
Scheduling 1:
Concepts and Classic
Policies
Lecture 9

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4103/

Recall: “Too Much Milk”
• Analogy between problems in OS and problems in real life

• Example: People need to coordinate:

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

2

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Recall: Single-Core Lock
Implementation

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
run_new_thread();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

• Key idea: maintain a lock variable (value) and disable interrupts only
during operations on that variable

Release() {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue;
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

3

Recall: Re-enable Interrupts when
Waiting
• In scheduler, since interrupts are disabled when switching threads:

 Responsibility of the next thread is to re-enable interrupts

 When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

4

Thread A
...

disable ints

call run_new_thread

run_new_thread return

enable ints

...

Thread B

run_new_thread return

enable ints

...

disable int

call run_new_thread

Recall: Spinlock
• Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0; // atomic store

}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits

 When might this be preferable?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

5

Recall: Multi-Core Lock
Implementation
• Can we build test&set locks without busy-waiting?

 Can’t entirely, but can minimize!

 Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
 Why can’t we do it just before or just after the sleep?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

6

Release() {
// Short busy-wait time
while (test&set(guard)) /**/;
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

}

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard)) /**/;
if (value == BUSY) {

put thread on wait queue;
run_new_thread() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Recall: test&test&set
• A better spinlock solution:

int mylock = 0; // Free

Acquire() {

do {

while(mylock) /**/; // Wait until might be free

} while(test&set(&mylock)); // exit if get lock

}

Release() {

mylock = 0;

}

• Explanation:
 Wait until lock might be free (only reading – stays in cache)

 Then, try to grab lock with test&set

 Repeat if fail to actually get lock

• Busy-Waiting: no longer impacts other processors!

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

7

Recall: Linux futex: Fast Userspace
Mutex

• uaddr points to a 32-bit value in user space

• futex_op
 FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAIT

 Atomic check that condition still holds

 FUTEX_WAKE – wake up at most val waiting threads

 FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE

• timeout
 ptr to a timespec structure that specifies a timeout for the op

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

8

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout);

int value = 0; // free
bool maybe_waiters = false;

Acquire() {
while (test&set(value)) {

maybe_waiters = true;
futex(&value, FUTEX_WAIT, 1);
// futex: sleep if lock is acquired
maybe_waiters = true;

}
}

Recall: Userspace Locks with futex

• This is syscall-free in the uncontended case
 Temporarily falls back to syscalls if multiple waiters, or concurrent

acquire/release

• But it can be considerably optimized!
 See “Futexes are Tricky” by Ulrich Drepper

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

9

Release() {
value = 0;
if (maybe_waiters) {

maybe_waiters = false;
futex(&value, FUTEX_WAKE, 1);
// futex: wake up a sleeping thread

}
}

https://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf

Scheduling

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

10

Today: Scheduling

• Scheduling: Mechanism for deciding which processes/threads receive the
CPU

• Lots of different scheduling policies provide …
 Fairness or

 Realtime guarantees or

 Latency optimization or …

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

11

if (readyProcesses(PCBs)) {

nextPCB = selectProcess(PCBs);

run(nextPCB);

} else {

run_idle_process();

}

Scheduling Opportunities
• Every “yield”

• Every timer tick (interrupt)

• But also:

 Every syscall

 Every interrupt (even if not due to timer)

• Whenever you enter the kernel, for any reason…

• The kernel could switch the running thread at any of these times!

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

12

Broader Take on Scheduling
• Scheduling: deciding which threads are given access to resources

from moment to moment

 Often, we think in terms of CPU time, but could also think about access to
resources like network BW or disk access

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

13

Scheduling: All About Queues 3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

14

Useful formulation of scheduling: How is the OS to decide

which of several tasks to take off a queue?

Scheduling: All About Trade-Offs
• Individuals care about getting their task done quickly

• System cares about overall efficiency

 Utilize multiple HW resources well, low overhead, …

• Huge variation in job characteristics

• Fairness???

