
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2448703

Dynamic Storage Allocation: A Survey and Critical Review

Article in Lecture Notes in Computer Science · October 1999

DOI: 10.1007/3-540-60368-9_19 · Source: CiteSeer

CITATIONS

571
READS

2,828

4 authors, including:

Paul Wilson

50 PUBLICATIONS 3,140 CITATIONS

SEE PROFILE

Mark S. Johnstone

Association for Computing Machinery

12 PUBLICATIONS 993 CITATIONS

SEE PROFILE

All content following this page was uploaded by Paul Wilson on 24 May 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2448703_Dynamic_Storage_Allocation_A_Survey_and_Critical_Review?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2448703_Dynamic_Storage_Allocation_A_Survey_and_Critical_Review?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul-Wilson-22?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul-Wilson-22?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul-Wilson-22?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark-Johnstone-3?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark-Johnstone-3?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Association_for_Computing_Machinery?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark-Johnstone-3?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul-Wilson-22?enrichId=rgreq-0da7f6c2e340253027694fec894de3f6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDg3MDM7QVM6MjMyNTUxMzAyMjk5NjUwQDE0MzI0NTU5NTk2NjE%3D&el=1_x_10&_esc=publicationCoverPdf

Dynamic Storage Allocation:
A Survey and Critical Review ? ??

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles???

Department of Computer Sciences
University of Texas at Austin
Austin, Texas, 78751, USA

(wilson|markj|neely@cs.utexas.edu)

Abstract. Dynamic memory allocation
has been a fundamental part of most com-
puter systems since roughly 1960, and mem-
ory allocation is widely considered to be ei-
ther a solved problem or an insoluble one. In
this survey, we describe a variety of memory
allocator designs and point out issues rele-
vant to their design and evaluation. We then
chronologically survey most of the litera-
ture on allocators between 1961 and 1995.
(Scores of papers are discussed, in varying
detail, and over 150 references are given.)

We argue that allocator designs have been
unduly restricted by an emphasis on mech-
anism, rather than policy, while the latter is
more important; higher-level strategic issues
are still more important, but have not been
given much attention.

Most theoretical analyses and empirical al-
locator evaluations to date have relied on
very strong assumptions of randomness and
independence, but real program behavior
exhibits important regularities that must be
exploited if allocators are to perform well in
practice.

? A slightly di�erent version of this paper appears

in Proc. 1995 Int'l. Workshop on Memory Management,
Kinross, Scotland, UK, September 27{29, 1995,

Springer Verlag LNCS. This version di�ers in several
very minor respects, mainly in formatting, correction of
several typographical and editing errors, clari�cation of
a few sentences, and addition of a few footnotes and
citations.

?? This work was supported by the National Science Foun-
dation under grant CCR-9410026, and by a gift from
Novell, Inc.

??? Convex Computer Corporation, Dallas, Texas, USA.
(dboles@zeppelin.convex.com)

1 Introduction

In this survey, we will discuss the design and evalua-
tion of conventional dynamic memory allocators. By
\conventional," we mean allocators used for general
purpose \heap" storage, where the a program can re-
quest a block of memory to store a program object,
and free that block at any time. A heap, in this sense,
is a pool of memory available for the allocation and
deallocation of arbitrary-sized blocks of memory in ar-
bitrary order.4 An allocated block is typically used to
store a program \object," which is some kind of struc-
tured data item such as a Pascal record, a C struct,
or a C++ object, but not necessarily an object in the
sense of object-oriented programming.5

Throughout this paper, we will assume that while
a block is in use by a program, its contents (a data
object) cannot be relocated to compact memory (as
is done, for example, in copying garbage collectors
[Wil95]). This is the usual situation in most im-
plementations of conventional programming systems
(such as C, Pascal, Ada, etc.), where the memory
manager cannot �nd and update pointers to program
objects when they are moved.6 The allocator does not

4 This sense of \heap" is not to be confused with a quite
di�erent sense of \heap," meaning a partially ordered
tree structure.

5 While this is the typical situation, it is not the only
one. The \objects" stored by the allocator need not
correspond directly to language-level objects. An exam-
ple of this is a growable array, represented by a �xed
size part that holds a pointer to a variable-sized part.
The routine that grows an object might allocate a new,
larger variable-sized part, copy the contents of the old
variable-sized part into it, and deallocate the old part.
We assume that the allocator knows nothing of this, and
would view each of these parts as separate and indepen-
dent objects, even if normal programmers would see a
\single" object.

6 It is also true of many garbage-collected systems. In

examine the data stored in a block, or modify or act
on it in any way. The data areas within blocks that are
used to hold objects are contiguous and nonoverlap-
ping ranges of (real or virtual) memory. We generally
assume that only entire blocks are allocated or freed,
and that the allocator is entirely unaware of the type
of or values of data stored in a block|it only knows
the size requested.

Scope of this survey. In most of this survey, we will
concentrate on issues of overall memory usage, rather
than time costs. We believe that detailed measures of
time costs are usually a red herring, because they ob-
scure issues of strategy and policy; we believe that
most good strategies can yield good policies that
are amenable to e�cient implementation. (We be-
lieve that it's easier to make a very fast allocator
than a very memory-e�cient one, using fairly straight-
forward techniques (Section 3.12). Beyond a certain
point, however, the e�ectiveness of speed optimiza-
tions will depend on many of the same subtle issues
that determine memory usage.)
We will also discuss locality of reference only briey.

Locality of reference is increasingly important, as the
di�erence between CPU speed and main memory (or
disk) speeds has grown dramatically, with no sign of
stopping. Locality is very poorly understood, however;
aside frommaking a few important general comments,
we leave most issues of locality to future research.
Except where locality issues are explicitly noted,

we assume that the cost of a unit of memory is �xed
and uniform. We do not address possible interactions
with unusual memory hierarchy schemes such as com-
pressed caching, which may complicate locality issues
and interact in other important ways with allocator
design [WLM91, Wil91, Dou93].
We will not discuss specialized allocators for partic-

ular applications where the data representations and
allocator designs are intertwined.7

some, insu�cient information is available from the com-
piler and/or programmer to allow safe relocation; this is
especially likely in systems where code written in di�er-
ent languages is combined in an application [BW88]. In
others, real-time and/or concurrent systems, it is dif-
�cult for the garbage collector to relocate data with-
out incurring undue overhead and/or disruptiveness
[Wil95].

7 Examples inlude specialized allocators for chained-
block message-bu�ers (e.g., [Wol65]), \cdr-coded" list-
processing systems [BC79], specialized storage for over-
lapping strings with shared structure, and allocators

Allocators for these kinds of systems share many
properties with the \conventional" allocators we dis-
cuss, but introduce many complicating design choices.
In particular, they often allow logically contiguous
items to be stored non-contiguously, e.g., in pieces of
one or a few �xed sizes, and may allow sharing of parts
or (other) forms of data compression. We assume that
if any fragmenting or compression of higher-level \ob-
jects" happens, it is done above the level of abstrac-
tion of the allocator interface, and the allocator is en-
tirely unaware of the relationships between the \ob-
jects" (e.g., fragments of higher-level objects) that it
manages.
Similarly, parallel allocators are not discussed, due

to the complexity of the subject.

Structure of the paper.This survey is intended to
serve two purposes: as a general reference for tech-
niques in memory allocators, and as a review of the
literature in the �eld, including methodological con-
siderations. Much of the literature review has been
separated into a chronological review, in Section 4.
This section may be skipped or skimmed if method-
ology and history are not of interest to the reader,
especially on a �rst reading. However, some poten-
tially signi�cant points are covered only there, or only
made su�ciently clear and concrete there, so the seri-
ous student of dynamic storage allocation should �nd
it worthwhile. (It may even be of interest to those
interested in the history and philosophy of computer
science, as documentation of the development of a sci-
enti�c paradigm.8)
The remainder of the current section gives our mo-

tivations and goals for the paper, and then frames
the central problem of memory allocation|fragmen-

tation|and the general techniques for dealing with
it.
Section 2 discusses deeper issues in fragmentation,

and methodological issues (some of which may be
skipped) in studying it.
Section 3 presents a fairly traditional taxonomy of

used to manage disk storage in �le systems.
8 We use \paradigm" in roughly the sense of Kuhn
[Kuh70], as a \pattern or model" for research. The
paradigms we discuss are not as broad in scope as the
ones usually discussed by Kuhn, but on our reading, his
ideas are intended to apply at a variety of scales. We are
not necessarily in agreement with all of Kuhn's ideas,
or with some of the extreme and anti-scienti�c purposes
they have been put to by some others.

2

known memory allocators, including several not usu-
ally covered. It also explains why such mechanism-
based taxonomies are very limited, and may obscure
more important policy issues. Some of those policy
issues are sketched.
Section 4 reviews the literature on memory alloca-

tion. A major point of this section is that the main
stream of allocator research over the last several dec-
ades has focused on oversimpli�ed (and unrealistic)
models of program behavior, and that little is actu-
ally known about how to design allocators, or what
performance to expect.
Section 5 concludes by summarizing the major

points of the paper, and suggesting avenues for future
research.

Table of Contents

1 Introduction : : : : : : : : : : : : : : : : 1
1.1 Motivation : : : : : : : : : : : : : : : 4
1.2 What an Allocator Must Do : : : : : 5
1.3 Strategies, Placement Policies, and

Splitting and Coalescing : : : : : 6
Strategy, policy, and mechanism. : : : 6
Splitting and coalescing. : : : : : : : : 8

2 A Closer Look at Fragmentation, and

How to Study It : : : : : : : : : : : : : : 8
2.1 Internal and External Fragmentation : 8
2.2 The Traditional Methodology: Proba-

bilistic Analyses, and Simulation
Using Synthetic Traces : : : : : 9

Random simulations. : : : : : : : : : : 10
Probabilistic analyses. : : : : : : : : : 11
A note on exponentially-distributed

random lifetimes. : : : : : : : : : 12
A note on Markov models. : : : : : : 12

2.3 What Fragmentation Really Is, and
Why the Traditional Approach is
Unsound : : : : : : : : : : : : : 14

Fragmentation is caused by isolated
deaths. : : : : : : : : : : : : : : : 15

Fragmentation is caused by time-
varying behavior. : : : : : : : : : 15

Implications for experimental method-
ology. : : : : : : : : : : : : : : : : 15

2.4 Some Real Program Behaviors : : : : 16
Ramps, peaks, and plateaus. : : : : : 16
Fragmentation at peaks is important. 17

Exploiting ordering and size depen-
dencies. : : : : : : : : : : : : : : 18

Implications for strategy. : : : : : : : 18
Implications for research. : : : : : : : 18
Pro�les of some real programs. : : : : 19
Summary. : : : : : : : : : : : : : : : : 22

2.5 Deferred Coalescing and Deferred Reuse 22
Deferred coalescing. : : : : : : : : : : 22
Deferred reuse. : : : : : : : : : : : : : 24

2.6 A Sound Methodology: Simulation Us-
ing Real Traces : : : : : : : : : : 25

Tracing and simulation. : : : : : : : : 25
Locality studies. : : : : : : : : : : : : 26

3 A Taxonomy of Allocators : : : : : : : 26
3.1 Allocator Policy Issues : : : : : : : : : 27
3.2 Some Important Low-Level Mechanisms 27

Header �elds and alignment. : : : : : 27
Boundary tags. : : : : : : : : : : : : : 28
Link �elds within blocks. : : : : : : : 28
Lookup tables. : : : : : : : : : : : : : 29
Special treatment of small objects. : : 29
Special treatment of the end block of

the heap. : : : : : : : : : : : : : : 29
3.3 Basic Mechanisms : : : : : : : : : : : 30
3.4 Sequential Fits : : : : : : : : : : : : : 30
3.5 Discussion of Sequential Fits and Gen-

eral Policy Issues. : : : : : : : : 32
3.6 Segregated Free Lists : : : : : : : : : 36
3.7 Buddy Systems : : : : : : : : : : : : : 38
3.8 Indexed Fits : : : : : : : : : : : : : : 40

Discussion of indexed �ts. : : : : : : : 41
3.9 Bitmapped Fits : : : : : : : : : : : : 41
3.10 Discussion of Basic Allocator Mecha-

nisms. : : : : : : : : : : : : : : : 42
3.11 Quick Lists and Deferred Coalescing : 43

Scheduling of coalescing. : : : : : : : 44
What to coalesce. : : : : : : : : : : : 45
Discussion. : : : : : : : : : : : : : : : 45

3.12 A Note on Time Costs : : : : : : : : : 45

4 A Chronological Review of The Liter-

ature : 46
4.1 The �rst three decades: 1960 to 1990 : 46

1960 to 1969. : : : : : : : : : : : : : : 47
1970 to 1979. : : : : : : : : : : : : : : 50
1980 to 1990. : : : : : : : : : : : : : : 57

4.2 Recent Studies Using Real Traces : : 65
Zorn, Grunwald, et al. : : : : : : : : : 65
Vo. : : : : : : : : : : : : : : : : : : : 67
Wilson, Johnstone, Neely, and Boles. : 67

3

5 Summary and Conclusions : : : : : : : 69
5.1 Models and Theories : : : : : : : : : : 69
5.2 Strategies and Policies : : : : : : : : : 70
5.3 Mechanisms : : : : : : : : : : : : : : : 70
5.4 Experiments : : : : : : : : : : : : : : 71
5.5 Data : : : : : : : : : : : : : : : : : : : 71
5.6 Challenges and Opportunities : : : : : 71

1.1 Motivation

This paper is motivated by our perception that there
is considerable confusion about the nature of memory
allocators, and about the problem of memory alloca-
tion in general. Worse, this confusion is often unrec-
ognized, and allocators are widely thought to be fairly
well understood. In fact, we know little more about
allocators than was known twenty years ago, which
is not as much as might be expected. The literature
on the subject is rather inconsistent and scattered,
and considerable work appears to be done using ap-
proaches that are quite limited. We will try to sketch
a unifying conceptual framework for understanding
what is and is not known, and suggest promising ap-
proaches for new research.
This problem with the allocator literature has con-

siderable practical importance. Aside from the human
e�ort involved in allocator studies per se, there are ef-
fects in the real world, both on computer system costs,
and on the e�ort required to create real software.
We think it is likely that the widespread use of poor

allocators incurs a loss of main and cache memory
(and CPU cycles) upwards of of a billion U.S. dollars
worldwide|a signi�cant fraction of the world's mem-
ory and processor output may be squandered, at huge
cost.9

Perhaps even worse is the e�ect on programming
style due to the widespread use of allocators that
are simply bad ones|either because better allocators
are known but not widely known or understood, or
because allocation research has failed to address the

9 This is an unreliable estimate based on admittedly ca-
sual last-minute computations, approximately as fol-
lows: there are on the order of 100 million PC's in the
world. If we assume that they have an average of 10
megabytes of memory at $30 per megabyte, there is 30
billion dollars worth of RAM at stake. (With the ex-
pected popularity of Windows 95, this seems like it will
soon become a fairly conservative estimate, if it isn't al-
ready.) If just one �fth (6 billion dollars worth) is used
for heap-allocated data, and one �fth of that is unnec-
essarily wasted, the cost is over a billion dollars.

proper issues. Many programmers avoid heap alloca-
tion in many situations, because of perceived space or
time costs.10

It seems signi�cant to us that many articles in non-
refereed publications|and a number in refereed pub-
lications outside the major journals of operating sys-
tems and programming languages|are motivated by
extreme concerns about the speed or memory costs
of general heap allocation. (One such paper [GM85]
is discussed in Section 4.1.) Often, ad hoc solutions
are used for applications that should not be problem-
atic at all, because at least some well-designed gen-
eral allocators should do quite well for the workload
in question.

We suspect that in some cases, the perceptions are
wrong, and that the costs of modern heap allocation
are simply overestimated. In many cases, however, it
appears that poorly-designed or poorly-implemented
allocators have lead to a widespread and quite under-
standable belief that general heap allocation is neces-
sarily expensive. Too many poor allocators have been
supplied with widely-distributed operating systems
and compilers, and too few practitioners are aware
of the alternatives.

This appears to be changing, to some degree. Many
operating systems now supply fairly good allocators,
and there is an increasing trend toward marketing li-
braries that include general allocators which are at
least claimed to be good, as a replacement for de-
fault allocators. It seems likely that there is simply a
lag between the improvement in allocator technology
and its widespread adoption, and another lag before
programming style adapts. The combined lag is quite
long, however, and we have seen several magazine ar-
ticles in the last year on how to avoid using a general
allocator. Postings praising ad hoc allocation schemes
are very common in the Usenet newsgroups oriented
toward real-world programming.

The slow adoption of better technology and the lag
in changes in perceptions may not be the only prob-
lems, however. We have our doubts about how well
allocators are really known to work, based on a fairly
thorough review of the literature. We wonder whether
some part of the perception is due to occasional pro-

10 It is our impression that UNIX programmers' usage of
heap allocation went up signi�cantly when Chris Kings-
ley's allocator was distributed with BSD 4.2 UNIX|
simply because it was much faster than the allocators
they'd been accustomed to. Unfortunately, that alloca-
tor is somewhat wasteful of space.

4

grams that interact pathologically with common allo-
cator designs, in ways that have never been observed
by researchers.

This does not seem unlikely, because most experi-
ments have used non-representative workloads, which
are extremely unlikely to generate the same problem-
atic request patterns as real programs. Sound studies
using realistic workloads are too rare. The total num-
ber of real, nontrivial programs that have been used
for good experiments is very small, apparently less
than 20. A signi�cant number of real programs could
exhibit problematic behavior patterns that are simply
not represented in studies to date.

Long-running processes such as operating sys-
tems, interactive programming environments, and
networked servers may pose special problems that
have not been addressed. Most experiments to date
have studied programs that execute for a few minutes
(at most) on common workstations. Little is known
about what happens when programs run for hours,
days, weeks or months. It may well be that some
seemingly good allocators do not work well in the
long run, with their memory e�ciency slowly degrad-
ing until they perform quite badly. We don't know|
and we're fairly sure that nobody knows. Given that
long-running processes are often the most important
ones, and are increasingly important with the spread
of client/server computing, this is a potentially large
problem.

The worst case performance of any general alloca-
tor amounts to complete failure due to memory ex-
haustion or virtual memory thrashing (Section 1.2).
This means that any real allocator may have lurking
\bugs" and fail unexpectedly for seemingly reasonable
inputs.

Such problems may be hidden, because most pro-
grammers who encounter severe problems may simply
code around them using ad hoc storage management
techniques|or, as is still painfully common, by stat-
ically allocating \enough" memory for variable-sized
structures. These ad-hoc approaches to storage man-
agement lead to \brittle" software with hidden limi-
tations (e.g., due to the use of �xed-size arrays). The
impact on software clarity, exibility, maintainability,
and reliability is quite important, but di�cult to esti-
mate. It should not be underestimated, however, be-
cause these hidden costs can incur major penalties in
productivity and, to put it plainly, human costs in
sheer frustration, anxiety, and general su�ering.

A much larger and broader set of test applications

and experiments is needed before we have any assur-
ance that any allocator works reliably, in a crucial
performance sense|much less works well. Given this
caveat, however, it appears that some allocators are
clearly better than others in most cases, and this pa-
per will attempt to explain the di�erences.

1.2 What an Allocator Must Do

An allocator must keep track of which parts of mem-
ory are in use, and which parts are free. The goal of
allocator design is usually to minimize wasted space
without undue time cost, or vice versa. The ideal allo-
cator would spend negligible time managing memory,
and waste negligible space.
A conventional allocator cannot control the num-

ber or size of live blocks|these are entirely up to the
program requesting and releasing the space managed
by the allocator. A conventional allocator also can-
not compact memory, moving blocks around to make
them contiguous and free contiguous memory. It must
respond immediately to a request for space, and once
it has decided which block of memory to allocate, it
cannot change that decision|that block of memory
must be regarded as inviolable until the application11

program chooses to free it. It can only deal with mem-
ory that is free, and only choose where in free mem-
ory to allocate the next requested block. (Allocators
record the locations and sizes of free blocks of mem-
ory in some kind of hidden data structure, which may
be a linear list, a totally or partially ordered tree, a
bitmap, or some hybrid data structure.)
An allocator is therefore an online algorithm, which

must respond to requests in strict sequence, immedi-
ately, and its decisions are irrevocable.
The problem the allocator must address is that

the application program may free blocks in any or-
der, creating \holes" amid live objects. If these holes
are too numerous and small, they cannot be used to
satisfy future requests for larger blocks. This prob-
lem is known as fragmentation, and it is a poten-
tially disastrous one. For the general case that we
have outlined|where the application program may
allocate arbitrary-sized objects at arbitrary times and
free them at any later time|there is no reliable algo-
rithm for ensuring e�cient memory usage, and none

11 We use the term \application" rather generally; the \ap-
plication" for which an allocator manages storage may
be a system program such as a �le server, or even an
operating system kernel.

5

is possible. It has been proven that for any possible
allocation algorithm, there will always be the possi-
bility that some application program will allocate and
deallocate blocks in some fashion that defeats the al-
locator's strategy, and forces it into severe fragmen-
tation [Rob71, GGU72, Rob74, Rob77]. Not only are
there no provably good allocation algorithms, there
are proofs that any allocator will be \bad" for some
possible applications.

The lower bound on worst case fragmentation is
generally proportional to the amount of live data12

multiplied by the logarithm of the ratio between the
largest and smallest block sizes, i.e., M log2 n, where
M is the amount of live data and n is the ratio be-
tween the smallest and largest object sizes [Rob71].

(In discussing worst-case memory costs, we gener-
ally assume that all block sizes are evenly divisible
by the smallest block size, and n is sometimes sim-
ply called \the largest block size," i.e., in units of the
smallest.)

Of course, for some algorithms, the worst case is
much worse, often proportional to the simple product
of M and n.

So, for example, if the minimum and maximum ob-
jects sizes are one word and a million words, then
fragmentation in the worst case may cost an excel-
lent allocator a factor of ten or twenty in space. A
less robust allocator may lose a factor of a million, in
its worst case, wasting so much space that failure is
almost certain.

Given the apparent insolubility of this problem, it
may seem surprising that dynamic memory allocation
is used inmost systems, and the computing world does
not grind to a halt due to lack of memory. The rea-
son, of course, is that there are allocators that are
fairly good in practice, in combination with most ac-
tual programs. Some allocation algorithms have been
shown in practice to work acceptably well with real
programs, and have been widely adopted. If a partic-
ular program interacts badly with a particular alloca-
tor, a di�erent allocator may be used instead. (The
bad cases for one allocator may be very di�erent from
the bad cases for other allocators of di�erent design.)

The design of memory allocators is currently some-

12 We use \live" here in a fairly loose sense. Blocks are
\live" from the point of view of the allocator if it doesn't
know that it can safely reuse the storage|i.e., if the
block was allocated but not yet freed. This is di�erent
from the senses of liveness used in garbage collection or
in compilers' ow analyses.

thing of a black art. Little is known about the inter-
actions between programs and allocators, and which
programs are likely to bring out the worst in which al-
locators. However, one thing is clear|most programs
are \well behaved" in some sense. Most programs
combined with most common allocators do not squan-
der huge amounts of memory, even if they may waste
a quarter of it, or a half, or occasionally even more.
That is, there are regularities in program behavior

that allocators exploit, a point that is often insu�-
ciently appreciated even by professionals who design
and implement allocators. These regularities are ex-
ploited by allocators to prevent excessive fragmenta-
tion, and make it possible for allocators to work in
practice.
These regularities are surprisingly poorly under-

stood, despite 35 years of allocator research, and
scores of papers by dozens of researchers.

1.3 Strategies, Placement Policies, and

Splitting and Coalescing

The main technique used by allocators to keep frag-
mentation under control is placement choice. Two
subsidiary techniques are used to help implement that
choice: splitting blocks to satisfy smaller requests, and
coalescing of free blocks to yield larger blocks.
Placement choice is simply the choosing of where in

free memory to put a requested block. Despite poten-
tially fatal restrictions on an allocator's online choices,
the allocator also has a huge freedom of action|it
can place a requested block anywhere it can �nd a
su�ciently large range of free memory, and anywhere
within that range. (It may also be able to simply re-
quest more memory from the operating system.) An
allocator algorithm therefore should be regarded as
the mechanism that implements a placement policy,
which is motivated by a strategy for minimizing frag-
mentation.

Strategy, policy, and mechanism.The strategy

takes into account regularities in program behavior,
and determines a range of acceptable policies as to
where to allocate requested blocks. The chosen pol-
icy is implemented by a mechanism, which is a set
of algorithms and the data structures they use. This
three-level distinction is quite important.
In the context of general memory allocation,

{ a strategy attempts to exploit regularities in the
request stream,

6

{ a policy is an implementable decision procedure
for placing blocks in memory, and

{ amechanism is a set of algorithms and data struc-
tures that implement the policy, often over-sim-
ply called \an algorithm."13

An ideal strategy is \put blocks where they won't
cause fragmentation later"; unfortunately that's im-
possible to guarantee, so real strategies attempt to
heuristically approximate that ideal, based on as-
sumed regularities of application programs' behavior.
For example, one strategy is \avoid letting small long-
lived objects prevent you from reclaiming a larger con-
tiguous free area." This is part of the strategy underly-
ing the common \best �t" family of policies. Another
part of the strategy is \if you have to split a block
and potentially waste what's left over, minimize the
size of the wasted part."

The corresponding (best �t) policy is more
concrete|it says \always use the smallest block that
is at least large enough to satisfy the request."

The placement policy determines exactly where in
memory requested blocks will be allocated. For the
best �t policies, the general rule is \allocate objects
in the smallest free block that's at least big enough to

13 This set of distinctions is doubtless indirectly inuenced
by work in very di�erent areas, notably Marr's work in
natural and arti�cial visual systems [Mar82] and Mc-
Clamrock's work in the philosophy of science and cog-
nition [McC91, McC95]. The distinctions are impor-
tant for understanding a wide variety of complex sys-
tems, however. Similar distinctions are made in many
�elds, including empirical computer science, though of-
ten without making them quite clear.
In \systems" work, mechanism and policy are often

distinguished, but strategy and policy are usually not
distinguished explicitly. This makes sense in some con-
texts, where the policy can safely be assumed to im-
plement a well-understood strategy, or where the choice
of strategy is left up to someone else (e.g., designers of
higher-level code not under discussion).
In empirical evaluations of very poorly understood

strategies, however, the distinction between strategy
and policy is often crucial. (For example, errors in the
implementation of a strategy are often misinterpreted
as evidence that the expected regularities don't actu-
ally exist, when in fact they do, and a slightly di�erent
strategy would work much better.)
Mistakes are possible at each level; equally important,

mistakes are possible between levels, in the attempt to
\cash out" (implement) the higher-level strategy as a
policy, or a policy as a mechanism.

hold them." That's not a complete policy, however,
because there may be several equally good �ts; the
complete policy must specify which of those should be
chosen, for example, the one whose address is lowest.

The chosen policy is implemented by a speci�c
mechanism, chosen to implement that policy e�-
ciently in terms of time and space overheads. For best
�t, a linear list or ordered tree structure might be used
to record the addresses and sizes of free blocks, and
a tree search or list search would be used to �nd the
one dictated by the policy.

These levels of the allocator design process inter-
act. A strategy may not yield an obvious complete
policy, and the seemingly slight di�erences between
similar policies may actually implement interestingly
di�erent strategies. (This results from our poor un-
derstanding of the interactions between application
behavior and allocator strategies.) The chosen policy
may not be obviously implementable at reasonable
cost in space, time, or programmer e�ort; in that case
some approximation may be used instead.

The strategy and policy are often very poorly-
de�ned, as well, and the policy and mechanism are
arrived at by a combination of educated guessing,
trial and error, and (often dubious) experimental
validation.14

14 In case the important distinctions between strategy, pol-
icy, and mechanism are not clear, a metaphorical exam-
ple may help. Consider a software company that has a
strategy for improving productivity: reward the most
productive programmers. It may institute a policy of
rewarding programmers who produce the largest num-
bers of lines of program code. To implement this policy,
it may use the mechanisms of instructing the managers
to count lines of code, and providing scripts that count
lines of code according to some particular algorithm.
This example illustrates the possible failures at each

level, and in the mapping from one level to another. The
strategy may simply be wrong, if programmers aren't
particularly motivated by money. The policy may not
implement the intended strategy, if lines of code are an
inappropriate metric of productivity, or if the policy has
unintended \strategic" e�ects, e.g., due to programmer
resentment.
The mechanism may also fail to implement the spec-

i�ed policy, if the rules for line-counting aren't enforced
by managers, or if the supplied scripts don't correctly
implement the intended counting function.
This distinction between strategy and policy is over-

simpli�ed, because there may be multiple levels of strat-
egy that shade o� into increasingly concrete policies.
At di�erent levels of abstraction, something might be

7

Splitting and coalescing. Two general techniques
for supporting a range of (implementations of) place-
ment policies are splitting and coalescing of free
blocks. (These mechanisms are important subsidiary
parts of the larger mechanism that is the allocator
implementation.)
The allocator may split large blocks into smaller

blocks arbitrarily, and use any su�ciently-large sub-
block to satisfy the request. The remainders from this
splitting can be recorded as smaller free blocks in their
own right and used to satisfy future requests.
The allocator may also coalesce (merge) adjacent

free blocks to yield larger free blocks. After a block
is freed, the allocator may check to see whether the
neighboring blocks are free as well, and merge them
into a single, larger block. This is often desirable, be-
cause one large block is more likely to be useful than
two small ones|large or small requests can be satis-
�ed from large blocks.
Completely general splitting and coalescing can be

supported at fairly modest cost in space and/or time,
using simple mechanisms that we'll describe later.
This allows the allocator designer the maximum free-
dom in choosing a strategy, policy, and mechanism for
the allocator, because the allocator can have a com-
plete and accurate record of which ranges of memory
are available at all times.
The cost may not be negligible, however, espe-

cially if splitting and coalescing work too well|in

viewed as a strategy or policy.
The key point is that there are at least three quali-

tatively di�erent kinds of levels of abstraction involved
[McC91]; at the upper levels, there are is the general de-
sign goal of exploiting expected regularities, and a set of
strategies for doing so; there may be subsidiary strate-
gies, for example to resolve conicts between strategies
in the best possible way.
At at a somewhat lower level there is a general policy

of where to place objects, and below that is a more
detailed policy that exactly determines placement.
Below that there is an actual mechanism that is in-

tended to implement the policy (and presumably ef-
fect the strategy), using whatever algorithms and data
structures are deemed appropriate. Mechanisms are of-
ten layered, as well, in the usual manner of structured
programming [Dij69]. Problems at (and between) these
levels are the best understood|a computation may be
improperly speci�ed, or may not meet its speci�cation.
(Analogous problems occur at the upper levels occur as
well|if expected regularities don't actually occur, or if
they do occur but the strategy does't actually exploit
them, and so on.)

that case, freed blocks will usually be coalesced with
neighbors to form large blocks of free memory, and
later allocations will have to split smaller chunks o�
of those blocks to obtained the desired sizes. It of-
ten turns out that most of this e�ort is wasted, be-
cause the sizes requested later are largely the same as
the sizes freed earlier, and the old small blocks could
have been reused without coalescing and splitting. Be-
cause of this, many modern allocators use deferred

coalescing|they avoid coalescing and splitting most
of the time, but use it intermittently, to combat frag-
mentation.

2 A Closer Look at Fragmentation,

and How to Study It

In this section, we will discuss the traditional concep-
tion of fragmentation, and the usual techniques used
for studying it. We will then explain why the usual un-
derstanding is not strong enough to support scienti�c
design and evaluation of allocators. We then propose
a new (though nearly obvious) conception of fragmen-
tation and its causes, and describe more suitable tech-
niques used to study it. (Most of the experiments us-
ing sound techniques have been performed in the last
few years, but a few notable exceptions were done
much earlier, e.g., [MPS71] and [LH82], discussed in
Section 4.)

2.1 Internal and External Fragmentation

Traditionally, fragmentation is classed as external or
internal [Ran69], and is combatted by splitting and
coalescing free blocks.
External fragmentation arises when free blocks of

memory are available for allocation, but can't be used
to hold objects of the sizes actually requested by a pro-
gram. In sophisticated allocators, that's usually be-
cause the free blocks are too small, and the program
requests larger objects. In some simple allocators, ex-
ternal fragmentation can occur because the allocator
is unwilling or unable to split large blocks into smaller
ones.
Internal fragmentation arises when a large-enough

free block is allocated to hold an object, but there is
a poor �t because the block is larger than needed. In
some allocators, the remainder is simply wasted, caus-
ing internal fragmentation. (It's called internal be-
cause the wasted memory is inside an allocated block,

8

rather than being recorded as a free block in its own
right.)
To combat internal fragmentation, most allocators

will split blocks into multiple parts, allocating part
of a block, and then regarding the remainder as a
smaller free block in its own right. Many allocators
will also coalesce adjacent free blocks (i.e., neighbor-
ing free blocks in address order), combining them into
larger blocks that can be used to satisfy requests for
larger objects.
In some allocators, internal fragmentation arises

due to implementation constraints within the allo-
cator|for speed or simplicity reasons, the allocator
design restricts the ways memory may be subdivided.
In other allocators, internal fragmentation may be ac-
cepted as part of a strategy to prevent external frag-
mentation|the allocator may be unwilling to frag-
ment a block, because if it does, it may not be able to
coalesce it again later and use it to hold another large
object.

