Scheduling 1:
Concepts and Classic

Policies

Lecture 9

Hartmut Kaiser
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Recall: “Too Much Milk”

- Analogy between problems in OS and problems in real life

- Example: People need to coordinate:

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk
3:15 Buy milk Leave for store

3:20 Arrive home, put milk away Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away
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Recall: Single-Core Lock
Implementation

int value = FREE;

3/19/2025, Lecture 9

Acquire() { Release() {
Q1sab1e interrupts; disable interrupts;
if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue;
run_new_thread(); Place on ready queue;
// Enable interrupts? } else {
} else { value = FREE;

value = BUSY;

. enable interrupts;
enable interrupts; }

}

- Key idea: maintain a lock variable (value) and disable interrupts only
during operations on that variable
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Recall: Re-enable Interrupts when
Waiting

- In scheduler, since interrupts are disabled when switching threads:
- Responsibility of the next thread is to re-enable interrupts

* When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

Thread A Thread B
disable ints
call run_new_thread — Context
T
SWItCh run_new_thread return
enable ints
t disable int
run_new_thread return COntex - call run_new thread
enable ints (E\N\tch
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Recall: Spinlock

- Spinlock implementation:

int value = 0; // Free

Acquire() {
while (test&set(value)) {}; // spin while busy

}

Release() {
value = 0;

}

- Spinlock doesn’t put the calling thread to sleep—it just busy waits
* When might this be preferable?

// atomic store
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Recall: Multi-Core Lock
Implementation

- Can we build test&set locks without busy-waiting?
« Can’t entirely, but can minimize!
+ Idea: only busy-wait to atomically check lock value
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int guard = 0;

int value FREE;
Acquire() { Release() {
// Short busy-wait time // Short busy-wait time
while (test&set(guard)) /**/; while (test&set(guard)) /**/; o0
if (value == BUSY) { if anyone on wait queue { %
put thread on wait queue; Eike thread gff walt.queue E
run_new_thread() & guard = 9; } elseafe on ready queue; 2
} else { value = FREE; S
value = BUSY; } g
guard = 0; guard = 0; B
} ¥ B
} 5
- Note: sleep has to be sure to reset the guard variable — 2
oo i &
* Why can’t we do it just before or just after the sleep? i T
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Recall: test&test&set

- A better spinlock solution:

int mylock = @; // Free
Acquire() {

do {
while(mylock) /**/; // Wait until might be free
} while(test&set(&mylock)); // exit if get lock
}
Release() {
mylock = 0;
}

- Explanation:
- Wait until lock might be free (only reading — stays in cache)
« Then, try to grab lock with test&set
+ Repeat if fail to actually get lock
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Recall: Linux futex: Fast Userspace

Mutex

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex op, int val,
const struct timespec *timeout );

- uaddr points to a 32-bit value 1n user space

- futex_op
* FUTEX_WAIT —if val == *uaddr sleep till FUTEX_WAIT
+ Atomic check that condition still holds
« FUTEX_WAKE — wake up at most val waiting threads
- FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE

- timeout
* ptr to a timespec structure that specifies a timeout for the op
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Recall: Userspace Locks with futex

int value = 9; // free
bool maybe_waiters = false;

Acquire() { Release() {
while (test&set(value)) { value = 0;
maybe waiters = true; if (maybe waiters) {
futex(&value, FUTEX WAIT, 1); maybe waiters = false;
// futex: sleep if lock is acquired futex(&value, FUTEX_WAKE, 1);
maybe waiters = true; // futex: wake up a sleeping thread
} }
} }

« This 1s syscall-free in the uncontended case

- Temporarily falls back to syscalls if multiple waiters, or concurrent
acquire/release

- But it can be considerably optimized! —
- See “Futexes are Tricky” by Ulrich Drepper -~
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https://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf
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Today: Scheduling

if ( readyProcesses (PCBs) ) {
nextPCB = selectProcess (PCBs) ;
run( nextPCB ) ;

} else {
run idle process();

- Scheduling: Mechanism for deciding which processes/threads receive the

CPU

- Lots of different scheduling policies provide ...
- Fairness or
* Realtime guarantees or
- Latency optimization or ... -

Operating system
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Scheduling Opportunities

- Every “yield”
. Every timer tick (interrupt)

- But also:
- Every syscall
- Every interrupt (even if not due to timer)

- Whenever you enter the kernel, for any reason...