• What is our utility function?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

15

CPU and I/O Bursts

• Programs alternate
between bursts of CPU
and I/O activity

• Scheduler: Which thread
(CPU burst) to run next?

• Interactive programs vs.
Compute Bound vs.
Streaming

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

16

Evaluating Schedulers
• Response Time (ideally low)

 What user sees: from keypress to character on screen

 Or completion time for non-interactive

• Throughput (ideally high)

 Total operations (jobs) per second

 Overhead (e.g. context switching), artificial blocks

• Fairness

 Fraction of resources provided to each

 May conflict with best average throughput or response time

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

17

Discussion: Scheduling Assumptions
• Equal or variable job length?

• Run to completion vs. preemption?

• Arrival time (at once vs varied)?

• Resources: CPU(s), I/O, Network, …?

• Advanced Knowledge of Job characteristics or needs

 Off-line scheduling is given the entire collection of tasks and computes a
schedule

 On-line scheduling makes decisions as tasks arrive

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

18

Scheduling Assumptions
• Many implicit assumptions needed to make the problem solvable

• For instance: is “fair” about fairness among users or programs?

 If I run one compilation job and you run five, you get five times as much
CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize some desired
parameters of system

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

19

USER 1 USER 2 USER 3 USER 1 USER 2

Time

First-Come, First-Served Scheduling
(FCFS)
• Also: “First In First Out” (FIFO)

• Example: Process Burst Time

T1 24
T2 3
T3 3

• Arrival Order: T1, T2, then T3 (all arrive at time 0)

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

20

T1 T2 T3

24 27 300

First-Come, First-Served Scheduling
(FCFS)

• Response Times: T1 = 24, T2 = 27, T3 = 30

 Average Response Time = (24+27+30) / 3 = 27

• Waiting times: T1 = 0, T2 = 24, T3 = 27

 Average Wait Time = (0 + 24 + 27) / 3 = 17

• Convoy Effect: Short processes stuck behind long processes

 If T2, T3 arrive any time < 24, they must wait

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

21

T1 T2 T3

24 27 300

Slightly Different Arrival Order?

• T2 < T3 < T1

• Response Time: T1 = 30, T2 = 3, T3 = 6
 Average Response Time = (30 + 3 + 6) / 3 = 13

 Versus 27 with T1 < T2 < T3

• Waiting Time: T1 = 6, T2 = 0, T3 = 3
 Average Waiting Time = (6+0+3) / 3 = 3

 Versus 17 with T1 < T2 < T3

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

22

T1T3T2

63 300

How to Implement FCFS in the
Kernel?
• Comes down to scheduling queue data structure

 FIFO

 E.g., push_front, pop_back

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

23

Convoy Effect 3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

24

• With FCFS non-preemptive scheduling, convoys of
small tasks tend to build up when a large one is
running.

time

S
ch

e
d

u
li

n
g
 Q

u
e
u

e
Scheduled Task (process, thread)

arrivals

First-Come, First-Serve Scheduling
• FCFS Scheme: Potentially bad for short jobs!

 Depends on submit order

 If you are first in line at supermarket with milk only, you don’t care who is
behind you, on the other hand…

• Idea: What if we preempted long-running jobs to give shorter jobs a
chance to run?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

25

Announcements
• Project 1 due next Monday, March 24

 Let me know if you need an extension

• Assignment 2 due Monday, April 7

• Midterm 1 is still being graded – apologies!