2.2 The Traditional Methodology:

Probabilistic Analyses, and Simulation Using

Synthetic Traces

(Note: readers who are uninterested in experimental
methodology may wish to skip this section, at least
on a �rst reading. Readers uninterested in the history
of allocator research may skip the footnotes. The fol-
lowing section (2.3) is quite important, however, and
should not be skipped.)
Allocators are sometimes evaluated using proba-

bilistic analyses. By reasoning about the likelihood of
certain events, and the consequences of those events
for future events, it may be possible to predict what
will happen on average. For the general problem of
dynamic storage allocation, however, the mathemat-
ics are too di�cult to do this for most algorithms
and most workloads. An alternative is to do simu-
lations, and �nd out \empirically" what really hap-
pens when workloads interact with allocator policies.
This is more common, because the interactions are so
poorly understood that mathematical techniques are
di�cult to apply.
Unfortunately, in both cases, to make probabilistic

techniques feasible, important characteristics of the
workload must be known|i.e., the probabilities of
relevant characteristics of \input" events to the al-
location routine. The relevant characteristics are not
understood, and so the probabilities are simply un-
known.

This is one of the major points of this paper. The
paradigm of statistical mechanics15 has been used in
theories of memory allocation, but we believe that it
is the wrong paradigm, at least as it is usually ap-
plied. Strong assumptions are made that frequencies
of individual events (e.g., allocations and dealloca-
tions) are the base statistics from which probabilistic
models should be developed, and we think that this
is false.
The great success of \statistical mechanics" in other

areas is due to the fact that such assumptions make
sense there. Gas laws are pretty good idealizations,
because aggregate e�ects of a very large number of
individual events (e.g., collisions between molecules)
do concisely express the most important regularities.
This paradigm is inappropriate for memory allo-

cation, for two reasons. The �rst is simply that the
number of objects involved is usually too small for
asymptotic analyses to be relevant, but this is not the
most important reason.
The main weakness of the \statistical mechanics"

approach is that there are important systematic in-
teractions that occur in memory allocation, due to
phase behavior of programs. No matter how large the
system is, basing probabilistic analyses on individual
events is likely to yield the wrong answers, if there
are systematic e�ects involved which are not captured
by the theory. Assuming that the analyses are appro-
priate for \su�ciently large" systems does not help
here|the systematic errors will simply attain greater
statistical signi�cance.
Consider the case of evolutionary biology. If an

overly simple statistical approach about individual
animals' interactions is used, the theory will not cap-
ture predator/prey and host/symbiote relationships,
sexual selection, or other pervasive evolutionary ef-
fects as niche �lling.16 Developing a highly predictive

15 This usage of \statistical mechanics" should perhaps be
regarded as metaphorical, since it is not really about
simple interactions of large numbers of molecules in
a gas or liquid. Several papers on memory allocation
have used it loosely, however, to describe the analo-
gous approach to analyzing memory allocation. Statis-
tical mechanics has literally provided a paradigm|in
the original, smaller sense of a \model" or \examplar,"
rather than in a larger Kuhnian sense|which many �nd
attractive.

16 Some of these e�ects may emerge from lower-level mod-
eling, but for simulations to reliably predict them, many
important lower-level issues must be modeled correctly,
and su�cient data are usually not available, or su�-

9

evolutionary theory is extremely di�cult|and some
would say impossible|because too many low-level (or
higher-level) details matter,17 and there may intrinsic
unpredictabilities in the systems described [Den95].18

We are not saying that the development of a good
theory of memory allocation is as hard as develop-
ing a predictive evolutionary theory|far from it. The
problem of memory allocation seems far simpler, and
we are optimistic that a useful predictive theory can
be developed.19

Our point is simply that the paradigm of simple
statistical mechanics must be evaluated relative to
other alternatives, which we �nd more plausible in this
domain. There are major interactions between work-
loads and allocator policies, which are usually ignored.
No matter how large the system, and no matter how
asymptotic the analyses, ignoring these e�ects seems
likely to yield major errors|e.g., analyses will simply
yield the wrong asymptotes.
A useful probabilistic theory of memory allocation

may be possible, but if so, it will be based on a
quite di�erent set of statistics from those used so
far|statistics which capture e�ects of systematicities,
rather than assuming such systematicities can be ig-
nored. As in biology, the theory must be tested against
reality, and re�ned to capture systematicities that had
previously gone unnoticed.

Random simulations.The traditional technique
for evaluating allocators is to construct several traces
(recorded sequences of allocation and deallocation re-
quests) thought to resemble \typical" workloads, and
use those traces to drive a variety of actual allocators.

ciently understood.
17 For example, the di�erent evolutionary strategies im-

plied by the varying replication techniques and muta-
tion rates of RNA-based vs. DNA-based viruses, or the
impact of environmental change on host/parasite inter-
actions [Gar94].

18 For example, a single chance mutation that results in
an adaptive characteristic in one individual may have a
major impact on the subsequent evolution of a species
and its entire ecosystem [Dar59].

19 We are also not suggesting that evolutionary theory pro-
vides a good paradigm for allocator research; it is just
an example of a good scienti�c paradigm that is very
di�erent from the ones typically seen in memory alloca-
tion research. It demonstrates the important and neces-
sary interplay between high-level theories and detailed
empirical work.

Since an allocator normally responds only to the re-
quest sequence, this can produce very accurate simu-
lations of what the allocator would do if the workload
were real|that is, if a real program generated that
request sequence.
Typically, however, the request sequences are not

real traces of the behavior of actual programs. They
are \synthetic" traces that are generated automati-
cally by a small subprogram; the subprogram is de-
signed to resemble real programs in certain statisti-
cal ways. In particular, object size distributions are
thought to be important, because they a�ect the frag-
mentation of memory into blocks of varying sizes. Ob-
ject lifetime distributions are also often thought to
be important (but not always), because they a�ect
whether blocks of memory are occupied or free.
Given a set of object size and lifetime distributions,

the small \driver" subprogram generates a sequence of
requests that obeys those distributions. This driver is
simply a loop that repeatedly generates requests, us-
ing a pseudo-random number generator; at any point
in the simulation, the next data object is chosen by
\randomly" picking a size and lifetime, with a bias
that (probabilistically) preserves the desired distribu-
tions. The driver also maintains a table of objects that
have been allocated but not yet freed, ordered by their
scheduled death (deallocation) time. (That is, the step
at which they were allocated, plus their randomly-
chosen lifetime.) At each step of the simulation, the
driver deallocates any objects whose death times indi-
cate that they have expired. One convenient measure
of simulated \time" is the volume of objects allocated
so far|i.e., the sum of the sizes of objects that have
been allocated up to that step of the simulation.20

An important feature of these simulations is that
they tend to reach a \steady state." After running for
a certain amount of time, the volume of live (simu-

20 In many early simulations, the simulator modeled real
time, rather than just discrete steps of allocation and
deallocation. Allocation times were chosen based on ran-
domly chosen \arrival" times, generated using an \inter-
arrival distribution" and their deaths scheduled in con-
tinuous time|rather than discrete time based on the
number and/or sizes of objects allocated so far. We will
generally ignore this distinction in this paper, because
we think other issues are more important. As will be-
come clear, in the methodology we favor, this distinction
is not important because the actual sequences of actions
are su�cient to guarantee exact simulation, and the ac-
tual sequence of events is recorded rather than being
(approximately) emulated.

10

lated) objects reaches a level that is determined by
the size and lifetime distributions, and after that ob-
jects are allocated and deallocated in approximately
equal numbers. The memory usage tends to vary very
little, wandering probabilistically (in a random walk)
around this \most likely" level. Measurements are
typically made by sampling memory usage at points
after the steady state has presumably been reached, or
by averaging over a period of \steady-state" variation.
These measurements \at equilibrium" are assumed to
be important.

There are three common variations of this simu-
lation technique. One is to use a simple mathemat-
ical function to determine the size and lifetime dis-
tributions, such as uniform or (negative) exponential.
Exponential distributions are often used because it
has been observed that programs are typically more
likely to allocate small objects than large ones,21 and
are more likely to allocate short-lived objects than
long-lived ones.22 (The size distributions are gener-
ally truncated at some plausible minimum and max-
imum object size, and discretized, rounding them to
the nearest integer.)

The second variation is to pick distributions intu-
itively, i.e., out of a hat, but in ways thought to re-
semble real program behavior. One motivation for this
is to model the fact that many programs allocate ob-
jects of some sizes and others in small numbers or not
at all; we refer to these distributions as \spiky."23

The third variation is to use statistics gathered from
real programs, to make the distributions more realis-
tic. In almost all cases, size and lifetime distributions

21 Historically, uniform size distributions were the most
common in early experiments; exponential distributions
then became increasingly common, as new data be-
came available showing that real systems generally used
many more small objects than large ones. Other dis-
tributions have also been used, notably Poisson and
hyper-exponential. Still, relatively recent papers have
used uniform size distributions, sometimes as the only
distribution.

22 As with size distributions, there has been a shift over
time toward non-uniform lifetime distributions, often
exponential. This shift occurred later, probably because
real data on size information was easier to obtain, and
lifetime data appeared later.

23 In general, this modeling has not been very precise.
Sometimes the sizes chosen out of a hat are allocated in
uniform proportions, rather than in skewed proportions
reecting the fact that (on average) programs allocate
many more small objects than large ones.

are assumed to be independent|the fact that di�er-
ent sizes of objects may have di�erent lifetime distrib-
utions is generally assumed to be unimportant.
In general, there has been something of a trend

toward the use of more realistic distributions,24 but
this trend is not dominant. Even now, researchers of-
ten use simple and smooth mathematical functions to
generate traces for allocator evaluation.25 The use of
smooth distributions is questionable, because it bears
directly on issues of fragmentation|if objects of only
a few sizes are allocated, the free (and uncoalesca-
ble) blocks are likely to be of those sizes, making it
possible to �nd a perfect �t. If the object sizes are
smoothly distributed, the requested sizes will almost
always be slightly di�erent, increasing the chances of
fragmentation.

Probabilistic analyses.Since Knuth's derivation
of the \�fty percent rule" [Knu73] (discussed later,
in Section 4), there have been many attempts to rea-
son probabilistically about the interactions between
program behavior and allocator policy, and assess
the overall cost in terms of fragmentation (usually)
and/or CPU time.
These analyses have generally made the same as-

sumptions as random-trace simulation experiments|
e.g., random object allocation order, independence of
size and lifetimes, steady-state behavior|and often
stronger assumptions as well.
These simplifying assumptions have generally been

made in order to make the mathematics tractable. In
particular, assumptions of randomness and indepen-
dence make it possible to apply well-developed theory

24 The trend toward more realistic distributions can be ex-
plained historically and pragmatically. In the early days
of computing, the distributions of interest were usually
the distribution of segment sizes in an operating sys-
tem's workload. Without access to the inside of an op-
erating system, this data was di�cult to obtain. (Most
researchers would not have been allowed to modify the
implementation of the operating system running on a
very valuable and heavily-timeshared computer.) Later,
the emphasis of study shifted away from segment sizes
in segmented operating systems, and toward data ob-
ject sizes in the virtual memories of individual processes
running in paged virtual memories.

25 We are unclear on why this should be, except that a par-
ticular theoretical and experimental paradigm [Kuh70]
had simply become thoroughly entrenched in the early
1970's. (It's also somewhat easier than dealing with real
data.)

11

of stochastic processes (Markov models, etc.) to derive
analytical results about expected behavior. Unfortu-
nately, these assumptions tend to be false for most
real programs, so the results are of limited utility.
It should be noted that these are not merely conve-

nient simplifying assumptions that allow solution of
problems that closely resemble real problems. If that
were the case, one could expect that with re�nement
of the analyses|or with su�cient empirical validation
that the assumptions don't matter in practice|the
results would come close to reality. There is no reason
to expect such a happy outcome. These assumptions
dramatically change the key features of the problem;
the ability to perform the analyses hinges on the very
facts that make themmuch less relevant to the general
problem of memory allocation.
Assumptions of randomness and independence

make the problem irregular, in a super�cial sense,
but they make it very smooth (hence mathematically
tractable) in a probabilistic sense. This smoothness
has the advantage that it makes it possible to derive
analytical results, but it has the disadvantage that it
turns a real and deep scienti�c problem into a math-
ematical puzzle that is much less signi�cant for our
purposes.
The problem of dynamic storage allocation is in-

tractable, in the vernacular sense of the word. As an
essentially data-dependent problem, we do not have a

grip on it, because it because we simply do not under-
stand the inputs. \Smoothing" the problem to make it
mathematically tractable \removes the handles" from
something that is fundamentally irregular, making it
unlikely that we will get any real purchase or leverage
on the important issues. Removing the irregularities
removes some of the problems|and most of the op-
portunities as well.

A note on exponentially-distributed ran-

dom lifetimes.Exponential lifetime distributions
have become quite common in both empirical and an-
alytic studies of memory fragmentation over the last
two decades. In the case of empirical work (using
random-trace simulations), this seems an admirable
adjustment to some observed characteristics of real
program behavior. In the case of analytic studies, it
turns out to have some very convenient mathemati-
cal properties as well. Unfortunately, it appears that
the apparently exponential appearence of real lifetime
distributions is often an artifact of experimental meth-
odology (as will be explained in Sections 2.3 and 4.1)

and that the emphasis on distributions tends to dis-
tract researchers from the strongly patterned underly-
ing processes that actually generate them (as will be
explained in Section 2.4).
We invite the reader to consider a randomly-

ordered trace with an exponential lifetime distribu-
tion. In this case there is no correlation at all between
an object's age and its expected time until death|
the \half-life" decay property of the distribution and
the randomness ensure that allocated objects die com-
pletely at random with no way to estimate their death
times from any of the information available to the
allocator.26 (An exponential random function exhibits
only a half-life property, and no other pattern, much
like radioactive decay.) In a sense, exponential life-
times are thus the reductio ad absurdum of the syn-
thetic trace methodology|all of the time-varying reg-
ularities have been systematically eliminated from the
input. If we view the allocator's job as an online prob-
lem of detecting and exploiting regularities, we see
that this puts the allocator in the awkward position
of trying to extract helpful hints from pure noise.
This does not necessarily mean that all allocators

will perform identically under randomized workloads,
however, because there are regularities in size distrib-
utions, whether they are real distributions or simple
mathematical ones, and some allocators may simply
shoot themselves in the foot.
Analyses and experiments with exponentially dis-

tributed random lifetimes may say something reveal-
ing about what happens when an allocator's strategy
is completely orthogonal to the actual regularities. We
have no real idea whether this is a situation that oc-
curs regularly in the space of possible combinations of
real workloads and reasonable strategies.27 (It's clear
that it is not the usual case, however.) The terrain of
that space is quite mysterious to us.

A note on Markov models.Many probabilistic
studies of memory allocation have used �rst-order

26 We are indebted to Henry Baker, who has made quite
similar observations with respect to the use of exponen-
tial lifetime distributions to estimate the e�ectiveness
of generational garbage collection schemes [Bak93].

27 In particular, certain e�ects of randomized traces may
(or may not) resemble the cumulative e�ect of alloca-
tor strategy errors over much longer periods. This re-
semblance cannot be assumed, however|there are good
reasons to think it may occur in some cases, but not in
others, and empirical validation is necessary.

12

Markov processes to approximate program and allo-
cator behavior, and have derived conclusions based
on the well-understood properties of Markov models.

In a �rst-order Markov model, the probabilities of
state transitions are known and �xed. In the case of
fragmentation studies, this corresponds to assuming
that a program allocates objects at random, with �xed
probabilities of allocating di�erent sizes.

The space of possible states of memory is viewed
as a graph, with a node for each con�guration of allo-
cated and free blocks. There is a start state, represent-
ing an empty memory, and a transition probability
for each possible allocation size. For a given place-
ment policy, there will be a known transition from a
given state for any possible allocation or deallocation
request. The state reached by each possible allocation
is another con�guration of memory.

For any given request distribution, there is a net-
work of possible states reachable from the start state,
via successions of more or less probable transitions. In
general, for any memory above a very, very small size,
and for arbitrary distributions of sizes and lifetimes,
this network is inconceivably large. As described so
far, it is therefore useless for any practical analyses.

To make the problem more tractable, certain as-
sumptions are often made. One of these is that life-
times are exponentially distributed as well as random,
and have the convenient half-life property described
above, i.e., they die completely at random as well as
being born at random.

This assumption can be used to ensure that both
the states and the transitions between states have def-
inite probabilities in the long run. That is, if one were
to run a random-trace simulation for a long enough
period of time, all reachable states would be reached,
and all of them would be reached many times|and
the number of times they were reached would reect
the probabilities of their being reached again in the
future, if the simulation were continued inde�nitely.
If we put a counter on each of the states to keep track
of the number of times each state was reached, the
ratio between these counts would eventually stabilize,
plus or minus small short-term variations. The rela-
tive weights of the counters would \converge" to a
stable solution.

Such a network of states is called an ergodicMarkov
model, and it has very convenient mathematical prop-
erties. In some cases, it's possible to avoid running
a simulation at all, and analytically derive what the
network's probabiblities would converge to.

Unfortunately, this is a very inappropriate model
for real program and allocator behavior. An ergodic
Markov model is a kind of (probabilistic) �nite au-
tomaton, and as such the patterns it generates are
very, very simple, though randomized and hence un-
predictable. They're almost unpatterned, in fact, and
hence very predictable in a certain probabilistic sense.

Such an automaton is extremely unlikely to gener-
ate many patterns that seem likely to be important in
real programs, such as the creation of the objects in a
linked list in one order, and their later destruction in
exactly the same order, or exactly the reverse order.28

There are much more powerful kinds of machines|
which have more complex state, like a real program|
which are capable of generating more realistic pat-
terns. Unfortunately, the only machines that we are
sure generate the \right kinds" of patterns are actual
real programs.

We do not understand what regularities exist in real
programs well enough to model them formally and
perform probabilistic analyses that are directly appli-
cable to real program behavior. The models we have
are grossly inaccurate in respects that are quite rele-
vant to problems of memory allocation.

There are problems for which Markov models are
useful, and a smaller number of problems where as-
sumptions of ergodicity are appropriate. These prob-
lems involve processes that are literally random, or
can be shown to be e�ectively random in the neces-
sary ways. The general heap allocation problem is not
in either category. (If this is not clear, the next section
should make it much clearer.)

Ergodic Markov models are also sometimes used for
problems where the basic assumptions are known to
be false in some cases|but they should only be used
in this way if they can be validated, i.e., shown by ex-
tensive testing to produce the right answers most of
the time, despite the oversimpli�cations they're based
on. For some problems it \just turns out" that the
di�erences between real systems and the mathemati-
cal models are not usually signi�cant. For the general
problem of memory allocation, this turns out to be
false as well|recent results clearly invalidate the use

28 Technically, a Markov model will eventually generate
such patterns, but the probability of generating a par-
ticular pattern within a �nite period of time is vanish-
ingly small if the pattern is large and not very strongly
reected in the arc weights. That is, many quite prob-
able kinds of patterns are extremely improbable in a
simple Markov model.

13

of simple Markov models [ZG94, WJNB95].29

2.3 What Fragmentation Really Is, and Why

the Traditional Approach is Unsound

A single death is a tragedy. A million deaths
is a statistic.
|Joseph Stalin

We suggested above that the shape of a size dis-
tribution (and its smoothness) might be important
in determining the fragmentation caused by a work-
load. However, even if the distributions are completely
realistic, there is reason to suspect that randomized
synthetic traces are likely to be grossly unrealistic.
As we said earlier, the allocator should embody a

strategy designed to exploit regularities in program
behavior|otherwise it cannot be expected to do par-
ticularly well. The use of randomized allocation order
eliminates some regularities in workloads, and intro-
duces others, and there is every reason to think that
the di�erences in regularities will a�ect the perfor-
mance of di�erent strategies di�erently. To make this
concrete, we must understand fragmentation and its
causes.
The technical distinction between internal and ex-

ternal fragmentation is useful, but in attempting to

29 It might seem that the problem here is the use of �rst-
order Markov models, whose states (nodes in the reach-
ability graph) correspond directly to states of memory.
Perhaps \higher-order" Markov models would work,
where nodes in the graph represent sequences of con-
crete state transitions. We think this is false as well.
The important kinds of patterns produced by real

programs are generally not simple very-short-term se-
quences of a few events, but large-scale patterns involv-
ing many events. To capture these, a Markov model
would have to be of such high order that analyses would
be completely infeasible. It would essentially have to be
pre-programmed to generate speci�c literal sequences
of events. This not only begs the essential question of
what real programs do, but seems certain not to con-
cisely capture the right regularities.
Markov models are simply not powerful enough|

i.e., not abstract enough in the right ways|to help
with this problem. They should not be used for this
purpose, or any similarly poorly understood purpose,
where complex patterns may be very important. (At
least, not without extensive validation.) The fact that
the regularities are complex and unknown is not a
good reason to assume that they're e�ectively random
[ZG94, WJNB95] (Section 4.2).

design experiments measuring fragmentation, it is
worthwhile to stop for a moment and consider what
fragmentation really is, and how it arises.

Fragmentation is the inability to reuse memory that
is free. This can be due to policy choices by the allo-
cator, which may choose not to reuse memory that in
principle could be reused. More importantly for our
purposes, the allocator may not have a choice at the
moment an allocation request must be serviced: there
may be free areas that are too small to service the
request and whose neighbors are not free, making it
impossible to coalesce adjacent free areas into a su�-
ciently large contiguous block.30

Note that for this latter (and more fundamental)
kind of fragmentation, the problem is a function both
of the program's request stream and the allocator's
choices of where to allocate the requested objects. In
satisfying a request, the allocator usually has consid-
erable leeway; it may place the requested object in
any su�ciently large free area. On the other hand,
the allocator has no control over the ordering of re-
quests for di�erent-sized pieces of memory, or when
objects are freed.

We have not made the notion of fragmentation par-
ticularly clear or quanti�able here, and this is no ac-
cident. An allocator's inability to reuse memory de-
pends not only on the number and sizes of holes, but
on the future behavior of the program, and the fu-
ture responses of the allocator itself. (That is, it is
a complex matter of interactions between patterned
workloads and strategies.)

For example, suppose there are 100 free blocks of
size 10, and 200 free blocks of size 20. Is memory
highly fragmented? It depends. If future requests are
all for size 10, most allocators will do just �ne, using
the size 10 blocks, and splitting the size 20 blocks as
necessary. But if the future requests are for blocks of
size 30, that's a problem. Also, if the future requests
are for 100 blocks of size 10 and 200 blocks of size 20,
whether it's a problem may depend on the order in
which the requests arrive and the allocator's moment-

30 Beck [Bec82] makes the only clear statement of this prin-
ciple which we have found in our exhausting review of
the literature. As we will explain later (in our chronolog-
ical review, Section 4.1), Beck also made some impor-
tant inferences from this principle, but his theoretical
model and his empirical methodology were weakened
by working within the dominant paradigm. His paper
is seldom cited, and its important ideas have generally
gone unnoticed.

14

by-moment decisions as to where to place them. Best
�t will do well for this example, but other allocators
do better for some other examples where best �t per-
forms abysmally.

We leave the concept of fragmentation somewhat
poorly de�ned, because in the general case the actual
phenomenon is poorly de�ned.31

Fragmentation is caused by isolated deaths.

A crucial issue is the creation of free areas whose
neighboring areas are not free. This is a function of
two things: which objects are placed in adjacent areas

and when those objects die. Notice that if the alloca-
tor places objects together in memory, and they die
\at the same time" (with no intervening allocations),
no fragmentation results: the objects are live at the
same time, using contiguous memory, and when they
die they free contiguous memory. An allocator that
can predict which objects will die at approximately
the same time can exploit that information to reduce
fragmentation, by placing those objects in contiguous
memory.

Fragmentation is caused by time-varying be-

havior.Fragmentation arises from changes in the
way a program uses memory|for example, freeing
small blocks and requesting large ones. This much is
obvious, but it is important to consider patterns in
the changing behavior of a program, such as the free-
ing of large numbers of objects and the allocation of
large numbers of objects of di�erent types. Many pro-
grams allocate and free di�erent kinds of objects in

31 Our concept of fragmentation has been called
\startlingly nonoperational," and we must confess that
it is, to some degree. We think that this is a strength,
however, because it is better to leave a concept some-
what vague than to de�ne it prematurely and in-
correctly. It is important to �rst identify the \natu-
ral kinds" in the phenomena under study, and then
�gure out what their most important characteristics
are [Kri72, Put77, Qui77]. (We are currently working
on developing operational measures of \fragmentation-
related" program behavior.)
Later in the paper we will express experimental \frag-

mentation" results as percentages, but this should be
viewed as an operational shorthand for the e�ects of
fragmentation on memory usage at whatever point or
points in program execution measurements were made;
this should be clear in context.

di�erent stereotyped ways. Some kinds of objects ac-
cumulate over time, but other kinds may be used in
bursty patterns. (This will be discussed in more detail
in Section 2.4.) The allocator's job is to exploit these
patterns, if possible, or at least not let the patterns
undermine its strategy.

Implications for experimental methodology.

(Note: this section is concerned only with experimen-
tal techniques; uninterested readers may skip to the
following section.)
The traditional methodology of using random pro-

gram behavior implicitly assumes that there is no or-
dering information in the request stream that could
be exploited by the allocator|i.e., there's nothing in
the sequencing of requests which the allocator will
use as a hint to suggest which objects should be al-
located adjacent to which other objects. Given a ran-
dom request stream, the allocator has little control|
wherever objects are placed by the allocator, they die
at random, randomly creating holes among the live
objects. If some allocators do in fact tend to exploit
real regularities in the request stream, the randomiza-
tion of the order of object creations (in simulations)
ensures that the information is discarded before the

allocator can use it. Likewise, if an algorithm tends
to systematically make mistakes when faced with real
patterns of allocations and deallocations, randomiza-
tion may hide that fact.
It should be clear that random object deaths may

systematically create serious fragmentation in ways
that are unlikely to be realistic. Randomization also
has a potentially large e�ect on large-scale aggregate
behavior of large numbers of objects. In real programs,
the total volume of objects varies over time, and often
the relative volumes of objects of di�erent sizes varies
as well. This often occurs due to phase behavior|
some phases may use many more objects than others,
and the objects used by one phase may be of very
di�erent sizes than those used by another phase.
Now consider a randomized synthetic trace|the

overall volume of objects is determined by a random
walk, so that the volume of objects rises gradually un-
til a steady state is reached. Likewise the volume of
memory allocated to objects of a given size is a similar
random walk. If the number of objects of a given size
is large, the random walk will tend to be relatively
smooth, with mostly gradual and small changes in
overall allocated volume. This implies that the pro-

portions of memory allocated to di�erent-sized objects

15

tend to be relatively stable.
This has major implications for external fragmen-

tation. External fragmentation means that there are
free blocks of memory of some sizes, but those are
the wrong sizes to satisfy current needs. This happens
when objects of one size are freed, and then objects
of another size are allocated|that is, when there is
an unfortunate change in the relative proportions of
objects of one size and objects of a larger size. (For al-
locators that never split blocks, this can happen with
requests for smaller sizes as well.) For synthetic ran-
dom traces, this is less likely to occur|they don't
systematically free objects of one size and then allo-
cate objects of another. Instead, they tend to allocate
and free objects of di�erent sizes in relatively stable
proportions. This minimizes the need to coalesce ad-
jacent free areas to avoid fragmentation; on average,
a free memory block of a given size will be reused rel-
atively soon. This may bias experimental results by
hiding an allocator's inability to deal well with ex-
ternal fragmentation, and favor allocators that deal
well with internal fragmentation at a cost in external
fragmentation.
Notice that while random deaths cause fragmen-

tation, the aggregate behavior of random walks may
reduce the extent of the problem. For some alloca-
tors, this balance of unrealistically bad and unrealis-
tically good properties may average out to something
like realism, but for others it may not. Even if|by
sheer luck|random traces turn out to yield realis-
tic fragmentation \on average," over many allocators,
they are inadequate for comparing di�erent allocators,
which is usually the primary goal of such studies.

2.4 Some Real Program Behaviors

...and suddenly the memory returns.
|Marcel Proust, Swann's Way

Real programs do not generally behave randomly|
they are designed to solve actual problems, and the
methods chosen to solve those problems have a strong
e�ect on their patterns of memory usage. To begin
to understand the allocator's task, it is necessary to
have a general understanding of program behavior.
This understanding is almost absent in the literature
on memory allocators, apparently because many re-
searchers consider the in�nite variation of possible
program behaviors to be too daunting.
There are strong regularities in many real pro-

grams, however, because similar techniques are ap-

plied (in di�erent combinations) to solve many prob-
lems. Several common patterns have been observed.

Ramps, peaks, and plateaus. In terms of overall
memory usage over time, three patterns have been
observed in a variety of programs in a variety of con-
texts. Not all programs exhibit all of these patterns,
but most seem to exhibit one or two of them, or all
three, to some degree. Any generalizations based on
these patterns must therefore be qualitative and quali-
�ed. (This implies that to understand the quantitative
importance of these patterns, a small set of programs
is not su�cient.)

{ Ramps. Many programs accumulate certain data
structures monotonically over time. This may be
because they keep a log of events, or because
the problem-solving strategy requires building a
large representation, after which a solution can
be found quickly.

{ Peaks.Many programs use memory in bursty pat-
terns, building up relatively large data structures
which are used for the duration of a particular
phase, and then discarding most or all of those
data structures. Note that the \surviving" data
structures are likely to be of di�erent types, be-
cause they represent the results of a phase, as op-
posed to intermediate values which may be rep-
resented di�erently. (A peak is like a ramp, but
of shorter duration.)

{ Plateaus. Many programs build up data struc-
tures quickly, and then use those data structures
for long periods (often nearly the whole running
time of the program).

These patterns are well-known, from anecdotal ex-
perience by many people (e.g., [Ros67, Han90]), from
research on garbage collection (e.g., [Whi80, WM89,
UJ88, Hay91, Hay93, BZ95, Wil95]),32 and from a re-
cent study of C and C++ programs [WJNB95].

32 It may be thought that garbage collected systems are
su�ciently di�erent from those using conventional stor-
age management that these results are not relevant. It
appears, however, that these patterns are common in
both kinds of systems, because similar problem-solving
strategies are used by programmers in both kinds of
systems. (For any particular problem, di�erent qualita-
tive program behaviors may result, but the general cat-
egories seem to be common in conventional programs as
well. See [WJNB95].)

16

(Other patterns of overall memory usage also occur,
but appear less common. As we describe in Section 4,
backward ramp functions have been observed [GM85].
Combined forward and backward ramp behavior has
also been observed, with one data structure shrinking
as another grows [Abr67].)

Notice that in the case of ramps and ramp-shaped
peaks, looking at the statistical distributions of object
lifetimes may be very misleading. A statistical distri-
bution suggests a random decay process of some sort,
but it may actually reect sudden deaths of groups of
objects that are born at di�erent times. In terms of
fragmentation, the di�erence between these two mod-
els is major. For a statistical decay process, the allo-
cator is faced with isolated deaths, which are likely
to cause fragmentation. For a phased process where
many objects often die at the same time, the alloca-
tor is presented with an opportunity to get back a
signi�cant amount of memory all at once.

In real programs, these patterns may be composed
in di�erent ways at di�erent scales of space and time.
A ramp may be viewed as a kind of peak that grows
over the entire duration of program execution. (The
distinction between a ramp and a peak is not pre-
cise, but we tend to use \ramp" to refer to something
that grows slowly over the whole execution of a pro-
gram, and drops o� suddenly at the end, and \peak"
to refer to faster-growing volumes of objects that are
discarded before the end of execution. A peak may
also be at on top, making it a kind of tall, skinny
plateau.)

While the overall long-term pattern is often a ramp
or plateau, it often has smaller features (peaks or pla-
teus) added to it. This crude model of program be-
havior is thus recursive. (We note that it is not gen-
erally fractal33|features at one scale may bear no
resemblance to features at another scale. Attempting
to characterize the behavior of a program by a simple
number such as fractal dimension is not appropriate,
because program behavior is not that simple.34)

33 We are using the term \fractal" rather loosely, as is com-
mon in this area. Typically, \fractal" models of program
behavior are not in�nitely recursive, and are actually
graftals or other �nite fractal-like recursive entities.

34 We believe that this applies to studies of locality of ref-
erence as well. Attempts to characterize memory refer-
encing behavior as fractal-like (e.g., [VMH+83, Thi89])
are ill-conceived or severely limited|if only because
memory allocation behavior is not generally fractal, and
memory-referencing behavior depends on memory al-

Ramps, peaks, and plateus have very di�erent im-
plications for fragmentation.
An overall ramp or plateau pro�le has a very conve-

nient property, in that if short-term fragmentation can
be avoided, long term fragmentation is not a problem
either. Since the data making up a plateau are stable,
and those making up a ramp accumulate monotonic-
ally, inability to reuse freed memory is not an issue|
nothing is freed until the end of program execution.
Short-term fragmentation can be a cumulative prob-
lem, however, leaving many small holes in the mass of
long lived-objects.
Peaks and tall, skinny plateaus can pose a challenge

in terms of fragmentation, since many objects are allo-
cated and freed, and many other objects are likely to
be allocated and freed later. If an earlier phase leaves
scattered survivors, it may cause problems for later
phases that must use the spaces in between.
More generally, phase behavior is the major cause

of fragmentation|if a program's needs for blocks of
particular sizes change over time in an awkward way.
If many small objects are freed at the end of a phase|
but scattered objects survive|a later phase may run
into trouble. On the other hand, if the survivors hap-
pen to have been placed together, large contiguous
areas will come free.