- The kernel could switch the running thread at any of these times!
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Broader Take on Scheduling

- Scheduling: deciding which threads are given access to resources
from moment to moment

* Often, we think in terms of CPU time, but could also think about access to
resources like network BW or disk access
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Scheduling: All About Queues

f ready queue » CPU
/O queue < /O request [«
time slice

expired ‘
@_ fork a ;E
executes child 2
interrupt wait for an z
\.oceurs interrupt i
Useful formulation of scheduling: How 1s the OS to decide ]

which of several tasks to take off a queue?
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Scheduling: All About Trade-Offs

- Individuals care about getting their task done quickly

- System cares about overall efficiency
« Utilize multiple HW resources well, low overhead, ...

- Huge variation in job characteristics

- Fairness???

- What is our utility function?

Application
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CPU and I/O Bursts

-
-
L]

load store
add store
read from file

wait for IO

store increment

index
write to file

wait for IO

load store
add store
read from file

wait for I/O

-
L]
-

CPU burs

1/0 burst

CPU burs

} 1/Q burst

CPU burs

1/0 burst

- Programs alternate
between bursts of CPU
and I/0 activity

- Scheduler: Which thread
(CPU burst) to run next?

- Interactive programs vs.
Compute Bound vs.
Streaming
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Evaluating Schedulers

- Response Time (ideally low)
- What user sees: from keypress to character on screen
* Or completion time for non-interactive

- Throughput (ideally high)
- Total operations (jobs) per second
- Overhead (e.g. context switching), artificial blocks

- Fairness
+ Fraction of resources provided to each
« May conflict with best average throughput or response time
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Discussion: Scheduling Assumptions

- Equal or variable job length?
- Run to completion vs. preemption?
. Arrival time (at once vs varied)?

- Resources: CPU(s), I/0, Network, ...?

- Advanced Knowledge of Job characteristics or needs

« Off-line scheduling is given the entire collection of tasks and computes a
schedule

* On-line scheduling makes decisions as tasks arrive
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Scheduling Assumptions

- Many implicit assumptions needed to make the problem solvable

- For instance: 1s “fair” about fairness among users or programs?

* If I run one compilation job and you run five, you get five times as much
CPU on many operating systems

- The high-level goal: Dole out CPU time to optimize some desired
parameters of system

Time
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First-Come, First-Served Scheduling
(FCFS)

. Also: “First In First Out” (FIFO)
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- Example: Process Burst Time
T1 24
T2 3
T3 3

- Arrival Order: T1, T2, then T3 (all arrive at time 0)

g 2025, Scheduling

T, T, T

0 24 27 30
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First-Come, First-Served Scheduling
(FCFS)

3/19/2025, Lecture 9

T, T, Ty

0 24 27 30

- Response Times: T1 =24, T2 =27, T3 = 30
- Average Response Time = (24+27+30) / 3 = 27

- Waiting times: T1 =0, T2 =24, T3 =27
- Average Wait Time = (0 + 24 + 27) / 3 =17

- Convoy Effect: Short processes stuck behind long processes
- If T2, T3 arrive any time < 24, they must wait
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Slightly Different Arrival Order?

T, ¥ T,

- T2<T3<T1

- Response Time: T1 =30,T2=3,T3 =6
- Average Response Time=(30+3+6)/3 =13
* Versus 27 with T1 <T2 < T3

- Waiting Time: T1 =6, T2 =0, T3 =3
- Average Waiting Time = (6+0+3) /3 =3 -
* Versus 17 with T1 <T2 < T3 iz
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9

How to Implement FCF'S 1n the
Kernel?

- Comes down to scheduling queue data structure
- FIFO

- E.g., push_front, pop_back

3/19/2025, Lecture
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Convoy Effect

Scheduled Task (process, thread)
[ [ ]

"y |

arrivals

Scheduling Queue

 With FCFS non-preemptive scheduling, convoys of
small tasks tend to build up when a large one 1s
running.

on

g

o=

=

-

e

)

<

S}

N

e}

N

S

N

on

o

s

~

=

N

o

©)

—

; ~
— O
Application wn
©

] L

Operating system
- -

Hardware




3/19/2025, Lecture 9

First-Come, First-Serve Scheduling

- FCFS Scheme: Potentially bad for short jobs!

* Depends on submit order

 If you are first in line at supermarket with milk only, you don’t care who 1s
behind you, on the other hand...