 Expect grades to be available by the weekend

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

26

Round-Robin Scheduling (RR)
• Give out small units of CPU time ("time quantum")

 Typically 10 – 100 milliseconds

• When quantum expires, preempt, and schedule

 Round Robin: add to end of the queue

• Each of N processes gets ~1/N of CPU (in window)

 With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

• Downside: More context switches

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

27

Example From Earlier (𝑸 = 𝟏𝟎)

• Regardless of arrival order, short jobs gets a chance early

• Much less sensitive to arrival order

• How much context switch overhead?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

28

T1 T3

130

T2

10 16 30

T1

Another Example (𝑸 = 𝟐𝟎)
Task Burst Time
T1 53
T2 8
T3 68
T4 24

• Avg. response time = (125+28+153+112) / 4 = 104.5

• Waiting times:
 T1 = (68-20)+(112-88) = 72

 T2 = (20-0) = 20

 T3 = (28-0)+(88-48)+(125-108) = 85

 T4 = (48-0)+(108-68) = 88

• Average waiting time = (72+20+85+88) / 4 = 66.25

• And don't forget context switch overhead!

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

29

T1

0 20

T2

28

T3

48

T4

68

T1

88

T3

108

T4 T1 T3 T3

112 125 145 153

Round-Robin Quantum
• Assume that context switch overhead is 0

• What happens when we decrease Q?

• Avg. response time always decreases or stays the same?

• Avg. response time always increases or stays the same?

• Avg. response time can increase, decrease, or stays the same?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

30

Decrease Response Time
• T1: Burst Length 10

• T2: Burst Length 1

• Q = 10

• Average Response Time = (10 + 11)/2 = 10.5

• Q = 5

• Average Response Time = (6 + 11)/2 = 8.5

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

31

T1

0 10

T2

11

T1

0 6

T2

11

T1

5

Same Response Time
• T1: Burst Length 1

• T2: Burst Length 1

• Q = 10

• Average Response Time = (1 + 2)/2 = 1.5

• Q = 1

• Average Response Time = (1 + 2)/2 = 1.5

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

32

T1

0 1

T2

2

T1

0 1

T2

2

Increase Response Time
• T1: Burst Length 1

• T2: Burst Length 1

• Q = 1

• Average Response Time = (1 + 2)/2 = 1.5

• Q = 0.5

• Average Response Time = (1.5 + 2)/2 = 1.75

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

33

T1

0 1

T2

2

0 2

How to Implement RR in the Kernel?
• Round Robin – what is it?

• FIFO Queue, as in FCFS

• But preempt job after quantum expires, and send it to the back of the
queue

 How? Timer interrupt!

 And, of course, careful synchronization

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

34

Project 2:

Scheduling

Discussion: Round-Robin Scheduling
• How to choose the time quantum?

 Too big? RR approaches FCFS

 Too small? Throughput suffers (due to context switches)

• Actual choices of timeslice:

 Initially, in UNIX timeslice was one second:

 Worked ok when UNIX was used by one or two people.

 When might this perform poorly?

 Need to balance short-job performance and long-job throughput:

 Typical time slice today is between 10ms – 100ms

 Typical context-switching overhead is 0.1ms – 1ms

 Roughly 1% overhead due to context-switching

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

35

Priority 3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

36

• Interactive vs. compute bound

Priority Scheduler

• Something gives jobs (processes) priority

 Usually the user sets it explicitly, perhaps based on $ rate

• Always run the ready thread with highest priority

 Low priority thread might never run!

 Starvation

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

37

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

How to Implement Priority
Scheduling in the Kernel?
• Scheduling queue data structure determines next thread of those in

the ready queue(s)

 Kernel prefers threads with more urgent priority

• Why might a thread not be in the ready queue?

 Waiting on I/O

 Locks?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

38

Adaptive Scheduling
• Modern schedulers use knowledge about program to make better

scheduling decisions

• Provided by the user (servers vs. background)

• Estimate future based on the past

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

39

Policy Based on Priority Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

40

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.