Fragmentation at peaks is important.Not all
periods of program execution are equal. The most im-
portant periods are usually those when the most mem-
ory is used. Fragmentation is less important at times
of lower overall memory usage than it is when mem-
ory usage is \at its peak," either during a short-lived
peak or near the end of a ramp of gradually increas-

location policy. (We suspect that it's ill-conceived for
understanding program behavior at the level of refer-
ences to objects, as well as at the level of references
to memory.) If the fractal concept is used in a strong
sense, we believe it is simply wrong. If it is taken in a
weak sense, we believe it conveys little useful informa-
tion that couldn't be better summarized by simple sta-
tistical curve-�tting; using a fractal conceptual frame-
work tends to obscure more issues than it clari�es. Av-
erage program behavior may resemble a fractal, because
similar features can occur at di�erent scales in di�erent
programs; however, an individual program's behavior is
not fractal-like in general, any more than it is a simple
Markov process. Both kinds of models fail to capture
the \irregularly regular" and scale-dependent kinds of
patterns that are most important.

17

ing memory usage. This means that average fragmen-
tation is less important than peak fragmentation|
scattered holes in the heap most of the time may
not be a problem if those holes are well-�lled when

it counts.

This has implications for the interpretation of anal-
yses and simulations based on steady-state behavior
(i.e., equilibrium conditions). Real programs may ex-
hibit some steady-state behavior, but there are usu-
ally ramps and/or peaks as well. It appears that most
programs never reach a truly steady state, and if they
reach a temporary steady state, it may not matter

much. (It can matter, however, because earlier phases
may result in a con�guration of blocks that is more
or less problematic later on, at peak usage.)
Overall memory usage is not the whole story, of

course. Locality of reference matters as well. All other
things being equal, however, a larger total \footprint"
matters even for locality. In virtual memories, many
programs never page at all, or su�er dramatic perfor-
mance degradations if they do. Keeping the overall
memory usage lower makes this less likely to happen.
(In a time-shared machine, a larger footprint is likely
to mean that a di�erent process has its pages evicted
when the peak is reached, rather than its own less-
recently-used pages.)

Exploiting ordering and size dependencies. If
the allocator can exploit the phase information from
the request stream, it may be able to place objects
that will die at about the same time in a contiguous
area of memory. This may suggest that the allocator
should be adaptive,35 but much simpler strategies also
seem likely to work [WJNB95]:

{ Objects allocated at about the same time are
likely to die together at the end of a phase;
if consecutively-allocated objects are allocated
in contiguous memory, they will free contiguous
memory.

{ Objects of di�erent types may be likely to serve
di�erent purposes and die at di�erent times. Size
is likely to be related to type and purpose, so
avoiding the intermingling of di�erent sizes (and
likely types) of objects may reduce the scattering
of long-lived objects among short-lived ones.

35 Barrett and Zorn have recently built an allocator using
pro�le information to heuristically separate long-lived
objects from short-lived ones [BZ93]. (Section 4.2.)

This suggests that objects allocated at about
the same time should be allocated adjacent to
each other in memory, with the possible amend-
ment that di�erent-sized objects should be segregated
[WJNB95].36

Implications for strategy. The phased behavior of
many programs provides an opportunity for the al-
locator to reduce fragmentation. As we said above, if
successive objects are allocated contiguously and freed
at about the same time, free memory will again be
contiguous. We suspect that this happens with many
existing allocators|even though they were not de-
signed with this principle in mind, as far as we can
tell. It may well be that this accidental \strategy" is
the major way that good allocators keep fragmenta-
tion low.

Implications for research. A major goal of alloca-
tor research should be to determine which patterns
are common, and which can be exploited (or at least
guarded against). Strategies that work well for one
program may work poorly for another, but it may be
possible to combine strategies in a single robust policy
that works well for almost all programs. If that fails,
it may be possible to have a small set of allocators
with di�erent properties, at least one of which works
well for the vast majority of real problems.
We caution against blindly experimenting with dif-

ferent combinations of programs and complex, opti-
mized allocators, however. It is more important to
determine what regularities exist in real program be-
havior, and only then decide which strategies are most

36 We have not found any other mention of these heuristics
in the literature, although somewhat similar ideas un-
derlie the \zone" allocator of Ross [Ros67] and Hanson's
\obstack" system (both discussed later). Beck [Bec82],
Demers et al. [DWH+90], and and Barrett and Zorn
[BZ93] have developed systems that predict the lifetimes
of objects for similar purposes.
We note that for our purposes, it is not necessary

to predict which groups of objects will die when. It is
only necessary to predict which groups of objects will
die at similar times, and which will die at dissimilar
times, without worrying about which group will die �rst.
We refer to this as \death time discrimination." This
simpler discrimination seems easier to achieve than life-
time prediction, and possibly more robust. Intuitively,
it also seems more directly related to the causes of
fragmentation.

18

appropriate, and which good strategies can be com-
bined successfully. This is not to say that experiments
with many variations on many designs aren't useful|
we're in the midst of such experiments ourselves|but
that the goal should be to identify fundamental inter-
actions rather than just \hacking" on things until they
work well for a few test applications.

Pro�les of some real programs. To make our dis-
cussion of memory usage patterns more concrete, we
will present pro�les of memory use for some real pro-
grams. Each �gure plots the overall amount of live
data for a run of the program, and also the amounts
of data allocated to objects of the �ve most popu-
lar sizes. (\Popularity" here means most volume al-
located, i.e., sum of sizes, rather than object counts.)
These are pro�les of program behavior, independent
of any particular allocator.

GCC.Figure 1 shows memory usage for GCC, the
GNU C compiler, compiling the largest �le of its own
source code (combine.c). (A high optimization switch
was used, encouraging the compiler to perform exten-
sive inlining, analyses, and optimization.) We used a
trace processor to remove \obstack" allocation from
the trace, creating a trace with the equivalent allo-
cations and frees of individual objects; obstacks are
heavily used in this program.37 The use of obstacks
may a�ect programming style and memory usage pat-
terns; however, we suspect that the memory usage
patterns would be similar without obstacks, and that
obstacks are simply used to exploit them.38

This is a heavily phased program, with several
strong and similar peaks. These are two-horned peaks,
where one (large) size is allocated and deallocated,
and much smaller size is allocated and deallocated,
out of phase.39 (This is an unusual feature, in our

37 See the discussion of [Han90] (Section 4.1) for a descrip-
tion of obstacks.

38 We've seen similarly strong peaks in a pro�le of a com-
piler of our own, which relies on garbage collection
rather than obstacks.

39 Interestingly, the �rst of the horns usually consists of
a size that is speci�c to that peak|di�erent peaks use
di�erent-sized large objects, but the out-of-phase part-
ner horn consists of the same small size each time. The
di�erences in sizes used by the �rst horn explains why
only three of these horns show up in the plot, and they
show up for the largest peaks|for the other peaks' large
sizes, the total memory used does not make it into the
top �ve.

limited experience.) Notice that this program exhibits
very di�erent usage pro�les for di�erent sized objects.
The use of one size is nearly steady, another is strongly
peaked, and others are peaked, but di�erent.

Grobner. Figure 2 shows memory usage for the Grob-
ner program40 which decomposes complex expressions
into linear combinations of polynomials (Gr�obner
bases).41 As we understand it, this is done by a pro-
cess of expression rewriting, rather like term rewriting
or rewrite-based theorem proving techniques.

Overall memory usage tends upward in a general
ramp shape, but with minor short-term variations, es-
pecially small plateaus, while the pro�les for usage of
different-sized objects are roughly similar, their ramps
start at di�erent points during execution and have
di�erent slopes and irregularities|the proportions of
di�erent-sized objects vary somewhat.42

Hypercube. Figure 3 shows memory usage for a hy-
percube message-passing simulator, written by Don
Lindsay while at CMU. It exhibits a large and simple
plateau.

This program allocates a single very large object
near the beginning of execution, which lives for al-
most the entire run; it represents the nodes in a hy-
percube and their interconnections.43 A very large
number of other objects are created, but they are
small and very short-lived; they represent messages

40 This program (and the hypercube simulator described
below) were also used by Detlefs in [Det92] for evalu-
ation of a garbage collector. Based on several kinds of
pro�les, we now think that Detlefs' choice of test pro-
grams may have led to an overestimation of the costs
of his garbage collector for C++. Neither of these pro-
grams is very friendly to a simple GC, especially one
without compiler or OS support.

41 The function of this program is rather analogous to that
of a Fourier transform, but the basis functions are poly-
nomials rather than sines and cosines, and the mecha-
nism used is quite di�erent.

42 Many of the small irregularities in overall usage come
from sizes that don't make it into the top �ve|small
but highly variable numbers of these objects are used.

43 In these plots, \time" advances at the end of each allo-
cation. This accounts for the horizontal segments visible
after the allocatons of large objects|no other objects
are allocated or deallocated between the beginning and
end of the allocation of an individual object, and allo-
cation time advances by the size of the object.

19

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18

K
B

yt
es

 in
 U

se

Allocation Time in Megabytes

cc1 -O2 -pipe -c combine.c, memory in use by object sizes (Top 5)

all objects
178600 byte objects

16 byte objects
132184 byte objects

20 byte objects
69720 byte objects

Fig. 1. Pro�le of memory usage in the GNU C compiler.

sent between nodes randomly.44 This program quickly
reaches a steady state, but the steady state is quite
di�erent from the one reached by most randomized al-
locator simulations|a very few sizes are represented,
and lifetimes are both extremely skewed and strongly
correlated with sizes.

Perl. Figure 4 shows memory usage for a script (pro-
gram) written in the Perl scripting language. This pro-
gram processes a �le of string data. (We're not sure
exactly what it is doing with the strings, to be hon-
est; we do not really understand this program.) This
program reaches a steady state, with heavily skewed
usage of di�erent sizes in relatively �xed proportions.

44 These objects account for the slight increase and irregu-
laritiy in the overall lifetime curve at around 2MB, after
the large, long-lived objects have been allocated.

(Since Perl is a fairly general and featureful program-
ming language, its memory usage may vary tremen-
dously depending on the program being executed.)

LRUsim. Figure 5 shows memory usage for a locality
pro�ler written by Doug van Wieren. This program
processes a memory reference trace, keeping track of
how recently each block of memory has been touched
and a accumulating a histogram of hits to blocks at
di�erent recencies (LRU queue positions). At the end
of a run, a PostScript grayscale plot of the time-vary-
ing locality characteristics is generated. The recency
queue is represented as a large modi�ed AVL tree,
which dominates memory usage|only a single ob-
ject size really matters much. At the parameter set-
ting used for this run, no blocks are ever discarded,
and the tree grows monotonically; essentially no heap-
allocated objects are ever freed, so memory usage is a

20

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5 3 3.5 4

K
B

yt
es

 in
 U

se

Allocation Time in Megabytes

Grobner, memory in use by object sizes (Top 5)

all objects
12 byte objects
24 byte objects
22 byte objects
18 byte objects
14 byte objects

Fig. 2. Pro�le of memory usage in the Grobner program.

simple ramp. At other settings, only a bounded num-
ber of items are kept in the LRU tree, so that memory
usage ramps up to a very stable plateau. This pro-
gram exhibits a kind of dynamic stability, either by
steady accumulation (as shown) or by exactly replac-
ing the least-recently-used objects within a plateau
(when used with a �xed queue length).

This is a small and simple program, but a very real
one, in the sense that we have used it to tie up many
megabytes of memory for about a trillion instruction
cycles.45

45 We suspect that in computing generally, a large frac-
tion of CPU time and memory usage is devoted to pro-
grams with more complex behavior, but another signif-
icant fraction is dominated by highly regular behavior
of simple useful programs, or by long, regular phases of
more complex programs.

Espresso. Figure 6 shows memory usage for a run of
Espresso, an optimizer for programmable logic array
designs.

Espresso appears to go through several qualitatively
di�erent kinds of phases, using di�erent sizes of ob-
jects in quite di�erent ways.

Discussion of program pro�les.In real programs,
memory usage is usually quite di�erent from the mem-
ory usage of randomized traces. Ramps, peaks, and
plateaus are common, as is heavily skewed usage of a
few sizes. Memory usage is neither Markov nor inter-
estingly fractal-like in most cases. Many programs ex-
hibit large-scale and small-scale patterns which may
be of any of the common feature types, and di�er-
ent at di�erent scales. Usage of di�erent sizes may
be strongly correlated, or it may not be, or may be

21

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8

K
B

yt
es

 in
 U

se

Allocation Time in Megabytes

lindsay, memory in use by object sizes (Top 5)

all objects
1687552 byte objects

393256 byte objects
52 byte objects

1024 byte objects
28 byte objects

Fig. 3. Pro�le of memory usage in Lindsay's hypercube simulator.

related in more subtle time-varying ways. Given the
wide variation within this small sample, it is clear that
more programs should be pro�led to determine which
other patterns occur in a signi�cant number of pro-
grams, and how often various patterns are likely to
occur.

Summary. In summary, this section makes six re-
lated points:

{ Program behavior is usually time-varying, not
steady,

{ Peak memory usage is important; fragmentation
at peaks is more important than at intervening
points,

{ Fragmentation is caused by time-varying behav-
ior, especially peaks using di�erent sizes of ob-
jects.

{ Known program behavior invalidates previous ex-
perimental and analytical results,

{ Nonrandom behavior of programs can be ex-
ploited, and

{ Di�erent programs may display characteristically
di�erent nonrandom behavior.

2.5 Deferred Coalescing and Deferred Reuse

Deferred coalescing.Many allocators attempt to
avoid coalescing blocks of memory that may be re-
peatedly reused for short-lived objects of the same
size. This deferred coalescing can be added to any al-
locator, and usually avoids coalescing blocks that will
soon be split again to satisfy requests for small ob-
jects. Blocks of a given size may be stored on a simple
free list, and reused without coalescing, splitting, or
formatting (e.g., putting in headers and/or footers).

22

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

K
B

yt
es

 in
 U

se

Allocation Time in Megabytes

perl: words small data, memory in use by object sizes (Top 5)

all objects
32 byte objects

8200 byte objects
52 byte objects
36 byte objects

5632 byte objects

Fig. 4. Pro�le of memory usage in Perl running a string-processing script.

If the application requests the same size block soon
after one is freed, the request can be satis�ed by sim-
ply popping the pre-formatted block o� of a free list
in very small constant time.
While deferred coalescing is traditionally thought of

as a speed optimization, it is important to note that
fragmentation considerations come into play, in three
ways.46

{ The lower fragmentation is, the more important
deferred coalescing will be in terms of speed|if
adjacent objects generally die at about the same
time, aggressive coalescing and splitting will be

46 To our knowledge, none of these e�ects has been noted
previously in the literature, although it's likely we've
seen at least the �rst but forgotten where. In any event,
these e�ects have received little attention, and don't
seem to have been studied directly.

particularly expensive, because large areas will
be coalesced together by repeatedly combining
adjacent blocks, only to be split again into a large
number of smaller blocks. If fragmentation is low,
deferred coalescing may be especially bene�cial.

{ Deferred coalescing may have signi�cant e�ects
on fragmentation, by changing the allocator's de-
cisions as to which blocks of memory to use to
hold which objects. For example, blocks cannot
be used to satisfy requests for larger objects while
they remain uncoalesced. Those larger objects
may therefore be allocated in di�erent places
than they would have been if small blocks were
coalesced immediately; that is, deferred coales-
cing can a�ect placement policy.

{ Deferred coalescing may decrease locality of ref-
erence for the same reason, because recently-
freed small blocks will usually not be reused to

23

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2 1.4

K
B

yt
es

 in
 U

se

Allocation Time in Megabytes

LRUsim, memory in use by object sizes (Top 5)

all objects
36 byte objects

8200 byte objects
4104 byte objects
3164 byte objects

136 byte objects

Fig. 5. Pro�le of memory usage in van Wieren's locality pro�ler.

hold larger objects. This may force the program
to touch more di�erent areas of memory than
if small blocks were coalesced immediately and
quickly used again. On the other hand, deferred
coalescing is very likely to increase locality of ref-
erence if used with an allocator that otherwise
would not reuse most memory immediately|the
deferred coalescing mechanism will ensure that
most freed blocks are reused soon.

Deferred reuse. Another related notion|which is
equally poorly understood|is deferred reuse.47 De-
ferred reuse is a property of some allocators that
recently-freed blocks tend not to be the soonest
reused. For many allocators, free memory is man-

47 Because it is not generally discussed in any systematic
way in the literature, we coined this term for this paper.

aged in a mostly stack-like way. For others, it is more
queue-like, with older free blocks tending to be reused
in preference to newly-freed blocks.
Deferred reuse may have e�ects on locality, because

the allocator's choices a�ect which parts of memory
are used by the program|the program will tend to
use memory briey, and then use othermemory before
reusing that memory.
Deferred reuse may also have e�ects on fragmenta-

tion, because newly-allocated objects will be placed
in holes left by old objects that have died. This may
make fragmentation worse, by mixing objects created
by di�erent phases (which may die at di�erent times)
in the same area of memory. On the other hand, it
may be very bene�cial because it may gradually pack
the \older" areas of memory with long-lived objects,
or because it gives the neighbors of a freed block more
time to die before the freed block is reused. That

24

0

50

100

150

200

250

300

0 20 40 60 80 100 120

K
B

yt
es

 in
 U

se

Allocation Time in Megabytes

espresso, largest_data, memory in use by object sizes (Top 5)

all objects
38496 byte objects

28 byte objects
55072 byte objects
24464 byte objects
36704 byte objects

Fig. 6. Pro�le of memory usage in the Espresso PLA Optimizer.

may allow slightly longer-lived objects to avoid caus-
ing much fragmentation, because they will die rel-
atively soon, and be coalesced with their neighbors
whose reuse was deferred.

2.6 A Sound Methodology: Simulation Using

Real Traces

The traditional view has been that programs' frag-
mentation-causing behavior is determined only by
their object size and lifetime distributions. Recent
experimental results show that this is false ([ZG94,
WJNB95], Section 4.2), because orderings of requests
have a large e�ect on fragmentation. Until a much
deeper understanding of program behavior is avail-
able, and until allocator strategies and policies are as
well understood as allocator mechanisms, the only re-
liable method for allocator simulation is to use real

traces|i.e., the actual record of allocation and deal-
location requests from real programs.

Tracing and simulation. Allocation traces are not
particularly di�cult to obtain (but see the caveats
about program selection in Section 5.5). A slightly
modi�ed allocator can be used, which writes informa-
tion about each allocation and deallocation request
to a �le|i.e., whether the request is an allocation or
deallocation, the address of the block, and (for alloca-
tions) the requested block size. This allocator can be
linked with a program of interest and used when run-
ning the program. These traces tend to be long, but
they can be stored in compressed form, on inexpensive
serial media (e.g., magnetic tape), and later processed
serially during simulation. (Allocation traces are gen-
erally very compressible, due to the strong regularities

25

in program behavior.48) Large amounts of disk space
and/or main memory are not required, although they
are certainly convenient.

To use the trace for a simulation, a driver routine
reads request records out of the �le, and submits them
to the allocator being tested by calling the allocator in
the usual way. The driver maintains a table of objects
that are currently allocated, which maps the object
identi�er from the trace �le to the address where it is
allocated during simulation; this allows it to request
the deallocation of the block when it encounters the
deallocation record in the trace.

This simulated program doesn't actually do any-
thing with the allocated blocks, as a real program
would, but it imitates the real program's request se-
quences exactly, which is su�cient for measuring the
memory usage. Modern pro�ling tools [BL92, CK93]
can also be used with the simulation program to de-
termine how many instruction cycles are spent in the
allocator itself.

An alternative strategy is to actually link the pro-
gram with a variety of allocators, and actually re-run
the program for each \simulation". This has the ad-
vantage that the traces needn't be stored. It has the
disadvantages that it requires being able to re-run the
program at will (which may depend on having simi-
lar systems, input data sets being available and in
the right directories, environment variables, etc.) and
doesn't allow convenient sharing of traces between dif-
ferent experimenters for replication of experiments. It
also has the obvious disadvantage that instructions

48 Conventional text-string-oriented compression algo-
rithms [Nel91] (e.g, UNIX compress or GNU gzip)
work quite well, although we suspect that sophisticated
schemes could do signi�cantly better by taking advan-
tage of the numerical properties of object identi�ers
or addresses; such schemes have been proposed for use
in compressed paging and addressing [WLM91, FP91].
(Text-oriented compression generally makes Markov-
like modeling assumptions, i.e., that literal sequences
are likely to recur. This is clearly true to a large degree
for allocation and reference traces, but other regularities
could probably be exploited as well [WB95].)
Dain Samples [Sam89] used a simple and e�ective

approach for compressing memory-reference traces; his
\Mache" trace compactor used a simple preprocessor to
massage the trace into a di�erent format, making the
the relevant regularities easier for standard string-ori-
ented compression algorithms to recognize and exploit.
A similarly simple system may work well for allocation
traces.

spent executing the actual program are wasted, but
on fast machines this may be preferable to the cost of
trace I/O, for many programs.

Locality studies.While locality is mostly beyond
the scope of this paper, it is worth making a few com-
ments about locality studies. Several tools are avail-
able to make it relatively easy to gather memory-
reference traces, and several cache and virtual mem-
ory simulators are available for processing these
traces.
Larus' QPT tool (a successor to the earlier AE sys-

tem [BL92]) modi�es an executable program to make
it self-tracing. The Shade tool from SunLabs [CK93]
is essentially a CPU emulator, which runs a program
in emulation and records various kinds of events in an
extremely exible way. For good performance, it uses
dynamic compilation techniques to increase speed rel-
ative to a straightford interpretive simulator.
Either of these systems can save a reference trace

to a �le, but the �le is generally very large for long-
running programs. Another alternative is to perform
incremental simulation, as the trace is recorded|
event records are saved to a fairly small bu�er, and
batches of event records are passed to a cache simu-
lator which consumes them on the y.
E�cient cache simulators are available for process-

ing reference traces, including Mark Hill's Tycho and
Dinero systems [HS89].49

3 A Taxonomy of Allocators

Allocators are typically categorized by the mecha-

nisms they use for recording which areas of mem-
ory are free, and for merging adjacent free blocks into

49 Before attempting locality studies, however, allocation
researchers should become familiar with the rather sub-
tle issues in cache design, in particular the e�ects and
interactions of associativity, fetch and prefetch policies,
write bu�ers, victim bu�ers, and subblock placement.
Such details have been shown to be important in as-

sessing the impact of locality of allocation on perfor-
mance; a program with apparently \poor" locality for
a simple cache design may do quite well in a mem-
ory hierarchy well-suited to its behavior. The litera-
ture on garbage collection is considerably more sophisti-
cated in terms of locality studies than the literature on
memory allocation, and should not be overlooked. (See,
e.g., [Bae73, KLS92, Wil90, WLM92, DTM93, Rei94,
GA95, Wil95].) Many of the same issues must arise in
conventionally-managed heaps as well.

26

larger free blocks (coalescing). Equally important are
the policy and strategy implications|i.e., whether the
allocator properly exploits the regularities in real re-
quest streams.
In this section, we survey the policy issues and

mechanisms in memory allocation; since deferred co-
alescing can be added to any allocator, it will be dis-
cussed after the basic general allocator mechanisms
have been covered, in Section 3.11.

3.1 Allocator Policy Issues

We believe that there are several important policy is-
sues that must be made clear, and that real allocators'
performance must be interpreted with regard to them:

{ Patterns of Memory Reuse. Are recently-freed
blocks reused in preference to older free areas?
Are free blocks in an area of memory preferen-
tially reused for objects of the same size (and
perhaps type) as the live objects nearby? Are free
blocks in some areas reused in preference to free
blocks in other areas (e.g., preferentially reusing
free blocks toward one end of the heap area)?

{ Splitting and Coalescing. Are large free blocks
split into smaller blocks to satisfy requests for
smaller objects? Are adjacent free blocks merged
into larger areas at all? Are all adjacent free ar-
eas coalesced, or are there restrictions on when
coalescing can be done because it simpli�es the
implementation? Is coalescing always done when
it's possible, or is it deferred to avoid needless
merging and splitting over short periods of time?

{ Fits. When a block of a particular size is reused,
are blocks of about the same size used preferen-
tially, or blocks of very di�erent sizes? Or per-
haps blocks whose sizes are related in some other
useful way to the requested size?

{ Splitting thresholds. When a too-large block is
used to satisfy a request, is it split and the re-
mainder made available for reuse? Or is the re-
mainder left unallocated, causing internal frag-

mentation, either for implementation simplicity
or as part of a policy intended to trade inter-
nal fragmentation for reduced external fragmen-
tation?

All of these issues may a�ect overall fragmentation,
and should be viewed as policies, even if the reason
for a particular choice is to make the mechanism (im-
plementation) simpler or faster. They may also have

e�ects on locality; for example, reusing recently-freed
blocks may increase temporal locality of reference
by reusing memory that is still cached in high-speed
memory, in preference to memory that has gone un-
touched for a longer while. (Locality is beyond the
scope of this paper, but it is an important consider-
ation. We believe that the best policies for reducing
fragmentation are good for locality as well, by and
large, but we will not make that argument in detail
here.50)

3.2 Some Important Low-Level Mechanisms

Several techniques are used in di�erent combinations
with a variety of allocators, and can help make so-
phisticated policies surprisingly easy to implement ef-
�ciently. We will describe some very low-level mecha-
nisms that are pieces of several \basic" (higher-level)
mechanisms, which in turn implement a policy.
(The casual reader may wish to skim this section.)

Header �elds and alignment. Most allocators use
a hidden \header" �eld within each block to store use-
ful information. Most commonly, the size of the block
is recorded in the header. This simpli�es freeing, in
many algorithms, because most standard allocator in-
terfaces (e.g., the standard C free() routine) do not
require a program to pass the size of the freed block
to the deallocation routine at deallocation time.
Typically, the allocation function (e.g., C's

malloc()memory allocation routine) passes only the
requested size, and the allocator returns a pointer to
the block allocated; the free routine is only passed
that address, and it is up to the allocator to infer the
size if necessary. (This may not be true in some sys-
tems with stronger type systems, where the sizes of
objects are usually known statically. In that case, the
compiler may generate code that supplies the object
size to the freeing routine automatically.)
Other information may be stored in the header as

well, such as information about whether the block is
in use, its relationship to its neighbors, and so on.
Having information about the block stored with the
block makes many common operations fast.

50 Briey, we believe that the allocator should heuristi-
cally attempt to cluster objects that are likely to be
used at about the same times and in similar ways. This
should improve locality [Bae73, WLM91]; it should also
increase the chances that adjacent objects will die at
about the same time, reducing fragmentation.

27

Header �elds are usually one machine word; on most
modern machines, that is four 8-bit bytes, or 32 bits.
(For convenience, we will assume that the word size
is 32 bits, unless indicated otherwise.) In most sit-
uations, there is enough room in one machine word
to store a size �eld plus two or three one-bit \ags"
(boolean �elds). This is because most systems allocate
all heap-allocated objects on whole-word or double-
word address boundaries, but most hardware is byte-
addressable.51 (This constraint is usually imposed by
compilers, because hardware issues make unaligned
data slower|or even illegal|to operate on.)
This alignment means that partial words cannot be

allocated|requests for non-integral numbers of words
are rounded up to the nearest word. The rounding to
word (or doubleword) boundaries ensures that the low
two (or three) bits of a block address are always zero.
Header �elds are convenient, but they consume

space|e.g., a word per block. It is common for block
sizes in many modern systems to average on the or-
der of 10 words, give or take a factor of two or so,
so a single word per header may increase memory us-
age by about 10% [BJW70, Ung86, ZG92, DDZ93,
WJNB95].

Boundary tags. Many allocators that support gen-
eral coalescing are implemented using boundary tags

(due to Knuth [Knu73]) to support the coalescing of
free areas. Each block of memory has a both header
and a \footer" �eld, both of which record the size of
the block and whether it is in use. (A footer, as the
name suggests, is a hidden �eld within the block, at
the opposite end from the header.) When a block is
freed, the footer of the preceding block of memory is
examined to see if it is free; likewise, the header of the
following block is examined. Adjacent free areas are
merged to form larger free blocks.
Header and footer overhead are likely to be signi�-

cant|with an average object size of about ten words,
for example, a one-word header incurs a 10% overhead
and a one-word footer incurs another 10%.
Luckily there is a simple optimization that can

avoid the footer overhead.52 Notice that when an

51 For doubleword aligned systems, it is still possible to use
a one-word header while maintaining alignment. Blocks
are allocated \o� by one" from the doubleword boun-
dary, so that the part of the block that actually stores
an object is properly aligned.

52 This optimization is described in [Sta80], but it appears
not to have been noticed and exploited by most imple-

block is in use (holding a live object), the size �eld in
the footer is not actually needed|all that is needed
is the ag bit saying that the storage is unavailable
for coalescing. The size �eld is only needed when the
block is free, so that its header can be located for co-
alescing. The size �eld can therefore be taken out of
the last word of the block of memory|when the block
is allocated, it can be used to hold part of the object;
when the object is freed, the size �eld can be copied
from the header into the footer, because that space is
no longer needed to hold part of the object.
The single bit needed to indicate whether a block

is in use can be stolen from the header word of the
following block without unduly limiting the range of
the size �eld.53

Link �elds within blocks. For allocators using free
lists or indexing trees to keep track of free blocks, the
list or tree nodes are generally embedded in the free
blocks themselves. Since only free blocks are recorded,
and since their space would otherwise be wasted, it is
usually considered reasonable to use the space within
the \empty" blocks to hold pointers linking them
together. Space for indexing structures is therefore
\free" (almost).
Many systems use doubly-linked linear lists, with a

\previous" and \next" pointer taken out of the free
area. This supports fast coalescing; when objects are
merged together, at least one of them must be re-
moved from the linked list so that the resulting block
will appear only once in the list. Having pointers to
both the predecessor and successor of a block makes it
possible to quickly remove the block from the list, by
adjusting those objects' \next" and \previous" point-
ers to skip the removed object.
Some other allocators use trees, with space for the

\left child" and \right child" (and possibly \parent")
pointers taken out of the free area.
The hidden cost of putting link �elds within blocks

is that the block must be big enough to hold them,
along with the header �eld and footer �eld, if any. This
imposes a minimum block size on the allocator imple-

mentors of actual systems, or by researchers in recent
years.

53 Consider a 32-bit byte-addressed system where blocks
may be up to 4GB. As long as blocks are word-aligned,
the least signi�cant bits of a block address are always
zero, so those two \low bits" can be used to hold the
two ags. In a doubleword-aligned system, three \low
bits" are available.

28

mentation, and any smaller request must be rounded
up to that size. A common situation is having a header
with a size �eld and boundary tags, plus two point-
ers in each block. This means that the smallest block
size must be at least three words. (For doubleword
alignment, it must be four.)
Assuming only the header �eld is needed on allo-

cated blocks, the e�ective object size is three words
for one-, two-, or three-word objects. If many objects
are only one or two words long|and two is fairly
common|signi�cant space may be wasted.

Lookup tables. Some allocators treat blocks within
ranges of sizes similarly|rather than indexing free
blocks by their exact size, they lump together blocks
of roughly the same size. The size range may also be
important to the coalescing mechanism. Powers of two
are often used, because it is easy to use bit selection
techniques on a binary representation of the size to �g-
ure out which power-of-two range it falls into. Powers
of two are coarse, however, and can have drawbacks,
which we'll discuss later.
Other functions (such as Fibonacci series) may be

more useful, but they are more expensive to compute
at run time. A simple and e�ective solution is to use
a lookup table, which is simply an array, indexed by
the size, whose values are the numbers of the ranges.
To look up which range a size falls into, you simply
index into the array and fetch the value stored there.
This technique is simple and very fast.
If the values used to index into the table are poten-

tially large, however, the lookup table itself may be
too big. This is often avoided by using lookup tables
only for values below some threshold (see below).

Special treatment of small objects. In most sys-
tems, many more small objects are allocated than
large ones. It is therefore often worthwhile to treat
small objects specially, in one sense or another. This
can usually be done by having the allocator check to
see if the size is small, and if so, use an optimized
technique for small values; for large values, it may use
a slower technique.
One application of this principle is to use a fast

allocation technique for small objects, and a space-
e�cient technique for large ones. Another is to use fast
lookup table techniques for small values, and slower
computations for large ones, so that the lookup ta-
bles don't take up much space. In this case, consider
the fact that it is very di�cult for a program to use

a large number of large objects in a short period of
time|it generally must do something with the space
it allocates, e.g., initialize the �elds of the allocated
objects, and presumably do something more with at
least some of their values. For some moderate object
size and above, the possible frequency of allocations
is so low that a little extra overhead is not signi�cant.
(Counterexamples are possible, of course, but we be-
lieve they are rare.) The basic idea here is to ensure
that the time spent allocating a block is small relative
to the computations on the data it holds.

Special treatment of the end block of the heap.

The allocator allocates memory to programs on re-
quest, but the allocator itself must get memory from
somewhere. The most common situtation in modern
systems is that the heap occupies a range of virtual
addresses and grows \upward" through the address
space. To request more (virtual) memory, a system
call such as the UNIX brk()54 call is used to re-
quest that storage be mapped to that region of address
space, so that it can be used to hold data.55 Typically,
the allocator keeps a \high-water mark" that divides
memory into the part that is backed by storage and
the part that is not.