- Idea: What if we preempted long-running jobs to give shorter jobs a
chance to run?
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Announcements

- Project 1 due next Monday, March 24

+ Let me know if you need an extension
- Assignment 2 due Monday, April 7

- Midterm 1 is still being graded — apologies!
- Expect grades to be available by the weekend
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Round-Robin Scheduling (RR)

. Give out small units of CPU time ("time quantum")
* Typically 10 — 100 milliseconds

- When quantum expires, preempt, and schedule
* Round Robin: add to end of the queue

- Each of N processes gets ~1/N of CPU (in window)

« With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

- Downside: More context switches

Application
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Example From Earlier (Q = 10)

T, Ty Ty T,

0 10 13 16 30

- Regardless of arrival order, short jobs gets a chance early
- Much less sensitive to arrival order

- How much context switch overhead?
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Another Example (Q = 20)

Task  Burst Time

T1 53

T2 3 T, | T, | Ts | T, | T, | Ty | T, | T, | Ty | T,
T3 68

T4 24 0O 20 28 48 68 88 108 112 125 145 153

. Avg. response time = (125+28+153+112) / 4 = 104.5

- Waiting times:
- T1 = (68-20)+(112-88) = 72
- T2 =(20-0) = 20
- T3 =(28-0)+(88-48)+(125-108) = 85
- T4 = (48-0)+(108-68) = 88

. Average waiting time = (72+20+85+88) / 4 = 66.25
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Round-Robin Quantum

Assume that context switch overhead is 0

What happens when we decrease Q?

Avg. response time always decreases or stays the same?

Avg. response time always increases or stays the same?

Avg. response time can increase, decrease, or stays the same?
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Decrease Response Time

- T1: Burst Length 10
- T2: Burst Length 1
. Q =10

0 10 11

- Average Response Time = (10 + 11)/2 =10.5

o _
0 5 6 11

. Average Response Time = (6 + 11)/2 =8.5
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Same Response Time

- T1: Burst Length 1
- T2: Burst Length 1
. Q =10

0 1 2

. Average Response Time = (1 + 2)/2=1.5

~ H

0 1 2 -
. Average Response Time =(1 +2)/2=1.5 .pp-
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Increase Response Time

- T1: Burst Length 1
- T2: Burst Length 1

. Q:]_

0 1 2

. Average Response Time = (1 + 2)/2=1.5

0 2
. Average Response Time = (1.5 + 2)/2 = 1.75

g 2025, Scheduling
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How to Implement RR in the Kernel?

- Round Robin — what 1s 1t?

- FIFO Queue, as in FCFS

- But preempt job after quantum expires, and send it to the back of the
queue

« How? Timer interrupt!
« And, of course, careful synchronization

Project 2:

Scheduling
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Discussion: Round-Robin Scheduling

- How to choose the time quantum?
« Too big? RR approaches FCFS
- Too small? Throughput suffers (due to context switches)

- Actual choices of timeslice:
* Initially, in UNIX timeslice was one second:

* Worked ok when UNIX was used by one or two people.
* When might this perform poorly?

* Need to balance short-job performance and long-job throughput:
+ Typical time slice today is between 10ms — 100ms
 Typical context-switching overhead is 0.1ms — 1ms
* Roughly 1% overhead due to context-switching
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* Interactive vs. compute bound
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Priority Scheduler

Priority 3

Priority 2
Priority 1

Priority O

- Something gives jobs (processes) priority
- Usually the user sets it explicitly, perhaps based on $ rate

- Always run the ready thread with highest priority
+ Low priority thread might never run!
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How to Implement Priority
Scheduling in the Kernel?

- Scheduling queue data structure determines next thread of those in
the ready queue(s)

« Kernel prefers threads with more urgent priority
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- Why might a thread not be in the ready queue?
« Waiting on 1/0
* Locks?

g 2025, Scheduling

CSC4103, Sprin




©p)
)
=
=]
+~
Q
<)
—
Yol
AN
(e}
N
-~
(o))
—
~
™

Adaptive Scheduling

- Modern schedulers use knowledge about program to make better
scheduling decisions

- Provided by the user (servers vs. background)

- Estimate future based on the past
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Policy Based on Priority Scheduling

Priority 3

Priority 2
Priority 1

Priority O

- Systems may try to set priorities according to some policy goal

- Example: Give interactive higher priority than long calculation
* Prefer jobs waiting on I/0 to those consuming lots of CPU

- Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)
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Adaptive Scheduling

- How can we adapt the scheduling algorithm based on threads’ past
behavior?

- Two steps:
- Based on past observations, predict what threads will do in the future.
« Make scheduling decisions based on those predictions.

- Start with the second step. Suppose we knew the workload 1in
advance. What should the scheduler do?