• Start with the second step. Suppose we knew the workload in
advance. What should the scheduler do?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

41

What if we knew how long each CPU
burst will be, in advance?
• Key Idea: remove convoy effect

 Short jobs always stay ahead of long ones

• Non-preemptive: Shortest Job First

 Like FCFS if we always chose the best possible ordering

• Preemptive Version: Shortest Remaining Time First

 If a job arrives and has shorter time to completion than current job,
immediately preempt CPU

 Sometimes called “Shortest Remaining Time to Completion First”

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

42

SRTF Example
(Shortest Remaining Time First)
• Three jobs in system

 A and B are CPU calculations that take a week to run

 C: Continuous loop of 1ms CPU time, 9ms of I/O time

• FCFS? A or B starve C

 I/O throughput problem: lose opportunity to do work for C while CPU runs
A or B

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

43

C

C’s

I/O

C’s

I/O

C’s

I/O

A or B

SRTF Example
(Shortest Remaining Time First) 3

/1
9

/2
0

2
5

,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

44

C’s

I/O

CABAB… C

C’s

I/O

RR 1ms time slice

C’s

I/O

C’s

I/O

CA BC

RR 100 ms time slice

C’s

I/O

AC

C’s

I/O

AA

SRTF

Disk Utilization:

~90% but lots of

wakeups!

Disk Utilization:

90%

Disk Utilization:

9/201 ~ 4.5%

Discussion: SJF and SRTF
• Provably Optimal with respect to Response Time

• But Starvation is possible

 What if new short jobs keep arriving?

• But: Need to predict the future!

 Ask the user when they submit the job? How to prevent cheating?

 SRTF useful as a benchmark to measure other policies?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

45

Adaptive Scheduling
• How can we adapt the scheduling algorithm based on threads’ past

behavior?

• Two steps:

 Based on past observations, predict what threads will do in the future.

 Make scheduling decisions based on those predictions.

• Now, let’s look at the first step. How can we predict future behavior
from past behavior?

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

46

Predicting Future Behavior
• Consider Round-Robin Scheduling

• If process exhausts quantum, it has to be preempted

 Consuming all of the CPU time it can: “CPU-Bound”

 Likely to remain CPU-Bound

• If process blocks on I/O before quantum exhausted

 Short CPU bursts, just to initiate I/O: “I/O-Bound”

 Often interactive tasks

 Likely to remain I/O-Bound and/or Interactive

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

47

Multi-Level Feedback Queue (MLFQ)

• Multiple queues, each of different priority
 Round Robin within each queue

 Different quantum length for each queue

• Favor I/O-bound jobs for interactivity
 Get click or kick off I/O transfer

• Low overhead for CPU bound

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

48

Long-Running Compute
Tasks Demoted to

Low Priority

Multi-Level Feedback Queue (MLFQ)

• Intuition: approximate SRTF by setting priority level proportional to
burst length

• Job Exceeds Quantum: Drop to lower queue

• Job Doesn't Exceed Quantum: Raise to higher queue

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

49

Long-Running Compute
Tasks Demoted to

Low Priority

Multi-Level Feedback Queue
• Approximates Shortest Remaining Time First

 CPU-bound have lowest priority (run last)

 I/O-bound (short CPU bursts) have highest priority
(run first)

• Low overhead

 Easy to update priority of a job

 Easy to find next ready task to run

• Can a process cheat?

 Yes, add meaningless I/O operations (but has a cost)

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

50

How to Implement MLFQ in the
Kernel?
• We could explicitly build the queue data structures

• Or, we can leverage priority-based scheduling!

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

51

Recall: Policy Based on Priority
Scheduling

• Systems may try to set priorities according to some policy goal

• Example: Give interactive higher priority than long calculation
 Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

52

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Conclusion
• First-Come First-Served: Simple, vulnerable to convoy effect

• Round-Robin: Fixed CPU time quantum, cycle between ready
threads

• Priority: Respect differences in importance

• Shortest Job/Remaining Time First: Optimal for average response
time, but unrealistic

• Multi-Level Feedback Queue: Use past behavior to approximate
SRTF and mitigate overhead

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

53

3
/1

9
/2

0
2

5
,
L

e
ct

u
re

 9
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

5
,
S

ch
e
d

u
li

n
g

54