(In systems with a �xed memory, such as some non-
virtual memory systems, many allocators maintain a
similar high-water mark for their own purposes, to
keep track of which part of memory is in use and which
part is a large contiguous free space.)

We will generally assume that a paged virtual mem-
ory is in use. In that case, the system call that obtains
more memory obtains some integral number of pages,
(e.g., 4KB, 8KB, 12KB, or 16KB on a machine with
4KB pages.) If a larger block is requested, a larger
request (for as many pages as necessary) is made.

Typically the allocator requests memory from the
operating system when it cannot otherwise satisfy a
memory request, but it actually only needs a small
amount of memory to satisfy the request (e.g., 10
words). This raises the question of what is done with
the rest of the memory returned by the operating sys-
tem.

54 brk() is often called indirectly, via the library routine
sbrk().

55 Other arrangements are possible. For example, the heap
could be backed by a (growable) memory-mapped �le, or
several �les mapped to non-contiguous ranges of address
space.

29

While this seems like a trivial bookkeeping matter,
it appears that the treatment of this \end block" of
memory may have signi�cant policy consequences un-
der some circumstances. (We will return to this issue
in Section 3.5.)

3.3 Basic Mechanisms

We will now present a relatively conventional taxon-
omy of allocators, based mostly on mechanisms, but
along the way we will point out policy issues, and
alternative mechanisms that can implement similar
policies. (We would prefer a strategy-based taxonomy,
but strategy issues are so poorly understood that they
would provide little structure. Our taxonomy is there-
fore roughly similar to some previous ones (particu-
larly Standish's [Sta80]), but more complete.)
The basic allocator mechanisms we discuss are:

{ Sequential Fits, including �rst �t, next �t, best
�t, and worst �t,

{ Segregated Free Lists, including simple segregated
storage and segregated �ts,

{ Buddy Systems, including conventional binary,
weighted, and Fibonacci buddies, and double
buddies,

{ Indexed Fits, which use structured indexes to im-
plement a desired �t policy, and

{ Bitmapped Fits, which are a particular kind of
indexed �ts.

The section on sequential �ts, below, is particularly
important|many basic policy issues arise there, and
the policy discussion is applicable to many di�erent
mechanisms.
After describing these basic allocators, we will dis-

cuss deferred coalescing techniques applicable to all of
them.

3.4 Sequential Fits

Several classic allocator algorithms are based on
having a single linear list of all free blocks of
memory. (The list is often doubly-linked and/or
circularly-linked.) Typically, sequential �ts algorithms
use Knuth's boundary tag technique, and a doubly-
linked list to make coalescing simple and fast.
In considering sequential �ts, it is probably most

important to keep strategy and policy issues in mind.
The classic linear-list implementations may not scale

well to large heaps, in terms of time costs; as the num-
ber of free blocks grows, the time to search the list
may become unacceptable.56 More e�cient and scal-
able techniques are available, using totally or partially
ordered trees, or segregated �ts (see Section 3.6).57

Best �t. A best �t sequential �ts allocator searches
the free list to �nd the smallest free block large enough
to satisfy a request. The basic strategy here is to min-
imize the amount of wasted space by ensuring that
fragments are as small as possible. This strategy might
back�re in practice, if the �ts are too good, but not
perfect|in that case, most of each block will be used,
and the remainder will be quite small and perhaps
unusable.58

In the general case, a best �t search is exhaustive,
although it may stop when a perfect �t is found. This
exhaustive search means that a sequential best �t
search does not scale well to large heaps with many
free blocks. (Better implementations of the best �t
policy therefore generally use indexed �ts or segrega-
ted �ts mechanisms, described later.)
Best �t generally exhibits quite good memory usage

(in studies using both synthetic and real traces). Var-
ious scalable implementations have been built using
balanced binary trees, self-adjusting trees, and segre-
gated �ts (discussed later).
The worst-case performance of best �t is poor, with

its memory usage proportional to the product of the
amount of allocated data and the ratio between the
largest and smallest object size (i.e., Mn) [Rob77].
This appears not to happen in practice, or at least
not commonly.

First �t. First �t simply searches the list from the be-
ginning, and uses the �rst free block large enough to

56 This is not necessarily true, of course, because the aver-
age search time may be much lower than the worst case.
For robustly good performance, however, it appears that
simple linear lists should generally be avoided for large
heaps.

57 The confusion of mechanism with strategy and pol-
icy has sometimes hampered experimental evaluations;
even after obviously scalable implementations had been
discussed in the literature, later researchers often ex-
cluded sequential �t policies from consideration due to
their apparent time costs.

58 This potential accumulation of small fragments (often
called \splinters" or \sawdust") was noted by Knuth
[Knu73], but it seems not to be a serious problem for
best �t, with either real or synthetic workloads.

30

satisfy the request. If the block is larger than neces-
sary, it is split and the remainder is put on the free
list.
A problem with sequential �rst �t is that the larger

blocks near the beginning of the list tend to be split
�rst, and the remaining fragments result in having a
lot of small blocks near the beginning of the list. These
\splinters" can increase search times because many
small free blocks accumulate, and the search must go
past them each time a larger block is requested. Clas-
sic (linear) �rst �t therefore may scale poorly to sys-
tems in which many objects are allocated and many
di�erent-sized free blocks accumulate.
As with best �t, however, more scalable implemen-

tations of �rst �t are possible, using more sophisti-
cated data structures. This is somewhat more di�cult
for �rst �t, however, because a �rst �t search must
�nd the �rst block that is also large enough to hold
the object being allocated. (These techniques will be
discussed under the heading of Indexed Fits, in Sec-
tion 3.8.)
This brings up an important policy question: what

ordering is used so that the \�rst" �t can be found?
When a block is freed, at what position is it inserted
into the ordered set of free blocks? The most obvious
ordering is probably to simply push the block onto
the front of the free list. Recently-freed blocks would
therefore be \�rst," and tend to be reused quickly, in
LIFO (last-in-�rst-out) order. In that case, freeing is
very fast but allocation requires a sequential search.
Another possibility is to insert blocks in the list in
address order, requiring list searches when blocks are
freed, as well as when they are allocated.
An advantage of address-ordered �rst �t is that the

address ordering encodes the adjacency of free blocks;
this information can be used to support fast coales-
cing. No boundary tags or double linking (backpoint-
ers) are necessary. This can decrease the minimum
object size relative to other schemes.59

59 Another possible implementation of address-ordered
�rst �t is to use a linked list of all blocks, allocated or
free, and use a size �eld in the header of each block as a
\relative" pointer (o�set) to the beginning of the next
block. This avoids the need to store a separate link �eld,
making the minimum object size quite small. (We've
never seen this technique described, but would be sur-
prised if it hasn't been used before, perhaps in some
of the allocators described in [KV85].) If used straight-
forwardly, such a system is likely to scale very poorly,
because live blocks must be traversed during search, but
this technique might be useful in combination with some

In experiments with both real and synthetic traces,
it appears that address-ordered �rst �t may cause sig-
ni�cantly less fragmentation than LIFO-ordered �rst
�t (e.g., [Wei76, WJNB95]); the address-ordered vari-
ant is the most studied, and apparently the most used.
Another alternative is to simply push freed blocks

onto the rear of a (doubly-linked) list, opposite the
end where searches begin. This results in a FIFO
(�rst-in-�rst-out) queue-like pattern of memory use.
This variant has not been considered in most stud-
ies, but recent results suggest that it can work quite
well|better than the LIFO ordering, and perhaps as
well as address ordering [WJNB95].
A �rst �t policy may tend over time toward behav-

ing rather like best �t, because blocks near the front
of the list are split preferentially, and this may result
in a roughly size-sorted list.60 Whether this happens
for real workloads is unknown.

Next �t. A common \optimization"of �rst �t is to use
a roving pointer for allocation [Knu73]. The pointer
records the position where the last search was satis-
�ed, and the next search begins from there. Successive
searches cycle through the free list, so that searches
do not always begin in the same place and result in an
accumulation of splinters. The usual rationale for this
is to decrease average search times when using a linear
list, but this implementation technique has major ef-
fects on the policy (and e�ective strategy) for memory
reuse.
Since the roving pointer cycles through memory

regularly, objects from di�erent phases of program
execution may become interspersed in memory. This
may a�ect fragmentation if objects from di�erent
phases have di�erent expected lifetimes. (It may also
seriously a�ect locality. The roving pointer itself may
have bad locality characteristics, since it examines
each free block before touching the same block again.
Worse, it may a�ect the locality of the program it allo-

cates for, by scattering objects used by certain phases
and intermingling them with objects used by other
phases.)
In several experiments using both real traces

[WJNB95] and synthetic traces (e.g., [Bay77, Wei76,
Pag84, KV85]), next �t has been shown to cause more

other indexing structure.
60 This has also been observed by Ivor Page [Pag82] in ran-

domized simulations, and similar (but possibly weaker)
observations were made by Knuth and Shore and others
in the late 1960's and 1970's. (Section 4.)

31

fragmentation than best �t or address-ordered �rst �t,
and the LIFO-order variant may be signi�cantly worse
than address order [WJNB95].
As with the other sequential �ts algorithms, scal-

able implementations of next �t are possible using
various kinds of trees rather than linear lists.

3.5 Discussion of Sequential Fits and

General Policy Issues.

The sequential �ts algorithms have many possible
variations, which raise policy issues relevant to most
other kinds of allocators as well.

List order and policy. The classic �rst �t or next �t
mechanisms may actually implement very di�erent
policies, depending on exactly how the free list is
maintained. These policy issues are relevant to many
other allocation mechanisms as well, but we will dis-
cuss them in the context of sequential �ts for con-
creteness.
LIFO-ordered variants of �rst �t and next �t push

freed blocks onto the front of the list, where they will
be the next considered for reuse. (In the case of next
�t, this immediate reuse only happens if the next al-
location request can be satis�ed by that block; other-
wise the roving pointer will rove past it.)
If a FIFO-ordered free list is used, freed blocks may

tend not to be reused for a long time. If an address-
ordered free list is used, blocks toward one end of
memory will tend to be used preferentially. Seemingly
minor changes to a few of lines of code may change
the placement policy dramatically, and in e�ect im-

plement a whole new strategy with respect to the reg-

ularities of the request stream.
Address-ordered free lists may have an advantage

in that they tend to pack one end of memory with
live objects, and gradually move upward through the
address space. In terms of clustering related objects,
the e�ects of this strategy are potentially complex. If
adjacent objects tend to die together, large contiguous
areas of memory will come free, and later be carved
up for consecutively-allocated objects. If deaths are
scattered, however, scattered holes will be �lled with
related objects, perhaps decreasing the chances of con-
tiguous areas coming free at about the same time.
(Locality considerations are similarly complex.)
Even for best �t, the general strategy does not de-

termine an exact policy. If there are multiple equally-
good best �ts, how is the tie broken? We do not know

whether this choice actually occurs often in practice.
It may be that large blocks tend to come free due
to clustered deaths. If free blocks become scattered,
however, it choosing among them may be particularly
signi�cant.

Splitting. A common variation is to impose a splitting
threshold, so that blocks will not be split if they are
already small. Blocks generally can't be split if the re-
sulting remainder is smaller than the minimum block
size (big enough to hold the header (and possibly a
footer) plus the free list link(s)). In addition, the allo-
cator may choose not to split a block if the remainder
is \too small," either in absolute terms [Knu73] or
relative to the size of the block being split [WJNB95].
This policy is intended to avoid allocating in the

remainder a small object that may outlive the large
object, and prevent the reclamation of a larger free
area. Splitting thresholds do not appear to be helpful
in practice, unless (perhaps) they are very small.
Splitting raises other policy questions; when a block

is split, where is the remainder left in the free list?
For address-ordered variants, there is no choice, but
for others, there are several possibilities|leave it at
the point in the list where the split block was found
(this seems to be common), or put it on one end or
the other of the free list, or anywhere in between.61

And when the block is split, is the �rst part used, or
the last, or even the middle?62

Other policies. Sequential �ts techniques may also be
used to intentionally implement unusual policies.
One policy is worst �t, where the largest free block

is always used, in the hope that small fragments will
not accumulate. The idea of worst �t is to avoid creat-
ing small, unusable fragments by making the remain-
der as large as possible. This extreme policy seems

61 Our guess is that putting it at the head of the list would
be advantageous, all other things being equal, to in-
crease the chances that it would be used soon. This
might tend to place related objects next to each other
in memory, and decrease fragmentaton if they die at
about the same time. On the other hand, if the remain-
der is too small and only reusable for a di�erent size,
this might make it likely to be used for a di�erent pur-
pose, and perhaps it should not be reused soon.

62 Using the last part has the minor speed advantage that
the �rst part can be left linked where it is in the free
list|if that is the desired policy|rather than unlinking
the �rst part and having to link the remainder back into
the list.

32

to work quite badly (in synthetic trace studies, at
least)|probably because of its tendency to ensure
that there are no very large blocks available. The gen-
eral idea may have some merit, however, as part of a
combination of strategies.
Another policy is so-called \optimal �t," where a

limited search of the list is usually used to \sample"
the list, and a further search �nds a �t that is as good
or better [Cam71].63

Another policy is \half �t" [FP74], where the allo-
cator preferentially splits blocks twice the requested
size, in hopes that the remainder will come in handy
if a similar request occurs soon.

Scalability.As mentioned before, the use of a
sequentially-searched list poses potentially serious
scalability problems|as heaps become large, the
search times can in the worst case be proportional
to the size of the heap. The use of balanced binary
trees, self-adjusting (\splay") trees,64 or partially or-
dered trees can reduce the worst-case performance so
that it is logarithmic in the number of free blocks,
rather than linear.65

Scalability is also sensitive to the degree of fragmen-
tation. If there are many small fragments, the free list
will be long and may take much longer to search.

Plausible pathologies. It may be worth noting that
LIFO-ordered variants of �rst �t and next �t can suf-
fer from severe fragmentation in the face of certain
simple and plausible patterns of allocation and deal-
location. The simplest of these is when a program re-
peatedly does the following:

1. allocates a (short-lived) large object,
2. allocates a long-lived small object, and

63 This is not really optimal in any useful sense, of course.
See also Page's critique in [Pag82] (Section 4.1).

64 Splay trees are particularly interesting for this appli-
cation, since they have an adaptive characteristic that
may adjust well to the patterns in allocator requests, as
well as having amortized complexity within a constant
factor of optimal [ST85].

65 We suspect that earlier researchers often simply didn't
worry about this because memory sizes were quite small
(and block sizes were often rather large). Since this point
was not generally made explicit, however, the obvious
applicability of scalable data structures was simply left
out of most discussions, and the confusion between pol-
icy and mechanism became entrenched.

3. allocates another short-lived large object of the
same size as the freed large object.

In this case, each time a large block is freed, a small
block is soon taken out of it to satisfy the request for
the small object. When the next large object is allo-
cated, the block used for the previously-deallocated
large object is now too small to hold it, and more
memory must be requested from the operating sys-
tem. The small objects therefore end up e�ectively
wasting the space for large objects, and fragmenta-
tion is proportional to the ratio of their sizes. This
may not be a common occurrence, but it has been
observed to happen in practice more than once, with
severe consequences.66

A more subtle possible problem with next �t is
that clustered deallocations of di�erent-sized objects
may result in a free list that has runs of similar-sized
blocks, i.e., batches of large blocks interspersed with
batches of small blocks. The occasional allocation of
a large object may often force the free pointer past
many small blocks, so that subsequent allocations are
more likely to carve small blocks out of large blocks.
(This is a generalization of the simple kind of loop-
ing behavior that has been shown to be a problem for
some programs.)
We do not yet know whether this particular kind of

repetitive behavior accounts for much of the fragmen-
tation seen for next �t in several experiments.

Treatment of the end block. As mentioned before, the
treatment of the last block in the heap|at the point
where more memory is obtained from the operating
system, or from a preallocated pool|can be quite
important. This block is usually rather large, and a
mistake in managing it can be expensive. Since such
blocks are allocated whenever heap memory grows,
consistent mistakes could be disastrous [KV85]|all
of the memory obtained by the allocator could get
\messed up" soon after it comes under the allocator's
control.
There is a philosophical question of whether the end

block is \recently freed" or not. On the one hand, the
block just became available, so perhaps it should be
put on whichever end of the free list freed blocks are
put on. On the other hand, it's not being freed|in a

66 One example is in an early version of the large object
manager for the Lucid Common Lisp system (Jon L.
White, personal communication, 1991); another is men-
tioned in [KV85] (Section 4.1).

33

sense, the end block has been there all along, ignored
until needed. Perhaps it should go on the opposite end
of the list because it's conceptually the oldest block|
the very large block that contains all as-yet-unused
memory.

Such philosophical �ne points aside, there is the
practical question of how to treat a virgin block of sig-
ni�cant size, to minimize fragmentation. (This block is
sometimes called \wilderness" [Ste83] to signify that
it is as yet unspoiled.)

Consider what happens if a �rst �t or next �t pol-
icy is being used. In that case, the allocator will most
likely carve many small objects out of it immediately,
greatly increasing the chances of being unable to re-
cover the contiguous free memory of the block. On
the other hand, putting it on the opposite end of the
list will tend to leave it unused for at least a while,
perhaps until it gets used for a larger block or blocks.
An alternative strategy is to keep the wilderness block
out of the main ordering data structure entirely, and
only carve blocks out of it when no other space can be
found. (This \wilderness" block can also be extended
to include more memory by expanding the heap seg-
ment, so that the entire area above the high-water
mark is viewed as a single huge block.67) Korn and
Vo call this a \wilderness preservation heuristic," and
report that it is helpful for some allocators [KV85]
(No quantitative results are given, however.)

For policies like best �t and address-ordered �rst �t,
it seems natural to simply put the end block in the in-
dexing structure like any other block. If the end block
is viewed as part of the (very large) block of as-yet-
unused memory, this means that a best �t or address-
ordered �rst �t policy will always use any other avail-
able memory before carving into the wilderness. If it

67 In many simple UNIX and roughly UNIX-like systems,
the allocator should be designed so that other routines
can request pages from the operating system by extend-
ing the (single) \data segment" of the address space. In
that case, the allocator must be designed to work with
a potentially non-contiguous set of pages, because there
may be intervening pages that belong to di�erent rou-
tines. (For example, our Texas persistent store allows
the data segment to contain interleaved pages belong-
ing to a persistent heap and a transient heap [SKW92].)
Despite this possible interleaving of pages used by

di�erent modules, extending the heap will typically just
extend the \wilderness block," because it's more likely
that successive extensions of the data segment are due
to requests by the allocator, than that memory requests
from di�erent sources are interleaved.

is not viewed this way, the end block will usually be a
little less than a page (or whatever unit is used to ob-
tain memory from the operating system); typically, it
will not be used to satisfy small requests unless there
are no other similarly-large blocks available.
We therefore suspect|but do not know|that it

does not matter much whether the block is viewed as
the beginning of a huge block, or as a moderate-sized
block in its own right, as long as the allocator tends
to use smaller or lower-addressed blocks in preference
to larger or higher-addressed blocks.68

Summary of policy issues. While best �t and address-
ordered �rst �t seem to work well, it is not clear that
other policies can't do quite as well; FIFO-ordered
�rst �t may be about as good.
The sensitivity of such results to slight di�erences

in mechanical details suggests that we do not have
a good model of program behavior and allocator
performance|at this point, it is quite unclear which
seemingly small details will have signi�cant policy
consequences.
Few experiments have been performed with novel

policies and real program behavior; research has
largely focused on the obvious variations of algorithms
that date from the early 1960's or before.69

Speculation on strategy issues. We have observed that
best �t and address-ordered �rst �t perform quite sim-
ilarly, for both real and synthetic traces.
Page [Pag82] has observed that (for random traces

using uniform distributions), the short-term place-
ment choices made by best �t and address-ordered

68 It is interesting to note, however, that the direction
of the address ordering matters for �rst �t, if the end
block is viewed as the beginning of a very large block
of all unused memory. If reverse-address-order is used,
it becomes pathological. It will simply march through
all of \available" memory|i.e., all memory obtainable
from the operating system|without reusing any mem-
ory. This suggests to us that address-ordered �rst �t (us-
ing the usual preference order) is somehow more \right"
than its opposite, at least in a context where the size of
memory can be increased.

69 Exceptions include Fenton and Payne's \half �t" pol-
icy (Section 4.1), and Beck's \age match" policy (Sec-
tion 4.1). Barrett and Zorn's \lifetime prediction" allo-
cator (Section 4.2) is the only recent work we know of
(for conventional allocators) that adopts a novel and ex-
plicit strategy to exploit interesting regularities in real
request streams.

34

�rst �t were usually identical. That is, if one of these
policies was used up to a certain point in a trace,
switching to the other for the next allocation request
usually did not change the placement decision made
for that request.

We speculate that this reects a fundamental simi-
larity between best �t and address-ordered �rst �t, in
terms of how they exploit regularities in the request
stream. These allocators seem to perform well|and
very similarly|for both real and randomized work-
loads. In some sense, perhaps, each is an approxima-
tion of the other.
But a more important question is this: what is the

successful strategy that both of these policies imple-

ment?

One possibility is something we might call the
\open space preservation" heuristic, i.e., try not to cut
into relatively large unspoiled areas.70 At some level,
of course, this is obvious|it's the same general idea
that was behind best �t in the �rst place, over three
decades ago.
As we mentioned earlier, however, there are at least

two ideas behind best �t, at least in our view:

{ Minimize the remainder|i.e., if a block must be
split, split the block that will leave the small-
est remainder. If the remainder goes unused, the
smaller it is, the better.

{ Don't break up large free areas unnnecessarily|
preferentially split areas that are already small,
and hence less likely to be exibly usable in the
future.

In some cases, the �rst principle may be more im-
portant, while the second may be more important in
other cases. Minimizing the remainder may have a
tendency to result in small blocks that are unlikely
to be used soon; the result may be similar to hav-
ing a splitting threshold, and to respect the second
principle.71

These are very di�erent strategies, at least on the
surface. It's possible that these strategies can be com-
bined in di�erent ways|and perhaps they are com-

70 Korn and Vo's \wilderness preservation heuristic" can
be seen as a special case or variant of the \open space
preservation heuristic."

71 This could explain why explicit splitting thresholds
don't seem to be very helpful|policies like best �t
may already implement a similar strategy indirectly, and
adding an explicit splitting threshold may be overkill.

bined in di�erent ways by best �t and address-ordered
�rst �t.

Shore [Sho75] designed and implemented a hybrid
best �t/�rst �t policy that outperformed either plain
�rst �t or plain best �t for his randomized workloads.
(Discussed in Section 4.1.) The strategic implications
of this hybrid policy have not been explored, and it is
unclear whether they apply to real workloads. Shore's
results should be interpreted with considerable cau-
tion, because real workloads exhibit regularities (e.g.,
plateaus and ramps) that seem likely to interact with
these strategies in subtle ways.72

Address-ordered �rst �t seems likely to have other
strategic implications as well. The use of address
ordering seems likely to result in clustering of re-
lated data under some circumstances, increasing the
chances that contiguous areas will come free, if the
related objects die together. However, in cases where
free blocks are small, of varied sizes, and widely scat-
tered, �rst �t may tend to decluster related objects, as
will best �t. Amending these policies may allow bet-
ter clustering, which could be important for long-run
fragmentation.

It should now be quite unclear why best �t and
address-ordered �rst �t work well in practice, and
whether they work for the same reasons under ran-
domized workloads as for real workloads.

For randomized workloads, which cause more scat-
tered random deaths, there may be very few place-
ment choices, and little contiguous free memory. In
that case, the strategy of minimizing the remainder
may be crucial. For real workloads, however, large
contiguous areas may come free at the ends of phases,
and tend to be carved up into small blocks by later
phases as live data accumulate. This may often re-
sult in contiguous allocation of successively-allocated
blocks, which will again create large free blocks when
they die together at the end of the later phase. In
that case, the e�ects of small \errors" due to unusually
long-lived objects may be important; they may lead to
cumulative fragmentation for long-running programs,
or fragmentation may stabilize after a while. We sim-
ply don't know.

There are many possible subtle interactions and
strategic implications, all of which are quite poorly

72 For example, address-ordered �rst �t has a tendency to
pack one end of memory with live data, and leave larger
holes toward the other end. This seems particularly rele-
vant to programs that allocate large and very long-lived
data structures near the beginning of execution.

35

understood for these seemingly simple and very pop-
ular policies.

3.6 Segregated Free Lists

One of the simplest allocators uses an array of free
lists, where each list holds free blocks of a particular
size [Com64]. When a block of memory is freed, it is
simply pushed onto the free list for that size. When a
request is serviced, the free list for the appropriate size
is used to satisfy the request. There are several impor-
tant variations on this segregated free lists scheme.

It is important to note that blocks in such schemes
are logically segregated in terms of indexing, but usu-
ally not physically segregated in terms of storage.
Many segregated free list allocators support general
splitting and coalescing, and therefore must allow
mixing of blocks of di�erent sizes in the same area
of memory.

One common variation is to use size classes to lump
similar sizes together for indexing purposes, and use
free blocks of a given size to satisfy a request for that
size, or for any size that is slightly smaller (but still
larger than any smaller size class). A common size-
class scheme is to use sizes that are a power of two
apart (e.g., 4 words, 8 words, 16 words...) and round
the requested size up to the nearest size class; how-
ever, closer size class spacings have also been used,
and are usually preferable.

Simple segregated storage. In this variant, no splitting
of free blocks is done to satisfy requests for smaller
sizes. When a request for a given size is serviced, and
the free list for the appropriate size class is empty,
more storage is requested from the underlying oper-
ating system (e.g., using UNIX sbrk() to extend the
heap segment); typically one or two virtual memory
pages are requested at a time, and split into same-
sized blocks which are then strung together and put
on the free list. We call this simple segregated stor-

age because the result is that pages (or some other
relatively large unit) contain blocks of only one size
class. (This di�ers from the traditional terminology in
an important way. \Segregated storage" is commonly
used to refer both to this kind of scheme and what
we call segregated �ts [PSC71]. We believe this ter-
minology has caused considerable confusion, and will
generally avoid it; we will refer to the larger class as
\segregated free list" schemes, or use the more spe-

ci�c terms \simple segregated storage" and \segrega-
ted �ts."73)

An advantage of this simple scheme is that no head-
ers are required on allocated objects; the size informa-
tion can be recorded for a page of objects, rather than
for each object individually. This may be important
if the average object size is very small. Recent stud-
ies indicate that in modern programs, the average ob-
ject size is often quite small by earlier standards (e.g.,
around 10 words [WJNB95]), and that header and
footer overheads alone can increase memory usage by
ten percent or twenty percent [ZG92, WJNB95]. This
is comparable to the \real" fragmentation for good
allocators [WJNB95].

Simple segregated storage is quite fast in the usual
case, especially when objects of a given size are repeat-
edly freed and reallocated over short periods of time.
The freed blocks simply wait until the next allocation
of the same size, and can be reallocated without split-
ting. Allocation and freeing are both fast constant-
time operations.

The disadvantage of this scheme is that it is sub-
ject to potentially severe external fragmentation|no
attempt is made to split or coalesce blocks to satisfy
requests for other sizes. The worst case is a program
that allocates many objects of one size class and frees
them, then does the same for many other size classes.
In that case, separate storage is required for the max-
imum volume of objects of all sizes, because none of
memory allocated to one size block can be reused for
the another.

There is some tradeo� between expected internal
fragmentation and external fragmentation; if the spac-
ing between size classes is large, more di�erent sizes
will fall into each size class, allowing space for some
sizes to be reused for others. (In practice, very coarse
size classes generally lose more memory to internal
fragmentation than they save in external fragmen-
tation.) In the worst case, memory usage is propor-
tional to the product of the maximum amount of live
data (plus worst-case internal fragmentation due to
the rounding up of sizes) and the number of size clas-
ses.

A crude but possibly e�ective form of coalescing for

73 Simple segregated storage is sometimes incorrectly
called a buddy system; we do not use that terminol-
ogy because simple segregated storage does not use a
buddy rule for coalescing|no coalescing is done at all.
(Standish [Sta80] refers to simple segregated storage as
\partitioned storage.")

36

simple segregated storage (used by Mike Haertel in a
fast allocator [GZH93, Vo95], and in several garbage
collectors [Wil95]) is to maintain a count of live ob-
jects for each page, and notice when a page is entirely
empty. If a page is empty, it can be made available for
allocating objects in a di�erent size class, preserving
the invariant that all objects in a page are of a single
size class.74

Segregated �ts. This variant uses an array of free lists,
with each array holding free blocks within a size class.
When servicing a request for a particular size, the free
list for the corresponding size class is searched for a
block at least large enough to hold it. The search is
typically a sequential �ts search, and many signi�cant
variations are possible (see below). Typically �rst �t
or next �t is used. It is often pointed out that the use
of multiple free lists makes the implementation faster
than searching a single free list. What is sometimes
not appreciated is that this also a�ects the placement
in a very important way|the use of segregated lists
excludes blocks of very di�erent sizes, meaning good

�ts are usually found|the policy therefore embodies
a good �t or even best �t strategy, despite the fact that
it's often described as a variation on �rst �t.
If there is not a free block in the appropriate free

list, segregated �ts algorithms try to �nd a larger
block and split it to satisfy the request. This usually
proceeds by looking in the list for the next larger size
class; if it is empty, the lists for larger and larger sizes
are searched until a �t is found. If this search fails,
more memory is obtained from the operating system
to satisfy the request. For most systems using size
classes, this is a logarithmic-time search in the worst
case. (For example for powers-of-two size classes, the
total number of lists is equal to the logarithm of the
maximumblock size. For a somewhat more re�ned se-
ries, it is still generally logarithmic, but with a larger
constant factor.)
In terms of policy, this search order means that

smaller blocks are used in preference to larger ones,

74 This invariant can be useful in some kinds of systems,
especially systems that provide persistence [SKW92]
and/or garbage collection for languages such as C or
C++ [BW88, WDH89, WJ93], where pointers may
point into the interior parts of objects, and it is im-
portant to be able to �nd the object headers quickly. In
garbage-collected systems, it is common to segregated
objects by type, or by implementation-level characteris-
tics, to facilitate optimizations of type checking and/or
garbage collection [Yua90, Del92, DEB94].

as with best �t. In some cases, however, the details
of the size class system and the searching of size-class
lists may cause deviations from the best �t policy.

Note that in a segregated �ts scheme, coalescing
may increase search times. When blocks of a given
size are freed, they may be coalesced and put on dif-
ferent free lists (for the resulting larger sizes); when
the program requests more objects of that size, it may
have to �nd the larger block and split it, rather than
still having the same small blocks on the appropriate
free list. (Deferred coalescing can reduce the extent of
this problem, and the use of multiple free lists makes
segregated �ts a particularly natural context for de-
ferred coalescing.)

Segregated �ts schemes fall into three general cate-
gories:

1. Exact Lists. In exact lists systems, where there is
(conceptually) a separate free list for each possi-
ble block size [Com64]. This can result in a very
large number of free lists, but the \array" of free
lists can be represented sparsely. Standish and
Tadman's \Fast Fits" scheme75 uses an array of
free lists for small size classes, plus a binary tree
of free lists for larger sizes (but only the ones that
actually occur) [Sta80, Tad78].76

2. Strict Size Classes with Rounding.When sizes are
grouped into size classes (e.g., powers of two),
one approach is to maintain an invariant that all
blocks on a size list are exactly of the same size.
This can be done by rounding up requested sizes
to one of the sizes in the size class series, at some
cost in internal fragmentation. In this case, it is
also necessary to ensure that the size class series
is carefully designed so that split blocks always
result in a size that is also in the series; otherwise
blocks will result that aren't the right size for any
free list. (This issue will be discussed in more
detail when we come to buddy systems.)

3. Size Classes with Range Lists. The most com-
mon way of dealing with the ranges of sizes that

75 Not to be confused with Stephenson's better-known in-
dexed �ts scheme of the same name.

76 As with most tree-based allocators, the nodes of the tree
are embedded in the blocks themselves. The tree is only
used for larger sizes, and the large blocks are big enough
to hold left and right child pointers, as well as a doubly
linked list pointers. One block of each large size is part
of the tree, and it acts as the head of the doubly-linked
list of same-sized blocks.

37

fall into size classes is to allow the lists to con-
tain blocks of slightly di�erent sizes, and search
the size lists sequentially, using the classic best
�t, �rst �t, or next �t technique [PSC71]. (The
choice a�ects the policy implemented, of course,
though probably much less than in the case of
a single free list.) This could introduce a linear
component to search times, though this does not
seem likely to be a common problem in practice,
at least if size classes are closely spaced.77 78 If it
is, then exact list schemes are preferable.

An e�cient segregated �ts scheme with general
coalescing (using boundary tags) was described and
shown to perform well in 1971 [PSC71], but it did
not become well-known; Standish and Tadman's ap-
parently better scheme was published (but only in a
textbook) in 1980, and similarly did not become par-
ticularly well known, even to the present. Our impres-
sion is that these techniques have received too little
attention, while considerably more attention has been
given to techniques that are inferior in terms of scala-
bility (sequential �ts) or generality (buddy systems).
Apparently, too few researchers realized the full

signi�cance of Knuth's invention of boundary tags
for a wide variety of allocation schemes|boundary
tags can support fast and general splitting and coa-
lescing, independently of the basic indexing scheme
used by the allocator. This frees the designer to use
more sophisticated higher-level mechanisms and poli-
cies to implement almost any desired strategy. (It
seems likely that the original version of boundary tags
was initially viewed as too costly in space, in a time
when memory was a very scarce resource, and the
footer optimization [Sta80] simply never became well-
known.)

