completion than current job, 
immediately preempt CPU

 Sometimes called “Shortest Remaining Time to Completion First”
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SRTF Example 
(Shortest Remaining Time First)
• Three jobs in system

 A and B are CPU calculations that take a week to run

 C: Continuous loop of 1ms CPU time, 9ms of I/O time

• FCFS? A or B starve C

 I/O throughput problem: lose opportunity to do work for C while CPU runs 
A or B
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SRTF Example 
(Shortest Remaining Time First) 3
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C’s 

I/O

CABAB… C

C’s 

I/O

RR 1ms time slice

C’s 

I/O

C’s 

I/O

CA BC

RR 100 ms time slice

C’s 

I/O

AC

C’s 

I/O

AA

SRTF

Disk Utilization:

~90% but lots of 

wakeups!

Disk Utilization:

90%

Disk Utilization:

9/201 ~ 4.5%



Discussion: SJF and SRTF
• Provably Optimal with respect to Response Time

• But Starvation is possible

 What if new short jobs keep arriving?

• But: Need to predict the future!

 Ask the user when they submit the job? How to prevent cheating?

 SRTF useful as a benchmark to measure other policies?
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Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past 

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.

• Now, let’s look at the first step. How can we predict future behavior 
from past behavior?
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Predicting Future Behavior
• Consider Round-Robin Scheduling

• If process exhausts quantum, it has to be preempted

 Consuming all of the CPU time it can: “CPU-Bound”

 Likely to remain CPU-Bound

• If process blocks on I/O before quantum exhausted

 Short CPU bursts, just to initiate I/O: “I/O-Bound”

 Often interactive tasks

 Likely to remain I/O-Bound and/or Interactive
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Multi-Level Feedback Queue (MLFQ)

• Multiple queues, each of different priority
 Round Robin within each queue

 Different quantum length for each queue

• Favor I/O-bound jobs for interactivity
 Get click or kick off I/O transfer

• Low overhead for CPU bound
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Multi-Level Feedback Queue (MLFQ)

• Intuition: approximate SRTF by setting priority level proportional to 
burst length

• Job Exceeds Quantum: Drop to lower queue

• Job Doesn't Exceed Quantum: Raise to higher queue
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Multi-Level Feedback Queue
• Approximates Shortest Remaining Time First

 CPU-bound have lowest priority (run last)

 I/O-bound (short CPU bursts) have highest priority
(run first)

• Low overhead

 Easy to update priority of a job

 Easy to find next ready task to run

• Can a process cheat?

 Yes, add meaningless I/O operations (but has a cost)
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How to Implement MLFQ in the 
Kernel?
• We could explicitly build the queue data structures

• Or, we can leverage priority-based scheduling!
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Recall: Policy Based on Priority 
Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU 
time (ad-hoc, bad if system overload)
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Conclusion
• First-Come First-Served: Simple, vulnerable to convoy effect

• Round-Robin: Fixed CPU time quantum, cycle between ready 
threads

• Priority: Respect differences in importance

• Shortest Job/Remaining Time First: Optimal for average response 
time, but unrealistic

• Multi-Level Feedback Queue: Use past behavior to approximate 
SRTF and mitigate overhead
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