Application
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What if we knew how long each CPU
burst will be, in advance?

- Key Idea: remove convoy effect
« Short jobs always stay ahead of long ones

3/19/2025, Lecture 9

- Non-preemptive: Shortest Job First
- Like FCFS if we always chose the best possible ordering

- Preemptive Version: Shortest Remaining Time First

 If a job arrives and has shorter time to completion than current job,
1mmediately preempt CPU

« Sometimes called “Shortest Remaining Time to Completion First”

Application
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SRTF Example
(Shortest Remaining Time First)

- Three jobs in system
« A and B are CPU calculations that take a week to run
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+ C: Continuous loop of 1ms CPU time, 9ms of I/O time

Aor B C
| I | |
I I [
— — — Z
Cs Cs (s r
/0O /O 1O

- FCFS? A or B starve C

 I/O throughput problem: lose opportunity to do work for C while CPU runs
Aor B

CSC4103, Sprin




SRTF Example
(Shortest Remaining Time First)

C A B C

li | I Disk Utilization:

Il | Il 9/201 ~ 4.5%
— —
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Discussion: SJF and SRTF

- Provably Optimal with respect to Response Time

- But Starvation 1s possible
* What if new short jobs keep arriving?

- But: Need to predict the future!
« Ask the user when they submit the job? How to prevent cheating?
* SRTF useful as a benchmark to measure other policies?
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Adaptive Scheduling

- How can we adapt the scheduling algorithm based on threads’ past
behavior?

- Two steps:
- Based on past observations, predict what threads will do in the future.
- Make scheduling decisions based on those predictions.

- Now, let’s look at the first step. How can we predict future behavior
from past behavior?
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Predicting Future Behavior

- Consider Round-Robin Scheduling

- If process exhausts quantum, it has to be preempted
* Consuming all of the CPU time it can: “CPU-Bound”
- Likely to remain CPU-Bound

- If process blocks on I/0 before quantum exhausted
« Short CPU bursts, just to initiate I/0: “I/O-Bound”
« Often interactive tasks
+ Likely to remain I/0O-Bound and/or Interactive
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Multi-Level Feedback Queue (MLFQ)

quantum = 8

Long-Running Compute
Tasks Demoted to

quan’;.;Jm =16 b—V/ LOW PI’IOI’Ity
L.C FoFs S

- Multiple queues, each of different priority
* Round Robin within each queue
+ Different quantum length for each queue

- Favor I/0-bound jobs for interactivity
« Get click or kick off I/0 transfer

- Low overhead for CPU bound
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Multi-Level Feedback Queue (MLFQ)

quantum = 8

Long-Running Compute
Tasks Demoted to

—L/-/ Low Priority

- Intuition: approximate SRTF by setting priority level proportional to
burst length

- Job Exceeds Quantum: Drop to lower queue
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Multi-Level Feedback Queue

- Approximates Shortest Remaining Time First
- CPU-bound have lowest priority (run last)

- I/O-bound (short CPU bursts) have highest priority
(run first)

- Low overhead
- Easy to update priority of a job
- Easy to find next ready task to run

- Can a process cheat?
- Yes, add meaningless I/0 operations (but has a cost)
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How to Implement MLFQ in the
Kernel?

- We could explicitly build the queue data structures
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- Or, we can leverage priority-based scheduling!
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Recall: Policy Based on Priority
Scheduling

3/19/2025, Lecture 9

Priority 3

Priority 2
Priority 1

Priority O

- Systems may try to set priorities according to some policy goal

- Example: Give interactive higher priority than long calculation
* Prefer jobs waiting on I/0 to those consuming lots of CPU

- Try to achieve fairness: elevate priority of threads that don’t get CPU
time (ad-hoc, bad if system overload)
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Conclusion

- First-Come First-Served: Simple, vulnerable to convoy effect

- Round-Robin: Fixed CPU time quantum, cycle between ready
threads

- Priority: Respect differences in importance

- Shortest Job/Remaining Time First: Optimal for average response
time, but unrealistic

- Multi-Level Feedback Queue: Use past behavior to approximate
SRTF and mitigate overhead

o0
=i
.-
=]
-
ge)
o5}
<
3}
N
Yol
N
=
(o]
o0
=)
-
=
(o
n
o
(@)
—
<t
(@)
N
O

Application




CENTER FOR COMPUTATION
& TECHNOLOGY

3/19/2025, Lecture 9

CSC4103, Spring 2025, Scheduling

O
Y