3.7 Buddy Systems

Buddy systems [Kno65, PN77] are a variant of segre-
gated lists that supports a limited but e�cient kind of
splitting and coalescing. In the simple buddy schemes,
the entire heap area is conceptually split into two
large areas, and those areas are further split into two

77 Lea's allocator uses very closely spaced size classes, di-
viding powers of two linearly into four uniform ranges.

78 Typical size distributions appear to be both spiky and
heavily skewed, so it seems likely that for small size
ranges, only zero or one actual sizes (or popular sizes)
will fall into a given range. In that case, a segregated �ts
scheme may approximate a best �t scheme very closely.

smaller areas, and so on. This hierarchical division of
memory is used to constrain where objects are allo-
cated, what their allowable sizes are, and how they
may be coalesced into larger free areas. For each al-
lowable size, a separate free list is maintained, in an
array of free lists. Buddy systems are therefore actu-
ally a special case of segregated �ts, using size classes
with rounding, and a peculiar limited technique for
splitting and coalescing.

Buddy systems therefore implement an approxima-
tion of a best �t policy, but with potentially serious
variations due to peculiarities in splitting and coales-
cing.

(In practical terms, buddy systems appear to be
distinctly inferior to more general schemes support-
ing arbitrary coalescing; without heroic e�orts at op-
timization and/or hybridization, their cost in internal
fragmentation alone seems to be comparable to the
total fragmentation costs of better schemes.)

A free block may only be merged with its buddy,
which is its unique neighbor at the same level in the
binary hierarchical division. The resulting free block
is therefore always one of the free areas at the next
higher level in the memory-division hierarchy|at any
level, the �rst block may only be merged with the fol-
lowing block, which follows it in memory; conversely,
the second block may only be merged with the �rst,
which precedes it in memory. This constraint on co-
alescing ensures that the resulting merged free area
will always be aligned on one of the boundaries of the
hierarchical splitting.

(This is perhaps best understood by example; the
reader may wish to skip ahead to the description of
binary buddies, which are the simplest kind of buddy
systems.)

The purpose of the buddy allocation constraint is to
ensure that when a block is freed, its (unique) buddy
can always be found by a simple address computation,
and its buddy will always be either a whole, entirely
free block, or an unavailable block. An unavailable
block may be entirely allocated, or may have been
split and have some of its sub-parts allocated but not
others. Either way, the address computation will al-
ways be able to locate the beginning of the buddy|it
will never �nd the middle of an allocated object. The
buddy will be either a whole (allocated or free) block
of a determinate size, or the beginning of a block of
that size that has been split in a determinate way. If
(and only if) it turns out to be the header of a free
block, and the block is the whole buddy, the buddies

38

can be merged. If the buddy is entirely or partly al-
located, the buddies cannot be merged|even if there
is an adjacent free area within the (split) buddy.
Buddy coalescing is relatively fast, but perhaps the

biggest advantage in some contexts is that it requires
little space overhead per object|only one bit is re-
quired per buddy, to indicate whether the buddy is a
contiguous free area. This can be implemented with
a single-bit header per object or free block. Unfor-
tunately, for this to work, the size of the block be-

ing freed must be known|the buddy mechanism itself
does not record the sizes of the blocks. This is work-
able in some statically-typed languages, where object
sizes are known statically and the compiler can sup-
ply the size argument to the freeing routine. In most
current languages and implementations, however, this
is not the case, due to the presence of variable-sized
objects and/or because of the way libraries are typi-
cally linked. Even in some languages where the sizes of
objects are known, the \single" bit ends up up cost-
ing an entire word per object, because a single bit
cannot be \stolen" from the space for an allocated
object|objects must be aligned on word boundaries
for architectural reasons, and there is no provision for
stealing a bit from the space allocated to an object.79

Stealing a bit from each object can be avoided, how-
ever, by keeping the bits in a separate table \o� to the
side" [IGK71], but this is fairly awkward, and such a
bit table could probably be put to better use with an
entirely di�erent basic allocation mechanism.
In practical terms, therefore, buddy systems usu-

ally require a header word per object, to record the
type and/or size. Other, less restrictive schemes can
get by with a word per object as well. Since buddy
systems also incur internal fragmentation, this appar-
ently makes buddy systems unattractive relative to
more general coalescing schemes such as segregated
�ts.80

In experiments using both real and synthetic traces,

79 In some implementations of some languages, this is less
of a problem, because all objects have headers that en-
code type information, and one bit can be reserved for
use by the allocator and ignored by the language imple-
mentation. This complicates the language implementa-
tion, but may be worthwhile if a buddy system is used.

80 Of course, buddy systems could become more attrac-
tive if it were to turn out that the buddy policy has
signi�cant bene�cial interactions with actual program
behavior, and unexpectedly reduced external fragmen-
tation or increased locality. At present, this does not
appear to be the case.

buddy systems generally exhibit signi�cantly more
fragmentation than segregated �ts and indexed �ts
schemes using boundary tags to support general co-
alescing. (Most of these results come from synthetic
trace studies, however; it appears that only two buddy
systems have ever been studied using real traces
[WJNB95].)
Several signi�cant variations on buddy systems

have been devised:

Binary buddies. Binary buddies are the simplest and
best-known kind of buddy system [Kno65]. In this
scheme, all buddy sizes are a power of two, and each
size is divided into two equal parts. This makes ad-
dress computations simple, because all buddies are
aligned on a power-of-two boundary o�set from the
beginning of the heap area, and each bit in the o�set
of a block represents one level in the buddy system's
hierarchical splitting of memory|if the bit is 0, it is
the �rst of a pair of buddies, and if the bit is 1, it
is the second. These operations can be implemented
e�ciently with bitwise logical operations.
On the other hand, systems based on closer size

class spacings may be similarly e�cient if lookup ta-
bles are used to perform size class mappings quickly.
A major problem with binary buddies is that in-

ternal fragmentation is usually relatively high|the
expected case is (very roughly) about 28% [Knu73,
PN77],81 because any object size must be rounded up
to the nearest power of two (minus a word for the
header, if the size �eld is stored).

Fibonacci buddies. This variant of the buddy scheme
uses a more closely-spaced set of size classes, based on
a Fibonacci series, to reduce internal fragmentation
[Hir73]. Since each number in the Fibonacci series is
the sum of the two previous numbers, a block can
always be split (unevenly) to yield two blocks whose
sizes are also in the series. As with binary buddies,
the increasing size of successive size ranges limits the
number of free lists required.
A further re�nement, called generalized Fibonacci

buddies [Hir73, Bur76, PN77] uses a Fibonacci-like
number series that starts with a larger number and
generates a somewhat more closely-spaced set of sizes.
A possible disadvantage of Fibonacci buddies is

that when a block is split to satisfy a request for a
particular size, the remaining block is of a di�erent

81 This �gure varies somewhat depending on the expected
range and skew of the size distribution [PN77].

39

size, which is less likely to be useful if the program
allocates many objects of the same size [Wis78].

Weighted buddies.Weighted buddy systems [SP74]
use a di�erent kind of size class series than either
binary or Fibonacci buddy systems. Some size clas-
ses can be split only one way, while other size classes
can be split in two ways. The size classes include the
powers of two, but in between each pair of successive
sizes, there is also a size that is three times a power
of two. The series is thus 2, 3, 4, 6, 8, 12... (words).
(Often, the series actually starts at 4 words.)
Sizes that are powers of two may only be split

evenly in two, as in the binary buddy system. This
always yields another size in the series, namely the
next lower power of two.
Sizes that are three times a power of two can be

split in two ways. They may be split evenly in two,
yielding a size that is another three-times-a-power-of-
two size. (E.g., a six may be split into two threes.)
They may also be split unevenly into two sizes that
are one third and two thirds of the original size; these
sizes are always a power of two. (E.g., six may be split
into two and four.).

Double buddies. Double buddy systems use a di�er-
ent technique to allow a closer spacing of size classes
[Wis78, PH86, WJNB95]. They use two di�erent bi-
nary buddy systems, with staggered sizes. For exam-
ple, one buddy system may use powers-of-two sizes (2,
4, 8, 16...) while another uses a powers-of-two spacing
starting at a di�erent size, such as 3. (The result-
ing sizes are 3, 6, 12, 24 ...). This is the same set of
sizes used in weighted buddies, but the splitting rule
is quite di�erent. Blocks may only be split in half, as
in the binary buddy system, so the resulting blocks
are always in the same binary buddy series.
Request sizes are rounded up to the nearest size

class in either series. This reduces the internal frag-
mentation by about half, but means that space used
for blocks in one size series can only coalesced or
split into sizes in that series. That is, splitting a size
whose place in the combined series is odd always pro-
duces another size whose place is odd; likewise, split-
ting an even-numbered size always produces an even-
numbered size. (E.g., a block of size 16 can be split
into 8's and 4's, and a block of size 24 can be split
into 12's and 6's, but not 8's or 4's.)
This may cause external fragmentation if blocks in

one size series are freed, and blocks in the other are

requested. As an optimization, free areas of a rela-
tively large size (e.g., a whole free page) may be made
available to the other size series and split according
to that size series' rules. (This complicates the treat-
ment of large objects, which could be treated entirely
di�erently, or by another buddy system for large units
of free storage such as pages.)
Naturally, more than two buddy systems could be

combined, to decrease internal fragmentation at a pos-
sible cost in external fragmentation due to limitations
on sharing free memory between the di�erent buddy
systems.
As with simple segregated storage, it is possible to

keep per-page counts of live objects, and notice when
an entire page is empty. Empty pages can be trans-
ferred from one buddy series to another. To our knowl-
edge, such an optimization has never been implemen-
ted for a double buddy scheme.
Buddy systems can easily be enhanced with de-

ferred coalescing techniques, as in \recombination de-
laying" buddy systems [Kau84]. Another optimization
is to tailor a buddy system's size class series to a par-
ticular program, picking a series that produces little
internal fragmentation for the object sizes the pro-
gram uses heavily.

3.8 Indexed Fits

As we saw in Section 3.4 simple linear list mechanisms
can be used to implement a wide variety of policies,
with general coalescing.
An alternative is to use a more sophisticated index-

ing data structure, which indexes blocks by exactly
the characteristics of interest to the desired policy, and
supports e�cient searching according to those char-
acteristics. We call this kind of mechanism indexed

�ts. (This is really an unsatisfying catch-all category,
showing the limitations of a mechanism-based taxon-
omy.)
The simplest example of an indexed �t scheme was

mentioned earlier, in the discussion of sequential �ts:
a best �t policy implemented using a balanced or
self-adjusting binary tree ordered by block size. (Best
�t policies may be easier to implement scalably than
address-ordered �rst �t policies.)
Another example was mentioned in the section on

segregated free lists (3.6); Standish and Tadman's ex-
act lists scheme is the limiting case of a segregated �ts
scheme, where the indexing is precise enough that no
linear searching is needed to �nd a �t. On the other

40

hand, it is also a straightforward two-step optimiza-
tion of the simple balanced-tree best �t. (The �rst
optimization is to keep a tree with only one node per
size that occurs, and hang the extra blocks of the same
sizes o� of those nodes in linear lists. The second op-
timization is to keep the most common size values in
an array rather than the tree itself.) Our mechanism-
based taxonomy is clearly showing it seams here, be-
cause the use of hybrid data structures blurs the dis-
tinctions between the basic classes of allocators.
The best-known example of an indexed �ts scheme

is probably Stephenson's \Fast Fits" allocator [Ste83],
which uses a Cartesian tree sorted on both size
and address. A Cartesian tree [Vui80] encodes two-
dimensional information in a binary tree, using two
constraints on the tree shape. It is e�ectively sorted
on a primary key and a secondary key. The tree is a
normal totally-ordered tree with respect to the pri-
mary key. With respect to the secondary key, it is a
\heap" data structure, i.e., a partially ordered tree
whose nodes each have a value greater than their de-
scendants. This dual constraint limits the ability to
rebalance the tree, because the shape of the tree is
highly constrained by the dual indexing keys.
In Stephenson's system, this indexing data struc-

ture is embedded in the free blocks of memory them-
selves, i.e., the blocks become the tree nodes in much
the same way that free blocks become list nodes in a
sequential �ts �ts scheme. The addresses of blocks are
used as the primary key, and the sizes of blocks are
used as the secondary key.
Stephenson uses this structure to implement either

an address-ordered �rst �t policy (called \leftmost
�t") or a \better �t" policy, which is intended to ap-
proximate best �t. (It is unclear how good an approx-
imation this is.)
As with address-ordered linear lists, the address or-

dering of free blocks is encoded directly in the tree
structure, and the indexing structure can be used to
�nd adjacent free areas for coalescing, with no addi-
tional overhead for boundary tags. In most situations,
however, a size �eld is still required, so that blocks
being freed can be inserted into the tree in the appro-
priate place.
While Cartesian trees give logarithmic expected

search times for random inputs, they may become un-
balanced in the face of patterned inputs, and in the
worst case provide only linear time searches.82

82 Data from [Zor93] suggest that actual performance is
reasonable for real data, being among the faster algo-

Discussion of indexed �ts. In terms of implemen-
tation, it appears that size-based policies may be eas-
ier to implement e�ciently than address-based poli-
cies; a tree that totally orders all actual block sizes
will typically be fairly small, and quick to search. If
a FIFO- or LIFO- ordering of same-sized blocks im-
plements an acceptable policy, then a linear list can
be used and no searching among same-sized blocks is
required.83 Size-based policies also easier to optimize
the common case, namely small sizes.
A tree that totally orders all block addresses may be

very much larger, and searches will take more time.
On the other hand, adaptive structures (e.g., splay
trees) may make these searches fast in the common
case, though this depends on subtleties of the request
stream and the policy that are not currently under-
stood.
Deferred coalescing may be able to reduce tree

searches to the point where the di�erences in speed are
not critical, making the fragmentation implications of
the policy more important than minor di�erences in
speed.
Totally ordered trees may not be necessary to im-

plement the best policy, whatever that should turn
out to be. Partial orders may work just as well, and
lend themselves to very e�cient and scalable imple-
mentations. At this point, the main problem does not
seem to be time costs, but understanding what policy
will yield the least fragmentation and the best locality.
Many other indexed �ts policies and mechanisms

are possible, using a variety of data structures to ac-
celerate searches. One of these is a set of free lists
segregated by size, as discussed earlier, and another
is a simple bitmap, discussed next.

3.9 Bitmapped Fits

A particularly interesting form of indexed �ts is bit-
mapped �ts, where a bitmap is used to record which

rithms used in that study, and having good memory
usage. On the other hand, data from a di�erent exper-
iment [GZ93] show it being considerably slower than a
set of allocators designed primarily for speed. Very re-
cent data [Vo95] show it being somewhat slower than
some other algorithms with similar memory usage, on
average.

83 If an algorithm relies on an awkward secondary key, e.g.,
best �t with address-ordered tie breaking, then it may
not make much di�erence what the ordering function
is|one total ordering of blocks is likely to cost about
as much as another.

41

parts of the heap area are in use, and which parts are
not. A bitmap is a simple vector of one-bit ags, with
one bit corresponding to each word of the heap area.
(We assume here that heap memory is allocated in
word-aligned units that are multiples of one word. In
some systems, double-word alignment is required for
architectural reasons. In that case, the bitmap will
include one bit for each double-word alignment boun-
dary.)

To our knowledge, bitmapped allocation has never
been used in a conventional allocator, but it is quite
common in other contexts, particularly mark-sweep
garbage collectors (notably the conservative collectors
of Boehm, et al. from Xerox PARC [BW88, BDS91,
DWH+90]84) and �le systems' disk block managers.
We suspect that the main reason it has not been used
for conventional memory allocation is that it is per-
ceived as too slow.

We believe that bitmap operations can be made fast
enough to use in allocators by the use of clever im-
plementation techniques. For example, a bitmap can
be quickly scanned a byte at a time using a 256-way
lookup table to detect whether there are any runs of
a desired length.85

If object sizes are small, bitmapped allocation may
have a space advantage over systems that use whole-
word headers. A bit per word of heap memory only
incurs a 3% overhead, while for object sizes averaging
10 words, a header incurs a 10% overhead. In the most
obvious scheme, two bitmaps are required (one to en-
code the boundaries of blocks, and another to encode
whether blocks are in use), but we believe there are
ways around that.86

84 Actually, these systems use bitmaps to detect contigu-
ous areas of free memory, but then accumulate free lists
of the detected free blocks. The advantage of this is that
a single scan through a region of the bitmap can �nd
blocks of all sizes, and make them available for fast al-
location by putting them on free lists for those sizes.

85 This can be enhanced in several ways. One enhancement
allows the fast detection of longer runs that cross 8-bit
boundaries by using a di�erent lookup tables to com-
pute the number of leading and trailing zeroes, so that
a count can be maintained of the number of zeroes seen
so far. Another is to use redundant encoding of the size
by having headers in large objects, obviating long scans
when determining the size of a block being freed.

86 It is increasingly common for allocators to ensure
double-word alignment (even on 32-bit machines),
padding requests as necessary, for architectural reasons.
In that case, half as many bits are needed. There may

Bitmapped allocators have two other advantages
compared to conventional schemes. One is that they
support searching the free memory indexed by address
order, or localized searching, where the search may
begin at a carefully-chosen address. (Address-ordered
searches may result in less fragmentation than similar
policies using some other orderings.) Another advan-
tage is that bitmaps are \o� to the side," i.e., not in-
terleaved with the normal data storage area. This may
be exploitable to improve the locality of searching it-
self, as opposed to traversing lists or trees embedded
in the storage blocks themselves. (It may also reduce
checkpointing costs in systems that checkpoint heap
memory, by improving the locality of writes; freeing
an object does not modify heap memory, only the bit-
map.) Bitmapped techniques therefore deserve further
consideration.
It may appear that bitmapped allocators are slow,

because search times are linear, and to a �rst approx-
imation this may be true. But notice that if a good
heuristic is available to decide which area of the bit-
map to search, searching is linear in the size of the
area searched, rather than the number of free blocks.
The cost of bitmapped allocation may then be pro-
portional to the rate of allocation, rather than the
number of free blocks, and may scale better than other
indexing schemes. If the associated constants are low
enough, bitmapped allocation may do quite well. It
may also be valuable in conjunction with other index-
ing schemes.

3.10 Discussion of Basic Allocator

Mechanisms.

By now it should be apparent that our conventional
taxonomy is of only very limited utility, because the
implementation focus obscures issues of policy. At a
su�ciently high level of abstraction, all of these al-
locators are really \indexed" �ts|they record which
areas of memory are free in some kind of data struc-
ture|but they vary in terms of the policies they
implement, how e�ciently their mechanisms support
the desired policy, and how exible the mechanisms
are in supporting policy variations. Even in its own
mechanism-based terms, the taxonomy is collapsing
under its own weight due to the use of hybrid algo-
rithms that can be categorized in several ways.

also be clever encodings that can make some of the bits
in a bitmap do double duty, especially if the minimum
object size is more than two alignment units.

42

Simple segregated storage is simple and quite fast|
allocation and deallocation usually take only a few
instructions each|but lacks freedom to split and co-
alesce memory blocks to support later requests for dif-
ferent-sized objects. It is therefore subject to serious
external fragmentation, as well as internal fragmenta-
tion, with some tradeo� between the two.
Buddy systems support fairly exible splitting, but

signi�cantly restricted coalescing.
Sequential �ts support exible splitting and (with

boundary tags) general coalescing, but cannot sup-
port most policies without major scalability concerns.
(More precisely, the boundary tag implementation
technique supports completely general coalescing, but
the \index" is so simple that searches may be very ex-
pensive for some policies.)
This leaves us with the more general indexed stor-

age techniques, which include tree-structured indexes,
segregated �ts using boundary tags, and bitmapped
techniques using bitmaps for both boundary tags and
indexing. All of these can be used to implement a va-
riety of policies, including exact or approximate best
�t. None of them require more space overhead per
object than buddy systems, for typical conventional
language systems, and all can be expected to have
lower internal fragmentation.
In considering any indexing scheme, issues of strat-

egy and policy should be considered carefully. Scala-
bility is a signi�cant concern for large systems, and
may become increasingly important.
Constant factors should not be overlooked, how-

ever. Alignment and header and footer costs may be
just as signi�cant as actual fragmentation. Similarly,
the speed of common operations is quite important,
as well as scalability to large heaps. In the next sec-
tion, we discuss techniques for increasing the speed of
a variety of general allocators.

3.11 Quick Lists and Deferred Coalescing

Deferred coalescing can be used with any of the ba-
sic allocator mechanisms we have described. The most
common way of doing this is to keep an array of free
lists, often called \quick lists" or \subpools" [MPS71],
one for each size of block whose coalescing is to be de-
ferred. Usually, this array is only large enough to have
a separate free list for each individual size up to some
maximum, such as 10 or 32 words; only those sizes
will be treated by deferred coalescing [Wei76]. Blocks
larger than this maximum size are simply returned
directly to the \general" allocator, of whatever type.

The following discussion describes what seems to be
a typical (or at least reasonable) arrangement. (Some
allocators di�er in signi�cant details, notably Lea's
segregated �ts scheme.)
To the general allocator, a block on a quick list ap-

pears to be allocated, i.e., uncoalescable. For example,
if boundary tags are used for coalescing, the ag in-
dicates that the block is allocated. The fact that the
block is free is encoded only in its presence on the
quick list.
When allocating a small block, the quick list for

that size is consulted. If there is a free block of that
size on the list, it is removed from the list and used.
If not, the search may continue by looking in other
quick lists for a larger-sized block that will do. If this
fails, the general allocator is used, to allocate a block
from the general pool. When freeing a small block, the
block is simply added to the quick list for that size.
Occasionally, the blocks in the quick lists are removed
and added to the general pool using the general allo-
cator to coalesce neighboring free blocks.
The quick lists therefore act as caches for the loca-

tion and size information about free blocks for which
coalescing has not been attempted, while the general
allocator acts as a \backing store" for this informa-
tion, and implements general coalescing. (Most often,
the backing store has been managed using an unscal-
able algorithm such as address-ordered �rst �t using a
linear list.) Using a scalable algorithm for the general
allocator seems preferable.
Another alternative is to use an allocator which in

its usual operation maintains a set of free lists for
di�erent sizes or size classes, and simply to defer the
coalescing of the blocks on those lists. This may be
a buddy system (as in [Kau84]) or a segregated lists
allocator such as segregated �ts.87

Some allocators, which we will call \simpli�ed quick
�t" allocators, are structured similarly but don't do
any coalescing for the small blocks on the quick lists.
In e�ect, they simply use a non-coalescing segregated
lists allocator for small objects and an entirely di�er-
ent allocator for large ones. (Examples include We-
instock and Wulf's simpli�cation of their own Quick
Fit allocator [WW88], and an allocator developed by
Grunwald and Zorn, using Lea's allocator as the gen-
eral allocator[GZH93].) One of the advantages of such

87 The only deferred coalescing segregated �ts algorithm
that we know of is Doug Lea's allocator, distributed
freely and used in several recent studies (e.g., [GZH93,
Vo95, WJNB95]).

43

a scheme is that the minimum block size can be very
small|only big enough to hold a header and and a
single link pointer. (Doubly-linked lists aren't neces-
sary, since no coalescing is done for small objects.)
These simpli�ed designs are not true deferred coa-

lescing allocators, except in a degenerate sense. (With
respect to small objects, they are non-coalescing allo-
cators, like simple segregated storage.)
True deferred coalescing schemes vary in signi�cant

ways besides what general allocator is used, notably
in how often they coalesce items from quick lists, and
which items are chosen for coalescing. They also may
di�er in the order in which they allocate items from
the quick lists, e.g., LIFO or FIFO, and this may have
a signi�cant e�ect on placement policies.

Scheduling of coalescing. Some allocators defer all
coalescing until memory runs out, and then coa-
lesce all coalescable memory. This is most common
in early designs, including Comfort's original pro-
posal [Com64]88 and Weinstock's \Quick Fit" scheme
[Wei76].
This is not an attractive strategy in most mod-

ern systems, however, because in a virtual memory,
the program never \runs out of space" until back-
ing store is exhausted. If too much memory remains
uncoalesced, wasting virtual memory, locality may be
degraded and extra paging could result. Most systems
therefore attempt to limit the amount of memory that
may be wasted because coalescing has not been at-
tempted.
Some systems wait until a request cannot be sat-

is�ed without either coalescing or requesting more
memory from the operating system. They then per-
form some coalescing. They may perform all possible
coalescing at that time, or just enough to satisfy that
request, or some intermediate amount.
Another possibility is to periodically ush the quick

lists, returning all of the items on the quick lists to
the general store for coalescing. This may be done
incrementally, removing only the older items from the
quick lists.
In Margolin et al.'s scheme [MPS71], the lengths

of the free lists are bounded, and those lengths are
based on the expected usage of di�erent sizes. This

88 In Comfort's proposed scheme, there was no mechanism
for immediate coalescing. (Boundary tags had not been
invented.) The only way memory could be coalesced was
by examining all of the free lists, and this was considered
a awkward and expensive.

ensures that only a bounded amount of memory can
be wasted due to deferred coalescing, but if the es-
timates of usage are wrong, deferred coalescing may
not work as well|memory may sit idle on some quick
lists when it could otherwise be used for other sizes.
In Oldehoeft and Allan's system [OA85], the num-

ber of quick lists varies over time, according to a FIFO
or Working Set policy. This has an adaptive char-
acter, especially for the Working Set policy, in that
sizes that have not been freed recently are quickly co-
alesced, while \active" sizes are not. This adaptation
may not be su�cient to ensure that the memory lost
to deferred coalescing remains small, however; if the
system only frees blocks of a few sizes over a long
period of time, uncoalesced blocks may remain on an-
other quick list inde�nitely. (This appears to happen
for some workloads in a similar system developed by
Zorn and Grunwald [ZG94], using a �xed-length LRU
queue of quick lists.)
Doug Lea's segregated �ts allocator uses an unusual

and rather complex policy to perform coalescing in
small increments. (It is optimized as much for speed
as for space.) Coalescing is only performed when a
request cannot otherwise be satis�ed without obtain-
ing more memory from the operating system, and only
enough coalescing is done to satisfy that request. This
incremental coalescing cycles through the free lists for
the di�erent size classes. This ensures that coalescable
blocks will not remain uncoalesced inde�nitely, unless
the heap is not growing.
In our view, the best policy for minimizing space us-

age without undue time costs is probably an adaptive
one that limits the volume of uncoalesced blocks|i.e.
the actual amount of potentially wasted space|and
adapts the lengths of the free lists to the recent usage
patterns of the program. Simply ushing the quick
lists periodically (after a bounded amount of alloca-
tion) may be su�cient, and may not incur undue costs
if the general allocator is reasonably fast.89 90

89 The issues here are rather analogous to some issues in
the design and tuning of generational garbage collectors,
particularly the setting of generation sizes and advance-
ment thresholds [Wil95].

90 If absolute all-out speed is important, Lea's strategy
of coalescing only when a search fails may be more
attractive|it does not require incrementing or check-
ing an allocation total at each allocation or dealloca-
tion. (Another possibility would be to use a timer inter-
rupt, but this is quite awkward. Most allocator designers
do not wish to depend on using interrupts for what is
otherwise a fairly simple library, and it also raises ob-

44

On the other hand, it may be preferable to avoid at-
tempting to coalesce very recently-freed blocks, which
are very likely to be usable for another request soon.
One possible technique is to use some kind of \high-
water mark" pointer into each list to keep track of
which objects were freed after some point in time,
such as the last allocate/coalesce cycle. However, it
may be easier to accomplish by keeping two lists, one
for recently-freed blocks and one for older blocks. At
each attempt at coalescing, the older blocks are given
to the general allocator, and the younger blocks are
promoted to \older" status.91 (If a more re�ned notion
of age is desired, more than two lists can be used.)

What to coalesce.As mentioned earlier, several
systems defer the coalescing of small objects, but not
large ones. If allocations of large objects are relatively
infrequent|and they generally are|immediately co-
alescing them is likely to be worthwhile, all other
things being equal. (This is true both because the time
costs are low and the savings in potentially wasted
memory are large.) Deferred coalescing usually a�ects
the placement policy, however, and the e�ects of that
interaction are not understood.

Discussion. There are many possible strategies for
deferred coalescing, and any of them may a�ect the
general allocator's placement policy and/or the local-
ity of the program's references to objects. For exam-
ple, it appears that for normal free lists, FIFO order-
ing may produce less fragmentation than LIFO order-
ing, but it is unknown whether that applies to items

scure issues of reentrancy|the interrupt handler must
be careful not to do anything that would interfere with
an allocation or deallocation that is interrupted.)

91 This is similar to the \bucket brigade" advancement
technique used in some generational garbage collectors
[Sha88, WM89, Wil95]. A somewhat similar technique
is used in Lea's allocator, but for a di�erent purpose.
Lea's allocator has a quick list (called the \dirty" list)
for each size class used by the segregated �ts mech-
anism, rather than for every small integer word size.
(This means that allocations from the quick list have to
search for a block that �ts, but a close spacing of size
classes ensures that there is usually only one popular
size per list; the searches are usually short.) The quick
lists are stored in the same array as the main (\clean")
free lists.

on quick lists in a deferred coalescing scheme.92 Simi-
larly, when items are removed from the quick list and
returned to the general allocator, it is unknown which
items should be returned, and which should be kept
on the quick lists.
To date, only a few sound experiments evaluating

deferred coalescing have been performed, and those
that have been performed are rather limited in terms
of identifying basic policy issues and the interactions
between deferred coalescing and the general allocator.
Most experiments before 1992 used synthetic traces,

and are of very dubious validity. To understand why,
consider a quick list to be a bu�er that absorbs vari-
ations in the number of blocks of a given size. If vari-
ations are small, most allocation requests can be sat-
is�ed from a small bu�er. If there are frequent varia-
tions in the sizes in use, however, many bu�ers (quick
lists) will be required in order to absorb them.
Randomization may reduce clustered usage of the

same sizes, spreading all requested sizes out over the
whole trace. This may make the system look bad, be-
cause it could increase the probability that the bu�ers
(i.e., the set of quick lists) contain objects of the wrong
sizes. On the other hand, the smoothed (randomwalk)
nature of a synthetic trace may atter deferred coales-
cing by ensuring that allocations and frees are fairly
balanced over small periods of time; real phase behav-
ior could overwhelm a too-small bu�er by performing
many frees and later many allocations.

3.12 A Note on Time Costs

An allocator can be made extremely fast if space costs
are not a major issue. Simple segregated storage can
be used to allow allocation or deallocation in a rela-
tively small number of instructions|a few for a table
lookup to �nd the right size class, a few for indexing
into the free list array and checking to ensure the free
list is not empty, and a few for the actual unlinking
or linking of the allocated block.93

This scheme can be made cosiderably faster if the
allocator can be compiled together with the applica-

92 Informal experiments by Lea suggest that FIFO pro-
duces less fragmentation, at least for his scheme. (Lea,
personal communication 1995.)

93 For a closely-spaced series of size classes, it may be nec-
essary to spend a few more instructions on checking
the size to ensure that (in the usual case) it's small
enough to use table lookup, and occasionally use a
slower computation to �nd the appropriate list for large-
sized requests.

45

tion program, rather than linked as a library in the
usual way. The usual-case code for the allocator can be
compiled as an \inline" procedure rather than a run-
time procedure call, and compile-time analyses can
perform the size-class determination at compile time.
In the usual case, the runtime code will simply di-
rectly access the appropriate free list, check that it is
not empty, and link or unlink a block. This inlined
routine will incur no procedure call overhead. (This
kind of alloction inlining is quite common in garbage
collected systems. It can be a little tricky to code the
inlined allocation routine so that a compiler will op-
timize it appropriately, but it is not too hard.)

If space is an issue, naturally things are more
complicated|space e�cient allocators are more com-
plicated than simple segregated storage. However, de-
ferred coalescing should ensure that a complex alloca-
tor behaves like simple segregated storage most of the
time; with some space/time tradeo�. If extreme speed
is desired, coalescing can be deferred for a longer pe-
riod, to ensure that quick lists usually have free blocks
on them and allocation is fast.94 Adjusting this space-
time tradeo� is a topic for future research, however.

4 A Chronological Review of The

Literature

Given the background presented by earlier sections,
we will chronologically review the literature, pay-
ing special attention to methodological considerations
that we believe are important. To our knowledge, this
is by far the most thorough review to date, but it
should not be considered detailed or exhaustive; valu-
able points or papers may have escaped our notice.95

We have left out work on concurrent and parallel al-
locators (e.g., [GW82, Sto82, BAO85, MK88, EO88,
For88, Joh91, JS92, JS92, MS93, Iye93]), which are
beyond the scope of this paper. We have also neglected
mainly analytical work (e.g., [Kro73, Bet73, Ree79,
Ree80, McI82, Ree82, BCW85]) to some degree, be-

94 This is not quite necessarily true. For applications that
do little freeing, the initial carving of memory requested
from the operating system will be a signi�cant fraction
of the allocation cost. This can be made quite fast as
well, however.

95 A few papers have not escaped our attention but seem
to have escaped our libary. In particular, we have had to
rely on secondary sources for Graham's inuential work
in worst-case analyses.

cause we are not yet familiar enough with all of this
literature to do it justice.
The two subsections below cover periods before and

after 1991. The period from 1960 to 1990 was domi-
nated by the gradual development of various allocator
designs and by the synthetic trace methodology. The
period after 1990 has (so far) shown that that meth-
odology is in fact unsound and biased, and that much
still needs to be done, both in terms of reevaluating
old designs and inventing new ones on the basis of new
results. (Readers who are uninterested in the history
of allocator design and evaluation may wish to skip
to Section 4.2.)
In much of the following, empirical results are pre-

sented qualitatively (e.g., allocator A was found to
use space more e�ciently than allocator B). In part,
this is due to the fact that early results used �gures
of merit that are awkward to explain in a brief re-
view, and di�cult to relate to measures that current
readers are likely to �nd most interesting. In addi-
tion, workloads have changed so much over the last
three decades that precise numbers would be of mostly
historical interest. (Early papers were mostly about
managing operating system segments (or overlays) in
�xed mainmemories,96while recent papers are mostly
about managing small objects within the memory of
a single process.) The qualitative presentation is also
due in part to our skepticism of the methodology un-
derlying most of the results before 1991; citing pre-
cise numbers would lend undue weight to quantities
we consider questionable.

4.1 The �rst three decades: 1960 to 1990

Structure of this section. Our review of the work in
this period is structured chronologically, and divided
into three parts, roughly a decade each. Each of the
three sections begins with an overview; the casual
reader may want to read the overviews �rst, and skim
the rest. We apologize in advance for a certain amount
of redundancy|we have attempted to make this sec-
tion relatively free-standing, so that it can be read
straight through (by a reader with su�cient fortitude)
given the basic concepts presented by earlier sections.

96 Several very early papers (e.g., [Mah61, IJ62]) discussed
memory fragmentation, but in systems where segments
could be compacted together or swapped to secondary
storage when fragmentation became a problem; these
papers generally do not give any quantitative results
at all, and few qualitative results comparing di�erent
allocation strategies.

46

1960 to 1969.

Overview. Most of the basic designs still in use were
conceived in the 1960's, including sequential �ts,
buddy systems, simple segregated storage, and segre-
gated lists using exact lists, and sequential �ts. (Some
of these, particularly sequential �ts, already existed in
the late 50's, but were not well described in the liter-
ature. Knuth [Knu73] gives pointers to early history
of linked list processing.) In the earliest days, inter-
est was largely in managing memory overlays or seg-
ments in segmented operating systems, i.e., managing
mappings of logical (program and data) segments to
physical memory.97 By the mid-1960's, the problem of
managing storage for di�erent-sized objects within the
address space of a single process was also recognized
as an important one, largely due to the increasing use
(and sophistication) of list processing techniques and
languages [Ros61, Com64, BR64].98

Equally important, the 1960's saw the invention of
the now-traditional methodology for allocator eval-
uation. In early papers, the assumptions underlying
this scheme were explicit and warned against, but as
the decade progressed, the warnings decreased in fre-
quency and seriousness.

Some of the assumptions underlying this model
made more sense then than they do now, at least for
some purposes. For example, most computers were
based on segmented memory systems, and highly
loaded. In these systems, the memory utilization was
often kept high, by long-term scheduling of jobs. (In
some cases, segments belonging to a process might
be evicted to backing storage to make room when a
request couldn't otherwise be satis�ed.) This makes
steady-state and independence assumptions some-
what more plausible than in later decades, when the
emphasis had shifted from managing segments in an
operating system to managing individual program ob-
jects within the virtual memory of a single process.

On the other hand, in retrospect this assumption
can be seen to be unwarranted even for such systems.

97 This is something of an oversimpli�cation, because in
the earliest days operating systems were not well devel-
oped, and \user" programs often performed \system-
level" tasks for themselves.

98 Early list processing systems used only list nodes of
one or two sizes, typically containing only two pointers,
but later systems supported nodes of arbitrary sizes,
to directly support structures that had multiple links.
(Again, see Knuth [Knu73] for more references.)

For example, multitasking may introduce phase be-
havior, since the segments belonging to a process are
usually only released when that process is running, or
when it terminates. Between time slices, a program
does not generally acquire or release segments. Oper-
ations on the segments associated with a process may
occur periodically.
Other assumptions that became common during

the 1960's (and well beyond) also seem unwarranted
in retrospect. It was widely assumed that segment
sizes were independent, perhaps because most sys-
tems were used by many users at the same time, so
that most segments were typically \unrelated." On
reection, even in such a system there is good rea-
son to think that particular segment sizes may be
quite common, for at least three reasons. First, if the
same program is run in di�erent processes simulta-
neously, the statically-allocated data segment sizes of
frequently-used programs may appear often. Second,
some important programs may use data segments of
particular characteristic sizes. (Consider a sort utility
that uses a �xed amount of memory chosen to make
internal sorting fast, but using merging from external
storage to avoid bringing all of the data into mem-
ory.) Third, some segment sizes may be used in un-
usually large numbers due to peculiarities of the sys-
tem design, e.g., the minimum and/or maximum seg-
ment size. (Segments or overlays were also typically
fairly large compared to total memory, so statistical
mechanics would not be particularly reliable even for
random workloads.)

The original paraphernalia for the lottery
had been lost long ago, and the black
box: : :had been put into use even before Old
Man Warner, the oldest man in town, was
born. Mr. Summers spoke frequently to the
villagers about making a new box, but no
one liked to upset even as much tradition as
was represented by the black box. There was
a story that the present box had been made
with some pieces of the box that had pre-
ceded it, the one that had been constructed
when the �rst people settled down to make
a village here.
|Shirley Jackson, \The Lottery"

Collins [Col61] apparently originated the random-
trace methodology, and reported on experiments with
best �t, worst �t, �rst �t, and random �t.

47

Collins described his simulations as a \game," in the
terminology of game theory. The application program
and the allocator are players; the application makes
moves by requesting memory allocations or dealloca-
tions, and the allocator responds with moves that are
placement decisions.99

Collins noted that this methodology required fur-
ther validation, and that experiments with real work-
loads would be better. Given this caveat, best �t
worked best, but �rst �t (apparently address-ordered)
was almost equally good. No quantitative results were
reported, and the distributions used were not speci-
�ed.

Comfort, in a paper about list processing for
di�erent-sized objects [Com64], briey described the
segregated lists technique with splitting and coales-
cing, as well as address-ordered �rst �t, using an or-
dered linear list.100 (The address order would be used
to support coalescing without any additional space
overhead.) Comfort did not mention that his \mul-
tiple free lists" technique (segregated �ts with exact
lists) was an implementation of a best �t policy, or
something very similar; later researchers would often
overlook this scheme. Comfort also proposed a simple
form of deferred coalescing, where no coalescing was
done until memory was exhausted, and then it was
all done at once. (Similar coalescing schemes seem to
have been used in some early systems, with process
swapping or segment eviction used when coalescing
failed to obtain enough contiguous free memory.) No
empirical results were reported.

Totschek [Tot65] reported the distribution of job
sizes (i.e., memory associated with each process) in
the SDC (Systems Development Corporation) time-
sharing system. Later papers refer to this as \the SDC
distribution". Naturally, the \block" sizes here were
rather large. Totschek found a roughly trimodal dis-
tribution, with most jobs being either around 20,000
words, or either less than half or more than twice that.
He did not �nd a signi�cant correlation between job
size and running time.

Knowlton [Kno65] published the �rst paper on the

99 We suspect that the history of allocator research might
have been quite di�erent if this metaphor had been
taken more seriously|the application program in the
randomized methodology is a very unstable individual,
or one using a very peculiar strategy.

100 Knuth [Knu73] reports that this paper was written in
1961, but unpublished until 1964.

(binary) buddy system, although Knuth [Knu73] re-
ports that same idea was independently invented and
used by H. Markowitz in the Simscript system around
1963. Knowlton also suggested the use of deferred co-
alescing to avoid unneeded overheads in the common
case where objects of the same size were frequently
used.

Ross, in [Ros67] described a sophisticated stor-
age management system for the AED engineering de-
sign support system. While no empirical results were
reported, Ross describes di�erent patterns of mem-
ory usage that programs may exhibit, such as mostly
monotonic accumulation (ramps), and fragmentation
caused by di�erent characteristic lifetimes of di�erent-
sized objects.
The storage allocation scheme divided available

memory into \zones," which could be managed by
di�erent allocators suitable to di�erent application's
usual behavior.101 Zones could be nested, and the
system was extensible|a zone could use one of the
default allocators, or provide its own allocation and
deallocation routines. It was also possible to free an
entire zone at once, rather than freeing each object in-
dividually. The default allocators included �rst �t and
simple segregated storage. (This is the �rst published
mention of simple segregated storage that we have
found, though Comfort's multiple free list scheme is
similar.)

Graham, in an unpublished technical report [Gra],
described the problem of analyzing the worst-case
memory use of allocators, and presented lower bounds
on worst case fragmentation.102 (An earlier memo by
Doug McIlroy may have motivated this work, as well
as Robson's later work.)
Graham characterized the problem metaphorically

as a board game between an \attacker," who knows
the exact policy used by the allocator (\defender")
and submits requests (\makes moves") that will force
the defender's policy to do as badly as possible. (This
is a common metaphor in \minimax" game theory;
such an omniscient, malevolent opponent is commonly
called a \devil" or \evil demon.")

Knuth surveyed memory allocation techniques in
Volume One of The Art of Computer Programming

101 Comparable schemes were apparently used in other
early systems, including one that was integrated with
overlaying in the IBM PL/I compiler [Boz84].

102 We do not have a copy of this report at this writing.
Our information comes from secondary sources.

48

([Knu73], �rst edition 1968), which has been a stan-
dard text and reference ever since. It has been par-
ticularly inuential in the area of memory allocation,
both for popularizing existing ideas and for presenting
novel algorithms and analyses.

Knuth introduced next �t (called \modi�ed �rst
�t" in many subsequent papers), the boundary tag
technique, and splitting thresholds. In an exercise, he
suggested the Fibonacci buddy system (Ex. 2.5.31) In
another exercise, he suggests using balanced binary
trees for best �t (Answer to Ex. 2.5.9).

Knuth adopted Collins' random-trace simulation
methodology to compare best �t, �rst �t, next �t, and
binary buddy. Three size distributions were used, one
smooth (uniform) and two spiky.103 The published
results are not very detailed. First �t was found to
be better than best �t in terms of space, while next
�t was better in terms of time. The (binary) buddy
system worked better than expected; its limited co-
alescing usually worked. Simple segregated storage
worked very poorly.104

Knuth also presented the \�fty-percent rule" for
�rst �t, and its derivation. This rule states that un-
der several assumptions (e�ectively random allocation
request order, steady-state memory usage, and block
sizes infrequently equal to each other) the length of
the free list will tend toward being about half the
number of blocks actually in use. (All of these as-
sumptions now appear to be false for most programs,
as we will explain later in the discussions of [MPS71],
[ZG94] and [WJNB95]. Shore would later show that
Knuth's simplifying assumptions about the lack of
systematicity in the allocator's placement were also
unwarranted.105 Betteridge [Bet82] provides a some-

103 One consisted of the six powers of two from 1 to 32, cho-
sen with probability inversely proportional to size, and
the other consisted of 22 sizes from 10 to 4000, chosen
with equal probability. The latter distribution appears
(now) to be unrealistic in that most real programs' size
distributions are not only spiky, but skewed toward a
few heavily-used sizes.

104 This contrasts strongly with our own recent results for
synthetic traces using randomized order (but real sizes
and lifetimes), described later. We are unsure why this
is, but there are many variables involved, including the
relative sizes of memories, pages, and objects, as well as
the size and lifetime distributions.

105 Nonetheless, his �fty-percent rule (and others' corollar-
ies) are still widely quoted in textbooks on data struc-
tures and operating systems. (To our minds, the fault for
this does not lie with Knuth, who presented eminently

what di�erent critique of the �fty percent rule.)
In a worst-case analysis, Knuth showed that the bi-

nary buddy system requires at most 2M log2 n mem-
ory.
After Knuth's book appeared, many papers showed

that (in various randomized simulations) best �t had
approximately the same memory usage as address-
ordered �rst �t, and sometimes better, and that next
�t had signi�cantly more fragmentation. Nonetheless,
next �t became quite popular in real systems. It is
unclear whether this is because next �t seems more
obviously scalable, or simply because Knuth seemed
to favor it and his book was so widely used.

Randell [Ran69] de�ned internal and external frag-
mentation, and pointed out that internal fragmenta-
tion can be traded for reduced external fragmentation
by allocating memory in multiples of some grain size
g; this reduces the e�ective number of sizes and in-
creases the chances of �nding a �t.
Randell also reported on simulation experiments

with three storage allocation methods: best �t, ran-
dom �t, and an idealized method that compacts mem-
ory continually to ensure optimal memory usage. (All
of these methods used a random free list order.) He
used the synthetic trace methodology, basing sizes
on an exponential distribution and on Totschek's
SDC distribution. He found that the grain size g

must be very small, or the increase in external frag-
mentation would outweigh the decrease in internal
fragmentation.106 (Given the smoothing e�ects of the
randomization of requests, and its possibly di�erent
e�ects on internal and external fragmentation, this
result should be interpreted with caution.)
Randell used three di�erent placement algorithms.

The �rst (called RELOC) was an idealized algo-
rithm that continually compacted memory to obtain
the best possible space usage. The other two (non-
compacting) algorithms were best �t (called MIN)
and random. Comparisons between these two are not
given. The only quantitative data obtainable from the
paper are from �gures 2 and 3, which show that for
best �t, the SDC distribution exhibits less fragmen-

reasonable �rst-cut analyses in the course of writing a
tremendously ambitious, valuable and general series of
books.)

106 On �rst reading, Randell's grain sizes seem quite large|
the smallest (nonzero) value used was 16 words. Exam-
ining Totschek's distribution, however, it is clear that
this is quite small relative to the average \object" (seg-
ment) size [Tot65].

49

tation (about 11 or 12 percent) than an exponential
distribution (about 17 or 18 percent), and both su�er
considerably as the grain size is increased.

Minker et al. [M+69] published a technical report
which contained a distribution of \bu�er sizes" in the
University of Maryland UNIVAC Exec 8 system.107

Unfortunately, these data are imprecise, because they
give counts of bu�ers within ranges of sizes, not exact
sizes.
These data were later used by other researchers,

some of whom described the distribution as roughly
exponential. The distribution is clearly not a simple
exponential, however, and the use of averaging over
ranges may conceal distinct spikes.108

1970 to 1979.

Overview. The 1970's saw a few signi�cant innova-
tions in allocator design and methodology. However,
most research was focused on attempts to re�ne
known allocator designs (e.g., the development of var-
ious buddy systems), on experiments using di�erent
combinations of distributions and allocators, or on at-
tempts to derive analytical formulae that could pre-
dict the performance of actual implementations for
(randomized) workloads.
Analytic techniques had much greater success

within a certain limited scope. Bounds were found
for worst-case fragmentation, both for speci�c algo-
rithms and for all algorithms. The results were not en-
couraging. Building on Graham's analysis framework,
Robson's 1971 paper dashed any hope of �nding an
allocator with low fragmentation in the worst case.
Most empirical studies used synthetic trace tech-

niques, which were re�ned as more information about
real lifetime and size distributions became available,

107 We have not yet obtained a copy of this report|
our information is taken from [Rus77] and other sec-
ondary sources. We are unclear on exactly what sense
of \bu�er" is meant, but believe that it means mem-
ory used to cache logical segments for processes; we
suspect that the sizes reported are ranges because the
system used a set of �xed bu�er sizes, and recorded
those, rather than the exact sizes of segments allocated
in those bu�ers. We are also unsure of the exact units
used.

108 Our tentative interpretation of the data is that the dis-
tribution is at least bimodal, with modes somewhere
around roughly 5 units (36% of all requests) and roughly
20 units (30% of all requests).

and as it became obvious that the relative perfor-
mance of di�erent algorithms depended on those fac-
tors. Exponential distributions became the most com-
mon size distribution, and a common lifetime dis-
tribution, because empirical data showed that al-
locations of small and short-lived objects were fre-
quent. The fact that these distributions were of-
ten spiky|or e�ectively smoothed in the statistics-
gathering process|was often overlooked, as was the
non-independence of requests.
Perhaps the most innovative and empirical paper of

this period was Margolin's, which used sound meth-
odology, and evaluated a new form of deferred coales-
cing.
Fenton and Payne's \half �t" policy is also novel

and interesting; it is based on a very di�erent strategy
from those used in other allocators. Wise's (unpub-
lished) double buddy design is also well-motivated.
Purdom, Stigler and Cheam introduced the segrega-
ted �ts mechanism, which did not receive the atten-
tion it was due.
Batson and Brundage's statistics for Algol-60 seg-

ment sizes and lifetimes were quite illuminating, and
their commentary insightfully questioned the plausi-
bility of the usual assumptions of randomness and in-
dependence. They underscored the di�culty of pre-
dicting allocator performance. Unfortunately, though
their results and commentary were available in 1974
in a technical report, they were not published in a
journal until 1977.

Denning [Den70] used Knuth's �fty percent rule
to derive an \unused memory rule", which states that
under assumptions of randomness and steady-state
behavior, fragmentation generally increases memory
usage by about half; he also pointed out that sequen-
tial free list searches tend to be longer when mem-
ory is heavily loaded. Gelenbe also derived a similar
\two thirds rule" [Gel71] in a somewhat di�erent way.
(These essentially identical rules are both subject to
the same criticisms as Knuth's original rule.)

Purdom and Stigler [PS70] performed statistical
analyses of the binary buddy system, and argued that
limitations on buddy system coalescing were seldom
a problem. Their model was based on strong assump-
tions of independence and randomness in the work-
load, including exponentially distributed random life-
times.

Batson, Ju and Wood [BJW70] reported seg-
ment size and lifetime distributions in the Univer-

50

sity of Virginia B5500 system. Most segments were
\small"|about60 percent of the segments in use were
40 (48-bit) words or less in length.
About 90 percent of the programs run on this sys-

tem, including system programs, were written in Al-
gol, and the sizes of segments often corresponded to
the sizes of individual program objects, e.g., Algol ar-
rays. (In many other systems, e.g., Totschek's SDC
system, segments were usually large and might con-
tain many individual program objects.) The data were
obtained by sampling at various times, and reect the
actual numbers of segments in use, not the number of
allocation requests.
This distribution is weighted toward small objects,

but Batson et al. note that it is not well described as
an exponential. Unfortunately, their results are pre-
sented only in graphs, and in roughly exponentially
spaced bins (i.e., more precise for smaller objects than
large ones). This e�ectively smooths the results, mak-
ing it unclear what the actual distribution is, e.g.,
whether it is spiky. The general shape (after smooth-
ing) has a rounded peak for the smaller sizes, and is
roughly exponential after that. (In a followup study
[BB77], described later, Batson and Brundage would
�nd spikes.)

A note about Algol-60 is in order here. Algol-60
does not support general heap allocation|all data al-
locations are associated with procedure activations,
and have (nested) dynamic extents. (In the case of
statically allocated data, that extent is the entire pro-
gram run.) In the B5500 Algol system, scalar variables
associated with a procedure were apparently allocated
in a segment; arrays were allocated in separate seg-
ments, and referenced via an indirection. Because of
the B5500's limit of 1023 words per segment, large ar-
rays were represented as a set smaller arrays indexed
by an array of descriptors (indirections).109

Because of this purely block-structured approach
to storage allocation, Algol-60 data lifetimes may
be more closely tied to the phase structure of the
program than would be expected for programs in
more modern languages with a general heap. On the
other hand, recent data for garbage-collected systems
[Wil95] and for C and C++ programs [WJNB95] sug-
gest that the majority of object lifetimes in modern
programs are also tied to the phase structure of pro-

109 Algol-60's dynamically sized arrays may complicate this
scenario somewhat, requiring general heap allocation,
but apparently a large majority of arrays were statically
sized and stack-like usage predominated.

grams, or to the single large \phase" that covers the
whole duration of execution.

Campbell introduced an \optimal �t" policy,
which is a variant of next �t intended to improve the
chances of a good �t without too much cost in extra
searching [Cam71]. (It is not optimal in any useful
sense.) The basic idea is that the allocator looks for-
ward through the linear list for a bounded number of
links, recording the best �t found. It then proceeds
forward looking for another �t at least as good as
what it found in that (sample) range. If it fails to �nd
one before traversing the whole list, it uses the best
�t it found in the sample range. (That is, it degener-
ates into exhaustive best �t search when the sample
contains the best �t.)
Campbell tested this technique with a real program

(a physics problem), but the details of his design and
experiment were strongly dependent on unusual co-
ordination between the application program and the
memory allocator. After an initial phase, the appli-
cation can estimate the number of blocks of di�erent
sizes that will be needed later. Campbell's algorithm
exploited this information to construct a randomized
free list containing a good mix of block sizes.
While Campbell's algorithm worked well in his ex-

periment, it seems that his results are not applica-
ble to the general allocation problem, and other tech-
niques might have worked as well or better. (For ex-
ample, constructing multiple free lists segregated by
size, rather than a random uni�ed free list that must
be searched linearly. See also the discussion of [Pag82],
later in this section.)

Purdom, Stigler, and Cheam [PSC71] intro-
duced segregated �ts using size classes with range
lists (called \segregated storage" in their paper). The
nature and importance of this e�cient mechanism
for best-�t-like policies was not generally appreci-
ated by later researchers (an exception being Standish
[Sta80]). This may be because their paper's title gave
no hint that a novel algorithm was presented.
Purdom et al. used the random trace methodology

to compare �rst �t, binary buddy, and segregated �ts.
(It is unclear which kind of �rst �t was used, e.g.,
LIFO-ordered or address-ordered). Their segregated
�ts scheme used powers-of-two size classes.
They reported that memory usage for segregated

�ts was almost identical to that of �rst �t, while bi-
nary buddy's was much worse.

51

Every year, after the lottery, Mr. Summers
began talking again about a new box, but
every year the subject was allowed to fade
o� without anything's being done. The black
box grew shabbier each year; by now it was
no longer completely black but splintered
badly among one side to show the original
wood color, and in some places faded or
stained.
|Shirley Jackson, \The Lottery"

Margolin et al. used real traces to study memory
allocation in the CP-67 control program of an IBM
System/360 mainframe [MPS71]. (Note that this al-
locator allocated storage used by the operating system
itself, not for application programs.)
They warned that examination of their system

showed that several assumptions underlying the usual
methodology were false, for their system's workload:
uncorrelated sizes and lifetimes, independence of suc-
cessive requests, and well-behaved distributions. Un-
fortunately, these warnings were to go generally un-
heeded for two decades, despite the fact that some
later researchers used the distributions they reported
to generate randomly-ordered synthetic traces. (We
suspect that their careful analysis of a single system
was not given the attention it deserved because it
seemed too ad hoc.)
Their size distribution was both spiky and skewed,

with several strong modes of di�erent sizes. Nearly
half (46.7%) of all objects were of size 4 or 5 dou-
blewords; sizes 1 and 8 (doublewords) accounted for
about 11% each, and size 29 accounted for almost 16%
of the remainder. Many sizes were never allocated at
all.
Margolin et al. began with an address-ordered �rst

�t scheme, and added deferred coalescing. Their ma-
jor goal was to decrease the time spent in memory
management inside the CP-67 control program, with-
out an undue increase in memory usage. Their de-
ferred coalescing subpools (quick lists) pre-allocated
some fraction (50% or 95%) of the expected maxi-
mumusage of objects of those sizes. (This scheme does
not appear to adapt to changes in program behav-
ior.) Deferred coalescing was only used for frequently-
allocated sizes.
For their experiments, they used several traces from

the same machine, but gathered at di�erent times and
on di�erent days. They tuned the free list sizes using
one subset of the traces, and evaluated them using
another. (Their system was thus tuned to a particular

installation, but not a particular run.)
They found that using deferred coalescing increased

memory usage by approximately zero to 25%, while
generally decreasing search traversals to a small frac-
tion of the original algorithm's. In actual tests in the
real system, time spent in memory management was
cut by about a factor of six.

Robson [Rob71] showed that the worst-case perfor-
mance of a worst-case-optimal algorithm is bounded
from below by a function that rises logarithmically
with the ratio n (the ratio of the largest and smallest
block sizes), i.e., M log2 n times a constant.

Isoda, Goto and Kimura [IGK71] introduced a
bitmapped technique for keeping track of allocated
and unallocated buddies in the (binary) buddy sys-
tem. Rather than taking a bit (or several, as in Knowl-
ton's original scheme) out of the storage for each
block, their scheme maintains a bit vector correspond-
ing to the words of memory. The bit for the last word
of each block, and the bit for the last word occupied
by a block is set. The buddy placement constraint lets
these be used as \tail lamps" to look e�ciently look
through memory to �nd the ends of preceding blocks.

Hirschberg [Hir73] followed Knuth's suggestion
and devised a Fibonacci buddy system; he compared
this experimentally to a binary buddy. His experiment
used the usual synthetic trace methodology, using a
real distribution of block sizes (from the University
of Maryland UNIVAC Exec 8 system [M+69]) and
exponential lifetime distribution. His results agreed
well with the analytically derived estimates; Fibo-
nacci buddy's fragmentation increased memory usage
by about 25%, compared to binary buddy's 38%.
Hirschberg also suggested a generalization of the

buddy system allowing Fibonacci-like series where
each size was the sum of the previous size and a size
a �xed distance further down in the size series. (For
some �xed integer k, the ith size in the series may be
split into two blocks of sizes i� 1 and i � k.)

Robson [Rob74] put a fairly tight upper and
lower bounds on the worst-case performance of the
best possible allocation algorithm. He showed that a
worst-case-optimal strategy's worst-case memory us-
age was somewhere between 0:5M log2 n and about
0:84M log2 n.

Shen and Peterson introduced the weighted
buddy method [SP74], whose allowable block sizes are
either powers of two, or three times a power of two.

52

They compared this scheme to binary buddy, using
the synthetic trace methodology; they used only a uni-
form lifetime distributions, and only two size distrib-
utions, both smooth (uniform and exponential). This
is unfortunate, because skew in object size request
may a�ect the e�ectiveness of di�erent block-splitting
schemes.
They found that for a uniform size distribution,

weighted buddy lost more memory to fragmentation
than binary buddy, about 7%. For an exponential dis-
tribution (which is apparently more realistic) this was
reversed|weighted buddy did better by about 7%.
By default, they used FIFO-ordered free lists. With
LIFO-ordered free lists, memory usage was about 3%
worse.

Using a variation of the random trace methodol-
ogy intended to approximate a segment-based multi-
programming system,110 Fenton and Payne [FP74]
compared best �t (called \least �t"), �rst �t, next �t,
worst �t, and \half �t." The half �t policy allocator
attempts to �nd a block about twice the desired size,
in the hopes that if there is a bias toward particular
sizes, remainders from splitting will be more likely to
be a good �t for future requests. They found that best
�t worked best, followed by �rst �t, half �t, next �t,
and worst �t, in that order. Half �t was almost as
good as �rst �t, with next �t performing signi�cantly
worse, and worst �t much worse.
All of the size distributions used in their experi-

ments were smooth. For many of their experiments,
they used a smooth distribution based on generaliza-
tions about Totschek's SDC distribution and Batson,
Ju, and Wood's B5500 distribution. (This is a \de-
formed exponential" distribution, which rises quickly,
rounds o� at the top, and then descends in a roughly
exponential fashion.) Fenton and Payne apparently
didn't consider the possibility that smooth distribu-
tions (and randomized order) might make their half-
�t policy work worse than it would in practice, by
decreasing the chance that a request for a particular
size would be repeated soon.

110 In this model, each object (segment) is assumed to be
associated with a di�erent process. When a request can-
not be satis�ed, that process blocks (i.e., the death
time of the segment is delayed, but time advances so
that other segments may die). This models embodies
an oversimpli�cation relative to most real systems, in
that processes in most systems may have multiple asso-
ciated segments whose death times cannot be postponed
independently.

Hinds [Hin75] presented a fast scheme for recom-
bination in binary and generalized Fibonacci buddy
systems. Each block has a \left buddy count" indi-
cating whether it is a right buddy at the lowest level
(in which case the LBC is zero), or indicating for how
many levels above the lowest it is a left buddy. This
supports splitting and merging nearly as quickly as in
the binary buddy scheme.

Cranston and Thomas [CT75] presented a
method for quickly �nding the buddy of a block in var-
ious buddy systems, using only three bits per block.
This reduces the time cost of splitting and merging
relative to Hirschberg's scheme, as well as incurring
minimal space cost.

Shore [Sho75] compared best �t and address-
ordered �rst �t more thoroughly than had been done
previously, and also experimented with worst-�t and a
novel hybrid of best �t and �rst �t. He used the then-
standard methodology, generating random synthetic
traces with (only) uniformly distributed lifetimes. Size
distributions were uniform, normal, exponential, and
hyperexponential. He also performed limited experi-
ments with \partial populations" (i.e., spiky distrib-
utions). The �gure of merit was the space-time prod-
uct of memory usage over time. (This essentially cor-
responds to the average memory usage, rather than
peak usage.)
This study was motivated in part by Wald's re-

port of the \somewhat puzzling success" of best �t in
actual use in the Automatic Operating and Schedul-
ing Program of the Burroughs D-825 system [Wal66].
(Fragmentation was expected to be a problem; plans
were made for compaction, but none was needed.)
Shore found that best �t and (address-ordered) �rst

�t worked about equally well, but that �rst �t had an
advantage when the distribution included block sizes
that were relatively large compared to the memory
size. Following Knuth [Knu73], he hypothesized that
this was due to its tendency to �t small objects into
holes near one end of memory, accumulating larger
free areas toward the other end.111

For partial populations, Shore found that increasing
degrees of spikiness seemed to favor best �t over �rst

111 We are actually unsure what Shore's claim is here. It is
not clear to us whether he is making the general claim
that �rst �t tends to result in a free list that is ap-
proximately size-ordered, or only the weaker claim that
�rst �t more often has unusually large free blocks in
the higher address range, and that this is important for
distributions that include occasional very large blocks.

53

�t slightly, but that the variance increased so quickly
that this result was not reliable.112

Shore noted that while �rst �t and best �t policies
are roughly similar, they seem to have somewhat dif-
ferent strengths and weaknesses; he hypothesized that
these might be combinable in a hybrid algorithm that
would outperform either.

Shore experimented with a novel parameterized al-
locator, combining features of �rst �t and best �t. At
one extreme setting of the parameter, it behaved like
address-ordered �rst �t, and at the other extreme it
behaved like best �t. He found that an intermediate
parameter setting showed less fragmentation than ei-
ther standard algorithm. If this were to be shown to
work for real workloads, it could be a valuable result.
It suggests that best �t and address-ordered �rst �t
may be exploiting di�erent regularities, and that the
two strategies can be combined to give better per-
formance. (Since the inputs were randomly ordered,
however, it is not clear whether these regularities ex-
ist in real program behavior, or whether they are as
important as other regularities.)

Shore also experimented with worst-�t, and found
that it performed very poorly.113

Shore warned that his results \must be interpreted
with caution," and that some real distributions are
not well behaved. Citing Margolin, he noted tht
\such simplifying assumptions as well-behaved dis-
tributions, independence of successive requests, and
independence of request sizes and duration are ques-
tionable." These warnings apparently received less at-

112 Wald had hypothesized that best �t worked well in his
system because of the spiky distribution of requests.
Shore notes that \Because there were several hundred
possible requests" in that system, the result \was due
more probably to a nonsaturating workload." The lat-
ter makes sense, because Wald's system was a real-time
system and generally not run at saturation. The former
is questionable, however, because the distribution of ac-
tual requests (and of live data) is more important than
the distribution of possible requests.

113 He drew the (overly strong) conclusion that good �ts
were superior to poor �ts; we suggest that this isn't al-
ways the case, and that the strengths of worst �t and
best-�t-like policies might be combinable. Worst �t has
the advantage that it tends to not to create small re-
mainders, as best �t does. It has the disadvantage that it
tends to ensure that there are no very large free areas|
it systematically whittles away at the largest free block
until it is no longer the largest. A hybrid strategy might
use poor �ts, but preserve some larger areas as well.

tention than his thorough (and inuential) experimen-
tation within the random trace paradigm.

Burton introduced a generalization of the Fibo-
nacci buddy system [Bur76] which is more general
than Hirschberg's. Rather than using a �xed func-
tion for generating successive sizes (such as always
adding size i � 1 and i � 3 to generate size i), Bur-
ton points out that di�erent sizes in the series can be
used. (For example, adding sizes i � 1 and i � 2 to
generate i, but adding sizes j � 1 and j � 4 to gener-
ate size j.) Burton's intended application was for disk
storage management, where it is desirable to ensure
that the block size, track size, and cylinder size are
all in the series. The result is fairly general, however,
and has usually been overlooked; it could be used to
generate application-speci�c buddy systems tailored
to particular programs' request sizes.

\You didn't give him time enough to take
any paper he wanted. I saw you. It wasn't
fair!"
\Be a good sport, Tessie," Mrs Delacroix
called, and Mrs. Graves said, \All of us took
the same chance."
|Shirley Jackson, \The Lottery"

Batson and Brundage [BB77] reported segment
sizes and lifetimes in 34 varied Algol-60 programs.
Most segments were small, and the averaged size dis-
tribution was somewhat skewed and spiky. (Presum-
ably the distributions for individual programs were
even less well-behaved, with individual spikes being
reduced considerably by averaging across multiple
programs.)
Lifetime distributions were somewhat better-

behaved, but still irregular.114 When lifetimes were
normalized to program running times, evidence of
plateau and ramp usage appeared. (In our interpre-
tation of the data, that is. As mentioned earlier, how-
ever, Algol-60 associates segment lifetimes with the
block structure of the program.)
Batson and Brundage pointed out that lifetimes are

not independent of size, because some blocks are en-
tered many times, and others only once; most entries

114 Recall that looking at distributions is often misleading,
because sudden deaths of objects born at di�erent times
will result in a range of lifetimes. (Section 2.4) Small ir-
regularities in the lifetime distribution may reect large
dynamic patterns.

54

to the same block allocate exactly the same number
and sizes of segments. They stated that they had no
success �tting any simple curve to their data, and that
this casts doubts on analyses and experiments assum-
ing well-behaved distributions.
They also suggested that the experiments of Ran-

dell, Knuth, and Shore could be redone be using real-
istic distributions, but warned that \we must wait for
a better understanding" of \the dynamics of the way
in which the allocated space is used|before we can
make reasonable predictions about the comparative
performance of di�erent mechanisms." They go on to
say that \there is no reason to suppose that stochastic
processes could possibly generate the observed request
distributions."
Though based on a 1974 technical report, this pa-

per was not published until 1977, the same year that
saw publication of a urry of papers based on random
traces with well-behaved distributions. (Described be-
low.)

Weinstock [Wei76] surveyed most of the impor-
tant work in allocators before 1976, and presented new
empirical results. He also introduced the \QuickFit"
algorithm, a deferred coalescing scheme using size-
speci�c lists for small block sizes, backed by LIFO-
ordered �rst �t as the general allocator.115 (Weinstock
reported that this scheme was invented several years
earlier for use in the Bliss/11 compiler [WJW+75],
and notes that a similar scheme was independently
developed and used in the Simscript II.5 language
[Joh72]. Margolin's prior work was overlooked, how-
ever.)
Weinstock used the conventional synthetic trace

methodology; randomly-ordered synthetic traces were
generated, using two real size distributions and four
arti�cial ones. One of the real size-and-lifetime distrib-
utions came from the Bliss/11 compiler [WJW+75],
and the other was from Batson and Brundage's mea-
surements of the University of Virginia B5500 system
[BB77], described above. The four arti�cial size dis-
tributions were uniform, exponential, Poisson, and a
two-valued distribution designed to be a bad case for
�rst �t and best �t. (The two-valued distribution was
not used in the �nal evaluation of allocators.)
The Bliss/11 distribution is heavily weighted to-

ward small objects, but is not well-described by an

115 This is not to be confused with the later variant
of QuickFit [WW88], which does no coalescing for
small objects, or Standish and Tadman's indexed �ts
allocator.

exponential curve. It has distinct spikes at 2 words
(44% of all objects) and 9 words (14%). In between
those spikes is another elevation at 5 words and 6
words (9% each).

The �gures of merit for space usage in this study
were probabilities of failure in di�erent-sized mem-
ories. (That is, how likely it was that the synthetic
program would exhaust memory and fail, given a par-
ticular limited memory size.) This makes the results
rather di�cult reading, but the use of �xed mem-
ory sizes allows experimentation with allocators which
perform (deferred) coalescing only when memory is
otherwise exhausted.

Weinstock experimented with QuickFit, best �t,
�rst �t, next �t, and binary buddies. Variations of
best �t used address-ordered or size-ordered free lists.
Variations of �rst �t and next �t used address-ordered
and LIFO-ordered free lists. The address-ordered ver-
sions of best, �rst, and next �t were also tried with
immediate coalescing and deferred coalescing. Two bi-
nary buddy systems were used, with immediate and
deferred coalescing. (In all cases, deferred coalescing
was only performed when memory was exhausted; no
intermediate strategies were used.)

In general, Weinstock found that address-ordered
best �t had the best space usage, followed closely
by address-ordered �rst �t. (Both did about equally
well under light loadings, i.e., when memory was more
plentiful.)

After address-ordered best �t came a cluster of al-
gorithms whose ranking changed depending on the
loading and on the distributions used: address-ordered
�rst �t, address-ordered best �t with deferred coales-
cing, size-ordered best �t, and Quick Fit.

After that came a cluster containing address-
ordered �rst �t with deferred coalescing and address-
ordered next �t. This was followed by address or-
dered next �t with deferred coalescing, followed in
turn by LIFO-ordered �rst �t. Binary buddies per-
formed worst, with little di�erence between the im-
mediate and deferred coalescing variants.

In summary, address-ordered variants tended to
outperform other variants, and deferred coalescing (in
the extreme form used) usually increased fragmenta-
tion. FIFO-ordered lists were not tried, however.

In terms of speed, QuickFit was found to be fastest,
followed by binary buddy with deferred coalescing.
Then came binary buddy with immediate coalescing.
Rankings are given for the remaining allocators, but
these are probably not particularly useful; the remain-

55

ing algorithms were based on linear list implementa-
tions, and could doubtless be considerably improved
by the use of more sophisticated indexing systems
such as splay trees or (in the case of best �t) seg-
regated �ts.
Weinstock made the important point that seem-

ingly minor variations in algorithms could have a sig-
ni�cant e�ect on performance; he therefore took great
care in the describing of the algorithms he used, and
some of the algorithms used in earlier studies.

In a brief technical communication, Bays [Bay77]
replicated some of Shore's results comparing �rst �t
and best �t, and showed that next �t was distinctly
inferior when average block sizes were small. When
block sizes were large, all three methods degraded to
similar (poor) performance. (Only uniformly distribu-
ted lifetimes and exponentially distributed sizes were
used.)

\Seems like there's no time at all between
lotteries any more," Mrs. Delacroix said to
Mrs. Graves in the back row.
|Shirley Jackson, \The Lottery"

Peterson and Norman [PN77] described a very
general class of buddy systems, and experimentally
compared several varieties of buddy systems: binary,
Fibonacci, a generalized Fibonacci [HS64, Fer76], and
weighted. They used the usual random trace method-
ology, with both synthetic (uniform and exponential)
and real size distributions. Their three size distrib-
utions were Margolin's CP-67 distribution, the Uni-
versity of Maryland distribution, and a distribution
from an IBM 360 OS/MVT system at Brigham Young
University. (This \BYU" distribution was also used in
several later studies.) They point out that the latter
two distributions were imprecise, grouping sizes into
ranges; they generated sizes randomly within those
ranges. (The implication of this is that these distrib-
utions were smoothed somewhat; only the CP-67 dis-
tribution is truly natural.)
(The BYU distribution is clearly not exponential,

although some later researchers would describe it that
way; while it is skewed toward small sizes, it is at
least bimodal. Given that it is reported in averages
over ranges, there may be other regularities that have
been smoothed away, such as distinct spikes.)
We are unsure what lifetime distribution was used.
Peterson and Norman found that these buddy sys-

tems all had similar memory usage; the decreases in

internal fragmentation due to more-re�ned size series
were usually o�set by similar increases in external
fragmentation.

Robson [Rob77] showed that the worst-case perfor-
mance of address-ordered �rst �t is about M log2 n,
while best �t's is far worse, at about Mn. He also
noted that the roving pointer optimization made next
�t's worst case similarly bad|both best �t and next
�t can su�er about as much from fragmentation as
any allocator with general splitting and coalescing.

Nielsen [Nie77] studied the performance of mem-
ory allocation algorithms for use in simulation pro-
grams. His main interest was in �nding fast alloca-
tors, rather than memory-e�cient allocators. He used
a variation of the usual random trace methodology in-
tended to model the workloads generated by discrete-
event simulation systems. A workload was modeled as
a set of streams of event objects; each stream gener-
ated only requests of a single size, but these requests
were generated randomly according to size and inter-
arrival time distributions associated with the streams.
To construct a workload, between 3 and 25 request
streams were combined to simulate a simulation with
many concurrent activities.
Eighteen workloads (stream combinations) were

used. Of these, only two modeled any phase behavior,
and only one modeled phases that a�ected di�erent
streams (and object sizes) in correlated ways.116

Nielsen's experiments were done in two phases. In
the �rst phase a single workload was used to test 35
variants of best �t, �rst �t, next �t, binary buddies,
and segregated �ts. (This workload consisted of 10
streams, and modeled no phase behavior.) Primarily
on the basis of time costs, all but seven of the ini-

116 In our view, this does not constitute a valid cross-section
of discrete event simulation programs, for several rea-
sons. (They may better reect the state of the art in
simulation at the time the study was done, however.)
First, in many simulations, events are not generated at
random, but in synchronized pulses or other patterns.
Second, many events in some simulations are responses
to emergent interactions of other events, i.e., patterns in
the domain-level systems being simulated. Third, many
simulation programs have considerable state local to
simulated objects, in addition to the event records them-
selves. Fourth, many simulation systems include analy-
sis facilities which may create objects with very di�er-
ent lifetime characteristics than the simulation objects
themselves; for example, an event log that accumulates
monotonically until the simulation terminates.

56

tial set of allocators were eliminated from consider-
ation. (This is unfortunate, because di�erent imple-
mentation strategies could implement many of the
same policies more e�ciently. Best �t and address-
ordered �rst �t were among the policies eliminated.)
Of the surviving seven allocators, six had poor mem-
ory usage. The seventh allocator, which performed
quite well in terms of both speed and memory us-
age, was \multiple free lists," i.e., segregated �ts with
exact lists.

In [Sho77], Shore analyzed address-ordered �rst
�t theoretically, and showed that the allocator itself
violates a statistical assumption underlying Knuth's
�fty percent rule. He argued that systematicity in the
placement of objects interacts with \the statistics of
the release process" to a�ect the length of the the free
list under equilibrium conditions.

Shore demonstrated that the relative performance
of best �t and (address-ordered) �rst �t depended on
the shape of the lifetime distribution.

Shore was primarily concerned with simple, well be-
haved distributions, however, and made the usual as-
sumptions of randomness (e.g., independence of suc-
cessive allocations, independence of size and lifetime).
He did not consider possible systematicities in the ap-
plication program's allocations and releases, such as
patterned births and deaths. (He did aptly note that
\the dynamics of memory usage comprise complicated
phenomena in which observable e�ects often have sub-
tle causes.")

Russell [Rus77] attempted to derive formulas for
expected fragmentation in a Fibonacci and a gener-
alized Fibonacci buddy system,117 based on the as-
sumption that size distributions followed a generaliza-
tion of Zipf's law (i.e., a decreasing function inversely
related to the sizes). Based on this assumption, he
derived estimated lower and upper bounds, as well as
estimated average performance. He compared this to
simulation results, using the conventional synthetic
trace methodology and basing size distributions on
three real distributions (Margolin's CP-67 distribu-
tion, the BYU distribution, and the U. of Maryland
distribution.) For the generalized Fibonacci system,
average fragmentation for the three workloads was
close to what was predicted (22% predicted, 21% ob-
served). For the plain Fibonacci system, the error was
signi�cant (29% predicted, 22% observed). For binary

117 See also Bromley [Bro80].

buddy the error was rather large (44% predicted, 30%
observed).
Russell notes that the CP-67 data do not closely

resemble a Zipf distribution, and for this distribution
the fragmentation using conventional Fibonacci is in
fact lower (at 15%) than his estimated lower bound
(24%). Averaging just the results for the other two
distributions brings the results closer to the predicted
values on average, but for generalized Fibonacci they
move further away. We believe that his estimation
technique is unreliable, partly because we do not be-
lieve that distributions are generally exponential, and
partly because of the randomness of request order that
he assumes.

Wise, in an unpublished technical report [Wis78],
described a double buddy system and its advantages
over Fibonacci systems in terms of external fragmen-
tation (producing free blocks of the same size as re-
quested blocks). This report apparently went unno-
ticed until well after double buddy was reinvented by
Page and Hagins [PH86].118

Reeves [Ree79, Ree80, Ree82, Ree83] used analytic
techniques to determine the e�ect of a random �t allo-
cator policy in the face of random workloads, using a
\generating function" approach originated by Knuth
[Knu73]. This work relies extremely heavily on ran-
domness assumptions|usually in both the workload
and the allocator|to enable the analyses of memories
of signi�cant size.

1980 to 1990.

People at �rst were not so much concerned
with what the story meant; what they
wanted to know was where these lotteries
were held, and whether they could go there
and watch.
|Shirley Jackson, \On the Morning of June
28, 1948, and `The Lottery' "

Overview. The 1980{1990 period saw only modest de-
velopment of new allocator techniques, and little new
in the way of evaluationmethodologies, at least in aca-
demic publications. Despite doubts cast by Margolin
and Batson, most experimenters continued to use syn-
thetic traces, often with smooth and well-behaved

118 The �rst author of the present paper overlooked both
and reinvented it yet again in 1992. It is next expected
to appear in the year 2000.

57

distributions. This is probably due to the lack of a
comprehensive survey addressing methodological con-
cerns. (The present paper is an attempt to remedy
that problem.) By this time, there were many papers
on allocators, and Margolin's and Batson's were prob-
ably not among the most studied.119 Most theoretical
papers continued to make strong assumptions of ran-
domness and independence, as well, with the excep-
tion of papers about worst-case performance.
Among the more interesting designs from this pe-

riod are Standish and Tadman's exact lists scheme,
Page and Hagins' double buddy system, Beck's age-
match algorithm, and Hanson's obstack system.

Standish surveyed memory allocation research in
a (short) chapter of a book on data structures [Sta80],
describing segregated �ts and introducing a segrega-
ted free lists method using exact lists. Citing Tad-
man's masters thesis [Tad78], he reported that an ex-
perimental evaluation showed this scheme to perform
quite similarly to best �t|which is not surprising,
because it is best �t, in policy terms|and that it
was fast. (These experiments used the usual synthetic
trace methodology, and Standish summarized some of
Weinstock's results as well.)

Page [Pag84] analyzed a \cyclic placement" policy
similar to next �t, both analytically and in random-
ized simulations. (Only uniformly distributed sizes
and lifetimes were used.) The cyclic placement scheme
generally resulted in signi�cantly more fragmentation
than �rst �t or best �t.

\...over in the north village they're talking
of giving up the lottery."
|Shirley Jackson, \The Lottery"

Leverett and Hibbard [LH82] performed one
of the all-too-rare studies evaluating memory allo-
cators using real traces. Unfortunately, their work-
load consisted of �ve very small programs (e.g., tow-
ers of Hanoi, knight's tour) coded in Algol-68; none
was more than 100 lines. It is unclear how well such
textbook-style programs represent larger programs in
general use.

119 Margolin's paper was published in an IBM journal,
while the main stream of allocator papers was pub-
lished in Communications of the ACM. Batson and
Brundage's paper was published in CACM, but its ti-
tle may not have conveyed the signi�cance of their data
and conclusions.

Algol-68 did support general heap allocation, an im-
provement over Algol-60. The Algol-68 system used
for experiments used reference counting to reclaim
space automatically.120 (Deferred) coalescing was per-
formed only when memory is exhausted. The general
allocator was �rst �t with a LIFO-ordered free list.
LIFO-ordered quick lists for di�erent-sized blocks

were used, as well as per-procedure lists for activation
records,121 and some lists for speci�c data types. De-
ferred coalescing greatly improved the speed of their
allocator, and usually decreased overall memory us-
age.
Leverett and Hibbard also found that Knuth's rov-

ing pointer modi�cation (i.e., next �t) was disappoint-
ing; search lengths did not decrease by much, and for
some programs got longer.

Page [Pag82] evaluated Campbell's \optimal �t"
method analytically and in randomized trace simula-
tions. (Page's version of optimal �t was somewhat dif-
ferent from Campbell's, of necessity, since Campbell's
was intertwined with a particular application pro-
gram structure.) Page showed that Campbell's analy-
sis erred in assuming randomness in �rst-�t-like place-
ment policies, and that systematicities in placement
matter considerably. In Page's analysis and simula-
tions, Campbell's \optimal" �t was distinctly inferior
to �rst �t and best �t in both search times and mem-
ory usage. (Only uniformly distributed sizes and life-
times were used, however.)
Page also showed that (for uniformly distributed

sizes and lifetimes), a �rst �t policy resulted in the
same placement decisions as best �t most of the time,
if given the same con�guration of memory and the
same request. He also showed that the free list for
�rst �t tended toward being roughly sorted in size
order. (See also similar but possibly weaker claims in
[Sho75], discussed earlier.)

120 A possibly misleading passage says that memory is freed
\explicitly," but that is apparently referring to a level
of abstraction below the reference counting mechanism.
Another potentially confusing term, \garbage collec-
tion," is used to refer to deferred coalescing where co-
alescing is performed only when there is no su�ciently
large block to satisfy a request. This is very di�erent
from the usual current usage of the term [Wil95], but it
is not uncommon in early papers on allocators.

121 Activation records were apparently allocated on the gen-
eral heap; presumably this was used to support closures
with inde�nite extent (i.e., \block retention"), and/or
\thunks" (hidden parameterless subroutines) for call-
by-name parameter passing [Ing61].

58

Betteridge [Bet82] attempted to compute frag-
mentation probabilities for di�erent allocators using
�rst-order Markov modeling. (This book is apparently
Betteridge's dissertation, completed in 1979.) The ba-
sic idea is to model all possible states of memory oc-
cupancy (i.e., all arrangements of allocated and free
blocks), and the transition probabilities between those
states. Given a �xed set of transition probabilities, it
is possible to compute the likelihood of the system be-
ing in any particular state over the long run. This set
of state probabilities can then be used to summarize
the likelihood of di�erent degrees of fragmentation.

Unfortunately, the number of possible states of
memory is exponential in the size of memory, and
Betteridge was only able to compute probabilities for
memories of sizes up to twelve units. (These units may
be words, or they may be interpreted as some larger
grain size. However, earlier results suggest that small
grain sizes are preferred.) He suggests several tech-
niques to make it easier to use somewhat larger mod-
els, but had little success with the few he tried. (See
also [Ben81, Ree82, McI82].) We are not optimistic
that this approach is useful for realistic memory sizes,
especially since memory sizes tend to increase rapidly
over time.

To allow the use of a �rst-order Markov model, Bet-
teridge assumed that object lifetimes were completely
independent|not only must death times be random
with respect to allocation order, but there could be
no information in the request stream that might give
an allocator any exploitable hint as to when objects
might die. For this, Betteridge had to assume a ran-
dom exponential lifetime function, i.e., a half-life func-
tion where any live object was exactly as likely to die
as any other at a given time. (Refer to Section 2.2
for more on the signi�cance of this assumption.) This
is necessary to ensure that the frequencies of actual
transitions would stabilize over the long run (i.e., the
Markov model is ergodic|see Section 2.2), and al-
lows the computation of the transition probabilities
without running an actual simulation for an inconve-
niently in�nite period of time. The system need not
keep track of the sequences of transitions that result
in particular states|actual sequences are abstracted
away, and only the states where histories intersect are
represented.

Even with these extremely strong assumptions of
randomness, this problem is combinatorially explo-
sive. (This is true even when various symmetries and
rotations are exploited to combine (exactly) equiva-

lent states [Ben81, McI82].)
We believe that the only way to make this kind of

problem remotely tractable is with powerful abstrac-
tions over the possible states of memory. For the gen-
eral memory allocation problem, this is simply not
possible|for an arbitrary interesting allocator and
real request streams, there is always the possibility
of systematic and even chaotic interactions. The only
way to make the real problem formalizable is to �nd a
useful qualitative model that captures the likely range
of program behaviors, each allocator's likely responses
to classes of request streams, and (most importantly)
allows reliable characterization of request streams and
allocators in the relevant ways. We are very far away
from this deep understanding at present.

Beck [Bec82] described the basic issue of fragmen-
tation clearly, and designed two interesting classes of
allocators, one idealized and one implementable. Beck
pointed out that basic goal of an allocator is to re-
duce the number of isolated free blocks, and that the
existence of isolated free blocks is due to neighboring
blocks having di�erent death times.
This motivated the design of an idealized o�ine al-

locator that looks ahead into the future to �nd out
when objects will die; it attempts to place new ob-
jects near objects that will die at about the same
time. This policy can't be used in practice, because
allocators must generally make their decisions online,
but it provides an idealized standard for comparison.
This \release-match" algorithm is philosophically sim-
ilar to Belady's well-known MIN (or OPT) algorithm
for optimal demand-paging. (It is heuristic, however,
rather than optimal.)
Beck also described an implementable \age match"

algorithm intended to resemble release-match, using
allocation time to heuristically estimate the dealloca-
tion (release) time.
For an exponential size distribution and uniform

lifetime distribution, he found that the e�ectiveness
of the age-match heuristic depended on the lifetime
variance (i.e., the range of the uniform distribution).
This is not surprising, because when lifetimes are sim-
ilar, objects will tend to be deallocated in the order
that they are allocated. As the variance in lifetimes
increases, however, the accuracy of prediction is re-
duced.
Beck also experimented with hyper-exponential life-

time distributions. In this case, the age-match heuris-
tic systematically failed, because in that case the age
of an object is negatively correlated with the time un-

59

til it will die. This should not be surprising. (In this
case it might work to reverse the order of estimated
death times.)

Stephenson [Ste83] introduced the \Fast Fits"
technique, using a Cartesian tree of free blocks or-
dered primarily by address and secondarily by block
size. He evaluated the leftmost �t (address-ordered
�rst �t) and better �t variants experimentally. De-
tails of the experiment are not given, but the general
result was that the space usage of the two policies
was similar, with better �t appearing to have a time
advantage. (A caveat is given, however, that this re-
sult appears to be workload-dependent, in that di�er-
ent distributions may give di�erent results. This may
be a response to the then-unpublished experiments in
[BBDT84], but no details are given.)

Kaufman [Kau84] presented two buddy system al-
locators using deferred coalescing. The �rst, \tailored
list" buddy systems, use a set of size-speci�c free lists
whose contents are not usually coalesced.122 This sys-
tem attempts to keep the lengths of the free lists pro-
portional to the expected usage of the corresponding
sizes; it requires estimates of program behavior. The
second scheme, \recombination delaying" buddy sys-
tems, adapts dynamically to the actual workload. In
experiments using the usual synthetic trace methodol-
ogy, Kaufman found that both systems worked quite
well at reducing the time spent in memory manage-
ment. These results are suspect, however, due to the
load-smoothing e�ects of random traces, which atter
small caches of free blocks (Section 3.11).123

Bozman et al. [BBDT84] studied a wide variety
of allocators, including sequential �ts, deferred coales-
cing schemes, buddy systems, and Stephenson's Car-
tesian tree system. (Not all allocators were compared
directly to each other, because some were tailored to
an IBM operating system and others were not.) They
used synthetic traces based on real lifetime distrib-
utions, primarily from two installations of the same
IBM operating system, VM-SP. (Their main goal was
to develop an e�cient allocator for that system.) They

122 This tailoring of list length should not be confused with
the tailoring of size classes as mentioned in [PN77].

123 The tailored list scheme worked better than the recom-
bination delaying scheme, but this result is especially
suspect; the tailored list scheme does not respond dy-
namically to the changing characteristics of the work-
load, but this weakness is not stressed by an arti�cial
trace without signi�cant phase behavior.

also measured the performance of a resulting algo-
rithm in actual use in the VM-SP system.

First, Bozman et al. compared �rst �t, next �t
and best �t with the VM-SP algorithm. This algo-
rithm, based on earlier research by Margolin et al.,
used deferred coalescing with a general pool managed
by address-ordered �rst �t. In terms of fragmenta-
tion, VM-SP was best, followed by best �t, which was
signi�cantly better than �rst �t. This result is un-
clear, however, because they don't state which vari-
ety of �rst �t they were using (e.g., address-ordered
or LIFO-ordered free lists). Next �t was considerably
worse, using about 50% more memory than the VM-
SP algorithm.

They then compared best-�t-�rst (taking the �rst
of several equally good �ts) with best-�t-last (taking
the last), and found that best-�t-last was better. They
also added a splitting threshold, which reduced the
di�erence between best �t and �rst �t. (We are not
sure whether these got better or worse in absolute
terms.) Adding the splitting threshold also reversed
the order of best-�t-�rst and best-�t-last.

Bozman et al. also tested a binary buddy and a
modi�ed Fibonacci buddy. They found that the mem-
ory usage of both was poor, but both were fast; the
memory usage of the modi�ed Fibonacci buddy was
quite variable.

Testing Stephenson's Cartesian tree allocator, they
found that the leftmost �t (address ordered �rst �t)
policy worked better than the \better �t" policy; they
latter su�ered from \severe" external fragmentation
for the test workload. They suggest that leftmost �t
would make a good general allocator in a system with
deferred coalescing.

After these initial experiments, Bozman et al. de-
veloped a fast deferred coalescing allocator. This allo-
cator used 2 to 15 percent more memory than best �t,
but was much faster. We note that the extra memory
usage was likely caused at least in part by the policy
of keeping \subpools" (free lists caching free blocks of
particular sizes) long enough that the miss rate was
half a percent or less. (That is, no more than one in
two hundred allocations required the use of the gen-
eral allocator.)

This allocator was deployed and evaluated in the
same installations of the VM-SP operating system
from which their test statistics had been gathered.
The performance results were favorable, and close to
what was predicted. From this Bozman et al. make the
general claim|which is clearly far too strong|that

60

the statistical assumptions underlying the random-
trace methodology are not a problem, and that the
results are highly predictive. (We believe that this
conclusion is di�cult to support with what amount
to two data points, especially since their validation
was primarily relevant to variations on a single opti-
mized design, not the wide variety of basic allocators
they experimented with using synthetic traces.)

In a related paper, Bozman [Boz84] described
a general \software lookaside bu�er" technique for
caching search results in data structures. One of his
three applications (and empirical evaluations) was for
deferred coalescing with best �t and address-ordered
�rst �t allocators. In that application, the bu�er is a
FIFO queue storing the size and address of individ-
ual blocks that have been freed recently. It is searched
linearly at allocation time.
For his evaluation, Bozman used the conventional

synthetic trace methodology, using a real size distri-
bution from a VM-SP system and exponentially dis-
tributed lifetimes; he reported considerable reductions
in search lengths, in terms of combined FIFO bu�er
and general allocator searches. (It should be noted
that both general allocators used were based on lin-
ear lists, and hence not very scalable to large heaps;
since the FIFO bu�er records individual free blocks, it
too would not scale well. With better implementations
of the general allocator, this would be less attractive.
It also appears that the use of a randomized trace is
likely to have a signi�cant e�ect on the results (Sec-
tion 3.11).

Co�man, Kadota, and Shepp [CKS85] have
conjectured that address-ordered �rst �t approaches
optimal as the size of memory increases. They make
very strong assumptions of randomness and indepen-
dence, including assuming that lifetimes are unrelated
and exponentially distributed.
In support of this conjecture, they present results

of simulations using pseudo-random synthetic traces,
which are consistent with their conjecture. They claim
that \we can draw strong engineering conclusions
from the above experimental result."
Naturally, we are somewhat skeptical of this state-

ment, because of the known non-randomness and non-
independence observed in most real systems. Co�man,
Kadota, and Shepp suggest that their result indicates
that large archival storage systems should use �rst
�t rather than more complex schemes, but we believe
that this result is inapplicable there. (We suspect that
there are signi�cant regularities in �le usage that are

extremely unlikely to occur with random traces using
smooth distributions, although the use of compression
may smooth size distributions somewhat.)
We also note that for secondary and tertiary storage

more generally, contiguous storage is not strictly re-
quired; freedom from this restriction allows schemes
that are much more exible and less vulnerable to
fragmentation. (Many systems divide all �les into
blocks of one or two �xed sizes, and only preserve
logical contiguity (e.g., [RO91, VC90, SKW92, CG91,
AS95]). If access times are important, other consider-
ations are likely to be much more signi�cant, such as
locality. (For rotating media and especially for tapes,
placement has more important e�ects on speed than
on space usage.)

Oldehoeft and Allan [OA85] experimented with
variants of deferred coalescing, using a working-set
or FIFO policy to dynamically determine which sizes
would be kept on quick lists for for deferred coales-
cing. The system maintained a cache of free lists for
recently-freed sizes. (Note that where Bozman had
maintained a cache of individual free blocks, Olde-
hoeft and Allan maintained a cache of free lists for
recently-freed sizes.) For the FIFO policy, this cache
contains a �xed number of free lists. For the Working
Set policy, a variable number of free lists are main-
tained, depending on how many sizes have been freed
within a certain time window. In either policy, when
a free list is evicted from the cache, the blocks on that
list are returned to the general pool and coalesced if
possible. Note that the number and size of uncoalesced
free blocks is potentially quite variable in this scheme,
but probably less so than in schemes with �xed-length
quick lists.
One real trace was used, and two synthetic traces

generated from real distributions. The real trace was
from a Pascal heap (program type not stated) and
the real distributions were Margolin's CP-67 data and
Leverett and Hibbard's data for small Algol programs.
Oldehoeft and Allan reported results for FIFO and

Working Set with comparable average cache sizes. The
FIFO policy may defer the coalescing of blocks for a
very variable time, depending on how many di�er-
ent sizes of object are freed. The Working Set policy
to coalesce all blocks of sizes that haven't been freed
within its time window. Neither policy bounds the vol-
ume of memory contained in the quick lists, although
it would appear that Working Set is less likely to have
excessive amounts of idle memory on quick lists.
The Working Set policy yielded higher hit rates|

61

i.e., more allocations were satis�ed from the size-
speci�c lists, avoiding use of the general allocator.
They also experimented with a totally synthetic

workload using uniform random size and lifetime dis-
tributions. For that workload, Working Set and FIFO
performed about equally, and poorly, as would be ex-
pected.
E�ects on actual memory usage were not reported,

so the e�ect of their deferred coalescing on overall
memory usage is unknown.

Korn and Vo [KV85] evaluated a variety of UNIX
memory allocators, both production implementations
distributed with several UNIX systems, and new im-
plementations and variants. Despite remarking on the
high fragmentation observed for a certain usage pat-
tern combined with a next �t allocator (the simple
loop described in Section 3.5), they used the tradi-
tional synthetic trace methodology. (Vo's recent work
uses real traces, as described later.) Only uniform size
and lifetime distributions were used. They were inter-
ested in both time and space costs, and in scalability
to large heaps.
Five of their allocators were variants of next �t.124

The others included simple segregated storage (with
powers of two size classes)125 address-ordered �rst �t
(using a self-adjusting \splay" tree [ST85]), segrega-
ted �ts (using Fibonacci-spaced size classes), better
�t (using Stephenson's Cartesian tree scheme), and
two best �t algorithms (one using a balanced binary
tree, and the other a splay tree).
It may be signi�cant that Korn and Vo modi-

�ed most of their allocators to include a \wilderness
preservation heuristic," which treats the last block
of the heap memory area specially; this is the point
(called the \break") where the heap segment may be
extended, using UNIX sbrk() system call, to obtain
more virtual memory pages from the operating sys-
tem. (See Section 3.5.)
To summarize their results, we will give approxi-

mate numbers obtained by visual inspection of their
Figure 3. (These numbers should be considered very
approximate, because the space wastage varied some-
what with mean object size and lifetimes.)
Space waste (expressed as an increase over the

amount of live data, and in increasing order), was

124 Next �t is called \�rst �t" in their paper, as is common.
125 This is allocator (implemented by Chris Kingsley and

widely distributed with the BSD 4.2 UNIX system) is
called a buddy system in their paper, but it is not; it
does no coalescing at all.

as follows. Best �t variants worked best, with space
wastage of roughly 6 to 11 percent (in order of in-
creasing waste, best �t (splay), best �t (balanced),
better �t Cartesian). Segregated �ts followed at about
16 percent. Address-ordered next �t wasted about 20
percent, and address-ordered �rst �t wasted about 24
percent. Standard next �t and a variant using adap-
tive search followed, both at about 26 percent. Two
other variants of next �t followed at a considerable
distance; one used a restricted search (42 percent) and
the other treated small blocks specially (45 percent).
Simple segregated storage (powers of two sizes) was
worst at about 47 percent. (These numbers should be
interpreted with some caution, however; besides the
general problem of using synthetic workloads, there
is variation among the allocators in per-block over-
heads.)
In terms of time costs, two implementations scaled

very poorly, being fast for small mean lifetimes (and
hence heap sizes), but very slow for large ones. The
implementations of these algorithms both used linear
lists of all blocks, allocated or free. These algorithms
were a standard next �t and an address-ordered next
�t.
Among the other algorithms, there were four clus-

ters at di�erent time performance levels. (We will
name the algorithms within a cluster in approxi-
mately increasing cost order.) The �rst cluster con-
tained only simple segregated storage, which was by
far the fastest. The second cluster contained next �t
with restricted search, next �t with special treatment
of small blocks, segregated �ts, and next �t with adap-
tive search. (This last appeared to scale the worst of
this cluster, while segregated �ts scaled best.) The
third cluster contained best �t (splay), better �t (Car-
tesian), and address-ordered �rst �t (splay).

Gai and Mezzalama [GM85] presented a very
simple deferred coalescing scheme, where only one size
class is treated specially, and the standard C library
allocator routines are used for backing storage. (The
algorithms used in this library are not stated, and are
not standardized.)
Their target application domain was concurrent

simulations, where many variations of a design are
tested in a single run. As the run progresses, faults
are detected and faulty designs are deleted.126 An

126 This is actually intended to test a test system; faulty
designs are intentionally included in the set, and should
be weeded out by the test system. If not, the test system
must be improved.

62

interesting characteristic of this kind of system is
that memory usage follows a backward (decreasing)
ramp function after the initialization phase|aside
from short-term variations due to short-lived objects,
the general shape of the memory-use function is mon-
otonically decreasing.
To test their allocator, they used a synthetic work-

load where memory usage rises sharply at the begin-
ning and oscillates around a linearly descending ramp.
The use of this synthetic trace technique is more some-
what more reasonable for this specialized allocator
than for the general allocation problem; since there's
essentially no external fragmentation,127 there's little
di�erence between a real trace and a synthetic one in
that regard.
They reported that this quick list technique was

quite fast, relative to the (unspeci�ed) general alloca-
tor.
From our point of view, we �nd the experimental

results less interesting than the explanation of the
overall pattern of memory usage in this class of appli-
cation, and what the attractiveness of this approach
indicates about the state of heap management in the
real world (refer to Section 1.1).

Page and Hagins [PH86] provided the �rst pub-
lished double buddy system, and experimentally com-
pared it to binary and weighted buddy systems. Us-
ing the standard simulation techniques, and only uni-
formly distributed sizes and lifetimes, they show that
double buddies su�er from somewhat less fragmen-
tation than binary and weighted buddies. They also
present an analysis that explains this result.128

Brent [Bre89] presented a scalable algorithm for
the address-ordered �rst �t policy, using a \heap,"
data structure|i.e., a partially-ordered tree, not to

127 Since memory usage is dominated by a single size, al-
most all requests can be satis�ed by almost any free
block;

128 While we believe that double buddies are indeed e�ec-
tive, we disagree somewhat with their methodology and
their analysis. Uniform random distributions do not ex-
hibit the skewed and non-uniform size distributions of-
ten seen in real programs, or pronounced phase behav-
ior. All of these factors may a�ect the performance of
the double buddy system; a skew towards a particu-
lar size favors double buddies, where splitting always
results in same-sized free blocks. Phase behavior may
enhance this e�ect, but on the other hand may cause
problems due to uneven usage of the two component (bi-
nary) buddy systems, causing external fragmentation.

be confused with the sense of \heap" as a pool for
dynamic storage allocation|embedded in an array.
To keep the size of this heap array small, a two-level
scheme is used. Memory is divided into equal-sized
chunks, and the heap recorded the size of the largest
free block in each chunk.Within a chunk, conventional
linear searching is used. While this scheme appears
to scale well, it has the drawback that the constant
factors are apparently rather high. Other scalable in-
dexing schemes may provide higher performance for
address-ordered �rst �t.

Although the villagers had forgotten the rit-
ual and lost the original black box, they still
remembered to use stones...
\It isn't fair, it isn't right," Mrs. Hutchison
screamed and then they were upon her.
|Shirley Jackson, \The Lottery"

Co�man and Leighton, in a paper titled \A
Provably E�cient Algorithm for Dynamic Storage
Allocation" [CL89] describe an algorithm combining
some characteristics of best �t and address-ordered
�rst �t, and prove that its memory usage is asymptot-
ically optimal as system size increases toward in�nity.
To enable this proof, they make the usual as-

sumptions of randomness and independence, includ-
ing randomly ordered and exponentially distributed
lifetimes. (See Section 2.2.) They also make the fur-
ther assumption that the distribution of object sizes
is known a priori, which is generally not the case in
real systems.
Co�man and Leighton say that probabilistic re-

sults are less common than worst-case results, \but far
more important," that their result has \strong conse-
quences for practical storage allocation systems," and
that algorithms designed to \create su�ciently large
holes when none exist will not be necessary except in
very special circumstances."
It should be no surprise that we feel compelled to

take exception with such strongly-stated claims. In
our view, the patterned time-varying nature of real
request streams is the major problem in storage allo-
cation, and in particular the time-varying shifts in the
requested sizes. Assuming that request distributions
are known and stable makes the problem mathemat-
ically tractable, but considerably less relevant.
Co�man and Leighton o�er an asymptotic improve-

ment in memory usage, but this amounts to no more
than a small constant factor in practice, since real
algorithms used in real systems apparently seldom

63

waste more than a factor of two in space, and usu-
ally much less.129

While we believe that this result is of limited rel-
evance to real systems, it does seem likely that for
extremely large systems with many complex and in-
dependent tasks, there may be signi�cant smoothing
e�ects that tend in this direction. In that case, there
may be very many e�ectively random holes, and thus
a likely good �t for any particular request.

Unfortunately, we suspect that the result given is
not directly relevant to any existing system, and for
any su�ciently large and complex systems, other con-
siderations are likely to be more important. For the
foreseeable future, time-varying behavior is the essen-
tial policy consideration. If systems eventually become
ver large (and heterogeneous), locality concerns are
likely to be crucial. (Consider the e�ects on locality
in a large system when objects are placed in e�ec-
tively randomly-generated holes; the scattering of re-
lated data seems likely to be a problem.)

Hanson [Han90] presents a technique for allocat-
ing objects and deallocating them en masse. This is
often more e�cient and convenient than traversing
data structures being deallocated, and freeing each
object individually. A special kind of heap can be cre-
ated on demand. In the GNU C compiler system, these
are called \obstacks," short for \object stacks," and
we will adopt that term here. Objects known to die
at the end of a phase can be allocated on an obstack,
and all freed at once when the phase is over. More
generally, nested phases are supported, so that ob-
jects can be deallocated in batches whose extents are
nested. Freeing an object simply frees that object and
all objects allocated after it. (This is actually a very
old idea, dating at least to Collins' \zone" system.130

The fact that this idea has been independently devel-
oped by a variety of system implementors attests to
the obvious and exploitable phase behavior evident in
many programs.)

129 We also note that their algorithm requires log2 n time|
where n is the number of free blocks|which tends
toward in�nity as n tends toward in�nity. In practi-
cal terms, it becomes rather slow as systems become
very large. However, more scalable (sublogarithmic) al-
gorithms could presumably exploit the same statistical
tendencies of very large systems, if real workloads re-
sembled stochastic processes.

130 Similar techniques have been used in Lisp systems (no-
tably the Lisp Machine systems), and are known by a
variety of names.

The obstack scheme has two advantages. First, it
is often easier for the programmer to manage batches
of objects than to code freeing routines that free each
object individually. Second, the allocator implemen-
tation can be optimized for this usage style, reducing
space and time costs for freeing objects. In Hanson's
system, storage for a specially-managed heap is allo-
cated as a linked list of large chunks, and objects can
be allocated contiguously within a chunk; no header
is required on each small object. The usual time cost
for allocation is just the incrementing of a pointer
into a chunk, plus a check to see if the chunk is full.
The time cost for freeing in a large specially-managed
heap is roughly proportional to the number of chunks
freed, with fairly small constant factors, rather than
the number of small objects freed.

Obstack allocation must be used very carefully, be-
cause it intertwines the management of data struc-
tures with the control structure of a program. It is
easy to make mistakes where objects are allocated on
the obstack, but the data objects they manage are
allocated on the general heap. (E.g., a queue object
may be allocated on an obstack, but allocate its queue
nodes on the general heap.) When the controlling ob-
jects are freed, the controlled objects are not; this is
especially likely to happen in large systems, where in-
tercalling libraries do not obey the same storage man-
agement conventions.131

131 The opposite kind of mistake is also easy to make, if
the controlling objects' routines are coded on the as-
sumption that the objects it controls will be freed au-
tomatically when it is freed, but the controlling object
is actually allocated on the general heap rather than an
obstack. In that case, a storage leak results. These kinds
of errors (and many others) can usually be avoided if
garbage collection [Wil95] is used to free objects au-
tomatically. Henry Baker reports that the heavy use
of an obstack-like scheme used in MIT Lisp machines
was a continuing source of bugs (Baker, personal com-
munication 1995). David Moon reports that a similar
facility in the Symbolics system often resulted in ob-
scure bugs, and its use was discouraged after an ef-
�cient generational garbage collector [Moo84] was de-
veloped (Moon, personal communication 1995); gener-
ational techniques heuristically exploit the lifetime dis-
tributions of typical programs [LH83, Wil95]. For sys-
tems without garbage collection, however, the resulting
problems may be no worse than those introduced by
other explicit deallocation strategies, when used care-
fully and in well-documented ways.

64

4.2 Recent Studies Using Real Traces

\Some places have already quit lotteries,"
Mrs. Adams said.
\Nothing but trouble in that," Old Man
Warner said stoutly.
|Shirley Jackson, \The Lottery"

Zorn, Grunwald, et al. Zorn and Grunwald and
their collaborators have performed a variety of ex-
perimental evaluations of allocators and garbage col-
lectors with respect to space, time, and locality costs.
This is the �rst major series of experiments using valid
methodology, i.e., using real traces of program behav-
ior for a variety of programs.
Our presentation here is sketchy and incomplete, for

several reasons. Zorn and Grunwald are largely inter-
ested in time costs, while we are (here) more inter-
ested in placement policies' e�ect on fragmentation.
They have often used complicated hybrid allocator al-
gorithms, making their results di�cult to interpret in
terms of our basic policy consideration, and in gen-
eral, they do not carefully separate out the e�ects of
particular implementation details (such as per-object
overheads and minimumblock sizes) from \true" frag-
mentation. (Nonetheless, their work is far more useful
than most prior experimental work.) Some of Zorn
and Grunwald's papers|and much of their data and
their test programs|are available via anonymous In-
ternet FTP (from cs.colorado.edu) for further anal-
ysis and experimentation.

In [ZG92], Zorn and Grunwald present various
allocation-related statistics on six allocation-intensive
C programs, i.e., programs for which the speed of
the allocator is important. (Not all of these use large
amounts of memory, however.) They found that for
each of these programs, the two most popular sizes
accounted for at least half (and as much as 93%) of
all allocations. In each, the top ten sizes accounted for
at least 85% of all allocations.

Zorn and Grunwald [ZG94] attempted to �nd
fairly conventional models of memory allocation that
would allow the generation of synthetic traces useful
for evaluating allocators. They used several models of
varying degrees of sophistication, some of which mod-
eled phase behavior and one of which modeled �ne-
grained patterns stochastically (using a �rst-order
Markov model). To obtain the relevant statistics, they
gathered real traces and analyzed them to quantify

various properties, then constructed various drivers
using pseudo-random numbers to generate request
streams accordingly.

In general, the more re�ned attempts at modeling
real behavior failed. (Our impression is that they did
not necessarily expect to succeed|their earlier empir-
ical work shows a strong disposition toward the use of
real workloads.) They found that their most accurate
predictor was a simple \mean value" model, which
uses only the mean size and lifetime, and generates
a request stream with uniformly distributed sizes and
lifetimes. (Both vary from zero to twice the mean, uni-
formly.) Unfortunately, even their best model is not
very accurate, exhibiting errors of around 20%. For a
small set of allocators, this was su�cient to predict
the rank ordering (in terms of fragmentation) in most
cases, but with ordering errors when the allocators
were within a few percent of each other.

From this Zorn and Grunwald conclude that the
only reliable method currently available for studying
allocators is trace-driven simulation with real traces.
While this result has received too little attention, we
believe that this was a watershed experiment, invali-
dating most of the prior experimental work in memory
allocation.

Ironically, Zorn and Grunwald's results show that
some of the most simplistic models|embodying
clearly false assumptions of uniform size and life-
time distributions|generally produce more accurate
results than more \realistic" models. It appears that
some earlier results using unsound methods have ob-
tained the right results by sheer luck|the \better"
algorithms do in fact tend to work better for real pro-
grams behavior as well. (Randomization introduces
biases that tend to cancel each other out for most
policies tested in earlier work.) The errors produced
are still large, however, often comparable to the total
fragmentation for real programs, once various over-
heads are accounted for.

(Our own later experiments [WJNB95], described
later, show that the random trace methodology can
introduce serious and systematic errors for some al-
locators which are popular in practice but almost
entirely absent in the experimental literature. This
is ironic as well|earlier experimenters happened to
choose a combination of policies and experimental
methodology that gave some of the right answers. It
is clear from our review of the literature that there
was{and still is|no good model that predicts such a
happy coincidence.)

65

Zorn, Grunwald, and Henderson [GZH93] mea-
sured the locality e�ects of several allocators: next �t,
the G++ segregated �ts allocator by Doug Lea, sim-
ple segregated storage using powers of two size classes
(the Berkeley 4.2 BSD allocator by Chris Kingsley),
and two simpli�ed quick �t schemes (i.e., \Quick Fit"
in the sense of [WW88], i.e., without coalescing for
small objects).
One of simpli�ed these quick �t allocators (written

by Mike Haertel) uses �rst �t as the general alloca-
tor, and allocates small objects in powers-of-two sized
blocks. (We are not sure which variant of �rst �t is
used.) As an optimization, it stores information about
the memory use within page-sized (4KB) chunks and
can reclaim space for entirely empty pages, so that
they can be reused for objects of other sizes. It can
also use the pagewise information in an attempt to
improve the locality of free list searches.
The other simpli�ed quick �t allocator is uses the

G++ segregated �ts system as its general allocator,
and uses quick lists for each size, rounded to the near-
est word, up to 8 words (32 bytes).
Using Larus' QP tracing tool [BL92], Zorn et al.

traced �ve C programs combined with their �ve al-
locators, and ran the traces through virtual memory
and cache simulators.
They found that next �t had by far the worst

locality, and attribute this to the roving pointer
mechanism|as free list searches cycle through the
free list, they may touch widely separated blocks only
once per cycle. We suspect that there is more to it
than this, however, and that the poor locality is also
due to the e�ects of the free list policy; it may inter-
sperse objects belonging to one phase among objects
belonging to others as it roves through memory.
Because of the number of variables (use of quick

lists, size ranges of quick lists, type of general alloca-
tor, etc.), we �nd the other results of this study dif-
�cult to summarize. It appears that the use of coarse
size ranges degrades locality, as does excessive per-
object overhead due to boundary tags. (The version of
Lea's allocator they used had one-word footers as well
as one-word headers; we have since removed the foot-
ers.) FIFO-managed segregated lists promote rapid
reuse of memory, improving locality at the small gran-
ularities relevant to cache memories. E�ects on larger-
scale locality are less clear.

Barrett and Zorn [BZ93] present a very inter-
esting scheme for avoiding fragmentation by heuris-
tically segregating short-lived objects from other ob-

jects. Their \lifetime prediction" allocator uses o�ine
pro�le information from \training" runs on sample
data to predict which call sites will allocate short-
lived objects. During normal (non-training) runs, the
allocator examines the procedure call stack to dis-
tinguish between di�erent patterns of procedure calls
that result in allocations. Based on pro�le informa-
tion, it predicts whether the lifetimes of objects cre-
ated by that call pattern can be reliably predicted to
be short. (This is essentially a re�nement of a similar
scheme used by Demers et al. for lifetime prediction
in a garbage collector; that scheme [DWH+90] uses
only the size and stack pointer, however, not the call
chain.)
For �ve test applications, Barrett and Zorn found

that examining the stack to a depth of four calls gen-
erally worked quite well, enabling discrimination be-
tween qualitatively di�erent patterns that result in
allocations from the same allocator call site.
Their predictor was able to correctly predict that

18% to 99% of all allocated bytes would be short-lived.
(For other allocations, no prediction is made; the dis-
tinction is between \known short-lived" and \don't
know.")While we are not sure whether this is the best
way of exploiting regularities in real workloads,132 it
certainly shows that exploitable regularities exist, and
that program behavior is not random in the man-
ner assumed (implicitly or explicitly) by earlier re-
searchers. (Barrett and Zorn found that using only
the requested size was less predictive, but still pro-
vided useful information.)

Zorn and Grunwald [GZ93] have investigated the
tailoring of allocators to particular programs, primar-
ily to improve speed without undue space cost. One
important technique is the use of inlining (incorporat-
ing the usual-case allocator code at the point of call,
rather than requiring an out-of-line call to a subrou-
tine). The judicious use of inlining, quick lists for the
important size classes, and a general coalescing back-
ing allocator appears to be able to provide excellent
speed with reasonable memory costs.
Another useful empirical result is that when pro-

grams are run on di�erent data sets, they typically al-
locate the same sizes in roughly similar proportions|
the most important size classes in one run are likely
to be the most important size classes in another, al-
lowing o�ine tailoring of the algorithm using pro�le
data.

132 As noted in Section 2.4, we suspect that death time dis-
crimination is easier than lifetime prediction.

66

Vo. In a forthcoming article, Vo reports on the design
of a new allocator framework and empirical results
comparing several allocators using real traces [Vo95].
(Because this is work in progress, we will not report
the empirical results in detail.)
Vo's vmalloc() allocator is conceptually similar

to Ross' zone system, allowing di�erent \regions" of
memory to be managed by di�erent policies.133 (Re-
gions are subsets of the overall heap memory, and are
not contiguous in general; to a �rst approximation,
they are sets of pages.) A speci�c allocator can be
chosen at link time by setting appropriate UNIX en-
vironment variables. This supports experimentation
with di�erent allocators to tune memorymanagement
to speci�c applications, or to di�erent parts of the
same application, which may allocate in zones that
are managed di�erently. Various debugging facilities
are also provided.
The default allocator provided by Vo's system is a

deferred coalescing scheme using best �t for the gen-
eral allocator. (The size ordering of blocks is main-
tained using a splay tree.) In comparisons with several
other allocators, this allocator is shown to be consis-
tently among the fastest and among the most space
e�cient, for several varied test applications.

Wilson, Johnstone,Neely, and Boles. In a forth-
coming report [WJNB95], we will present results of a
variety of memory allocation experiments using real
traces from eight varied C and C++ programs, and
more than twenty variants of six general allocator
types (�rst �t, best �t, next �t, buddy systems, and
simple segregated storage) [WJNB95]. We will briey
describe some of the major results of that study here.
To test the usual experimental assumptions, we

used both real and synthetic traces, and tried to make
the synthetic traces as realistic as possible in terms of
size and lifetime distributions. We then compared re-
sults of simulations using real traces with those from
randomly-ordered traces. (To generate the random
traces, we simply \shu�ed" the real traces, preserving
the size and lifetime distributions much more accu-
rately than most synthetic trace generation schemes
do.) We found that there was a signi�cant correlation
between the results from real traces and those from
shu�ed traces, but there were major and systematic

133 See also Delacour's [Del92] and Attardi's [AF94] so-
phisticated systems for low-level storage management
in (mostly) garbage-collected systems using mixed lan-
guages and implementation strategies.

errors as well. In an initial test of eight varied alloca-
tors, the correlations accounted for only about a third
of the observed variation in performance. This shows
that the random ordering of synthetic traces discards
the majority of the information relevant to estimat-

ing real fragmentation. Results from most of pre-1992
experiments are therefore highly questionable.
Using real traces, we measured fragmentation for

our eight programs using our large set of allocators.
We will report results for the twelve we consider
most interesting here; for more complete and detailed
information, see the forthcoming report [WJNB95].
These allocators are best �t (using FIFO-ordered free
lists134), �rst �t (using LIFO-ordered, FIFO-ordered
and address-ordered free lists), next �t (also using
LIFO, FIFO, and address order), Lea's segregated �ts
allocator, binary and double buddy systems, simple
segregated storage using powers-of-two size classes,
and simple segregated storage using twice as many
size classes (powers of two, and three times powers of
two, as in the weighted buddy system).
We attempted to control as many implementation-

speci�c costs as possible. In all cases, objects were
aligned on double-word (eight-byte) boundaries, and
the minimum block size was four words. Fragmenta-
tion costs will be reported as a percentage increase,
relative to the baseline of the number of actual bytes
of memory devoted to program objects at the point of
maximummemory usage. All allocators had one-word
headers, except for the simple segregated storage al-
locators, which had no headers.135 (As explained ear-
lier, we believe that in most systems, these will be the
usual header sizes for well-implemented allocators of
these types.)
We will summarize fragmentation costs for twelve

allocators, in increasing order of space cost. We note
that some of these numbers may change slightly be-
fore [WJNB95] appears, due to minor changes in our

134 No signi�cant di�erences were found between results
for variations of best �t using di�erent free list orders.
This is not too surprising, given that the best �t policy
severely restricts the choice of free blocks.

135 Rather than varying the actual implementations' header
and footer schemes, we simulated di�erent header sizes
by compensating at allocation time and in our mea-
surements. The sequential �ts, segregated �ts, and sim-
ple segregated storage allocators actually use two-word
headers or one word headers and one word footers, but
we reduced the request sizes by one word at allocation
time to \recover" one of those words by counting it as
available to hold a word of an object.

67

experiments. The nubers for next �t are also some-
what suspect|we are currently trying to determine
whether they are a�ected by a failure to respect Korn
and Vo's wilderness preservation heuristic.136

It should also be noted that our experimental meth-
odology could introduce errors on the order of a per-
cent or two. Worse, we found that the variance for
some of these allocators was quite high, especially for
some of the poorer algorithms. (We are also concerned
that any sample of eight programs cannot be consid-
ered representative of all real programs, though we
have done our best [WJNB95].) The rank ordering
here should thus be considered very approximate, es-
pecially within clusters.
To our great surprise, we found that best �t,

address-ordered �rst �t, and FIFO-ordered �rst �t
all performed extremely well|and nearly identically
well. All three of these allocators had only about 22%
fragmentation, including losses due to header costs,
rounding up for doubleword alignment, and rounding
small block sizes up to four words.

They were followed by a cluster containing address-
ordered next �t, segregated �ts, and FIFO-ordered
next �t at 28%, 31% and 32%. Then came a cluster
consisting of LIFO-ordered �rst �t, double buddy, and
LIFO-ordered next �t, and at 54%, 56%, and 59%.
These were followed by a cluster consisting of sim-
ple segregated storage using closely-spaced size clas-
ses (73%) and binary buddy (74%). Simple segregated
storage using powers-of-two sizes came last, at 85%.

For �rst �t and next �t, we note that the LIFO free
list order performed far worse than the FIFO free list
order or the address order. For many programmers
(including us), LIFO ordering seems most natural; all
other things being equal, it would also appear to be
advantageous in terms of locality. Its fragmentation
e�ects are severe, however, typically increasing frag-
mentation by a factor of two or three relative to either
address-order or FIFO-order. We are not sure why this
is; the main characteristic the latter two seem to have
in common is deferred reuse. It may be that a deferred
reuse strategy is more important than the details of
the actual policy. If so, that suggests that a wide vari-
ety of policies may have excellent memory usage. This
is encouraging, because it suggests that some of those
policies may be amenable to very e�cient and scalable

136 Most of the allocators appear fairly insensitive to this
issue, and the others (our �rst �t and best �t) were
designed to respect it by putting the end block at the
far end of the free list from the search pointer.

implementations.
Double buddy worked as it was designed to|if we

assume that it reduced internal fragmentation by the
expected (approximate) 14%, it seems that the dual
buddy scheme did not introduce signi�cant external
fragmentation|relative to binary buddies|as Fibo-
nacci and weighted schemes are believed to do. Still,
its performance was far worse than that of the best
allocators.
In simulations of two of the best allocators (address-

ordered �rst �t and best �t), eliminating all header
overhead reduced their memory waste to about 14%.
We suspect that using one-word alignment and a
smaller minimumobject size could reduce this by sev-
eral percent more. This suggests the \real" fragmenta-
tion produced by these policies|as opposed to waste
caused by the implementation mechanisms we used|
may be less than 10%. (This is comparable to the loss
we expect just from the double word alignment and
minimum block sizes.)
While the rankings of best �t and address-ordered

�rst �t are similar to results obtained by random-
trace methods, we found them quite surprising, due
to the evident methodological problems of random-
trace studies. We know of no good model to explain
them.137

While the three excellent allocators fared well with
both real and randomized traces, other allocators
fared di�erently in the two sets of simulations. The
segregated storage schemes did unrealistically well,
relative to other allocators, when traces were random-
ized.
The results for randomized traces show clearly that

size and lifetime distributions are not su�cient to pre-
dict allocator performance for real workloads. The or-
dering information interacts with the allocator's poli-
cies in ways that are often more important than the
distributions alone. Some of these results were not
unexpected, given our understanding on the meth-
odology. For example, the unrealistically good perfor-
mance of simple segregated �ts schemes relative to the
others was expected, because of the smoothing e�ect
of random walks|synthetic traces tend not to intro-
duce large amounts of external fragmentation, which
is the Achilles' heel of non-splitting, non-coalescing
policies.
Like Zorn and Grunwald, we will make the test pro-

137 We have several just-so stories that could explain them,
of course, but we haven't yet convinced ourselves that
any of them are true.

68

grams we used available for others to use for replica-
tion of our results and for other experiments.138

5 Summary and Conclusions

\[People refused to believe that the world
was round] because it looked like the the
world was at."
\What would it have looked like if it had
looked like the world was round?"
|attributed to Ludwig Wittgenstein

There is a very large space of possible allocator poli-
cies, and a large space of mechanisms that can support
them. Only small parts of these spaces have been ex-
plored to date, and the empirical and analytical tech-
niques used have usually produced results of dubious
validity.
There has been a widespread failure to recog-

nize anomalous data as undermining the domi-
nant paradigm, and to push basic causal reasoning
through|to recognize what data could be relevant,
and what other theories might be consistent with the
observed facts. We �nd this curious, and suspect it
has two main causes.
One cause is simply the (short) history of the �eld,

and expectations that computer science issues would
be easily formalized, after many striking early suc-
cesses. (Ullman [Ull95] eloquently describes this phe-
nomenon.)
Another is doubtless the same kind of paradigm en-

trenchment that occurs in other, more mature sciences
[Kuh70]. Once the received view has been used as a
theoretical underpinning of enough seemingly success-
ful experiments, and reiterated in textbooks without
the caveats buried in the original research papers, it
is very hard for people to see the alternatives.
The history of memory allocation research may

serve as a cautionary tale for empirical computer sci-
ence. Hartmanis has observed that computer science
seems less prone to paradigm shifts than most �elds
[Har95]. We agree in part with this sentiment, but the
successes of computer science can lead to a false sense

138 Our
anonymous FTP repository is on ftp.cs.utexas.edu

in the directory pub/garbage. This repository also con-
tains the BibTeX bibliography �le used for this paper
and [Wil95], several papers on persistence and memory
hierarchies, and numerous papers on garbage collection
by ourselves and others.

of con�dence. Computer scientists often have less to
worry about in terms of the validity of \known" re-
sults, relative to other scientists, but in fact they often
worry less about it, which can be a problem, too.

5.1 Models and Theories

There has been a considerable amount of theoretical
work done in the area of memory allocation|if we
use \theory" in the parlance of computer science, to
mean a particular subdiscipline using particular kinds
of logical and mathematical analyses. There has been
very little theoretical work done, however, if we use
the vernacular and central sense of \theory," i.e., what
everyday working scientists do.
We simply have no theory of program behavior,

much less a theory of how allocators exploit that be-
havior. (Batson made similar comments in 1976, in a
slightly di�erent context [Bat76], but after nearly two
decades the situation is much the same.)
Aside from several useful studies of worst-case per-

formance, most of the analytical work to date seems
to be based on several assumptions that turn out to be
incorrect, and the results cannot be expected to apply
directly to the real problems of memory allocation.
Like much work in mathematics, however, theoreti-

cal results may yet prove to be enlightening. To make
sense of these results and apply them properly will
require considerable thought, and the development of
a theory in the vernacular sense.
For example, the striking similarities in perfor-

mance between best �t and address-ordered �rst �t
for randomized workloads should be explained. How
is it that such di�erent policies are so comparable,
for an essentially unpredictable sequence of requests?
More importantly, how does this relate to real re-
quest sequences? The known dependencies of these
algorithms on lifetime distributions should also be ex-
plained more clearly. Randomization of input order
may eliminate certain important variables, and allow
others to be explored more or less in isolation. On the
other hand, interactions with real programs may be
so systematically di�erent that these phenomena have
nothing important in common|for example, depen-
dence on size distributions may be an e�ect that has
little importance in the face of systematic interactions
between placement policy and phase behavior.
Understanding real program behavior still remains

the most important �rst step in formulating a the-
ory of memory management. Without doing that, we

69

cannot hope to develop the science of memory man-
agement; we can only fumble around doing ad hoc
engineering, in the too-often-used pejorative sense of
the word. At this point, the needs of good science
and of good engineering in this area are the same|a
deeper qualitative understanding. We must try to dis-
cern what is relevant and characterize it; this is neces-
sary before formal techniques can be applied usefully.

5.2 Strategies and Policies

Most policies used by current allocators are derived
fairly straightforwardly from ideas that date from the
1960's, at least. Best �t and address-ordered �rst �t
policies seem to work well in practice, but after sev-
eral decades the reasons why are not much clearer
than they were then. It is not clear which regularities
in real request streams they exploit. (It is not even
very clear how they exploit regularities in synthetic
request streams, where the regularities are minimal
and presumably much easier to characterize.) Because
our current understanding of these issues is so weak,
we will indulge in some speculation.
Given that there is no reason to think that these

early policies were so well thought out that nothing
could compete with them, it is worthwhile to wonder
whether there is a large space of possible policies that
work at least as well as these two. Recent results for
FIFO-ordered sequential �ts may suggest that close
�ts and address ordering are not crucial for good per-
formance.
It may well be that the better allocators perform

well because it's very easy to perform well. Program
behavior may be so patterned and redundant (in cer-
tain relevant ways) that the important regularities in
request streams are trivial to exploit. The known good
policies may only be correlated to some more funda-
mental strategy|or combination of strategies|yet to
be discovered.
Given the real and striking regularities in request

streams due to common programming techniques, it
seems likely that better algorithms could be designed
if we only had a good model of program behavior, and
a good understanding of how that interacts with allo-
cation policies. Clustered deaths due to phase behav-
ior, for example, suggest that contiguous allocation of
consecutively-allocated blocks may tend to keep frag-
mentation low. (It probably has bene�cial e�ects on
locality as well.)
Segregation of di�erent kinds of objects may avoid

fragmentation due to di�ering death times of objects

used for di�erent purposes. (Again, this may increase
locality as well|by keeping related objects clustered
after more ephemeral objects have been deallocated.)
On the other hand, it is possible that the regulari-

ties exploited by good existing allocators are so strong
and simple that we cannot improve memory usage by
much|it's possible that all of our best current algo-
rithms exploit them to the fullest, however acciden-
tally. The other patterns in program behavior may
be so subtle, or interact in such complex ways, that
no strategy can do much better. Or it may turn out
that once the regularities are understood, the task of
exploiting them online is just too expensive. (That
doesn't seem likely to us, though some intermediate
situation seems plausible.)
If all else fails, relying best �t and �rst �t usually

won't be a disaster, as long as the mechanisms used
are scalable. (If one of them doesn't work well for your
program, it's likely that the other will|or that some
other simple policy will su�ce.)
On the other hand, it is not clear that our best

policies are robust enough to count on|so far, only
a few experiments have been performed to asses the
interactions between real program behavior and allo-
cator policies. It is entirely possible that there is a
non-negligible percentage of programs for which our
\best" algorithms will fail miserably.

5.3 Mechanisms

Many current allocator policies are partly artifacts
of primitive implementation techniques|they are
mostly based on obvious ways of managing linear lists.
Modern data structure techniques allow us to build
much more sophisticated indexing schemes, either to
improve performance or support better-designed poli-
cies.
Segregated �ts and (other) indexing schemes can

be used to implement policies known to work well in
practice, and many others. More sophisticated index-
ing schemes will probably allow us to exploit whatever
exploitable regularities we are clever enough to char-
acterize, in a scalable way.
Deferred coalescing allows optimization of common

patterns of short-term memory use, so that scalable
mechanisms don't incur high overheads in practice.
The techniques for deferred coalescing must be stud-
ied carefully, however, to ensure that this mecha-
nism doesn't degrade memory usage unacceptably by
changing placement policies and undermining strate-
gies.

70

5.4 Experiments

New experimental methods must be developed for the
testing of new theories. Trace-driven simulations of
real program/allocator pairs will be quite important,
of course|they are an indispensable reality check.
These trace-driven simulations should include locality
studies as well as conventional space and time mea-
surements. Sound work of both sorts has barely be-
gun; there is a lot to do.
If we are to proceed scienti�cally, however, just

running experiments with a grab-bag of new alloca-
tors would may be doing things backwards. Program
behavior should be studied in (relative) isolation, to
identifying the fundamental regularities that are rele-
vant to to various allocators and memory hierarchies.
After that, it should be easier to design strategies and
policies intelligently.

5.5 Data

Clearly, in order to formulate useful theories of mem-
ory management,more data are required. The current
set of programs used for experimentation is not large
enough or varied enough to be representative.
Some kinds of programs that are not represented

are:

{ scienti�c computing programs (especially those
using sophisticated sparse matrix representa-
tions),

{ long-running system programs such as operating
system kernels, name servers, �le servers, and
graphics display servers,

{ business data analysis programs such as spread-
sheets, report generators, and so on,

{ graphical programs such as desktop publishing
systems, CAD interaction servers and interactive
3-D systems (e.g., virtual reality),

{ interactive programming environments with
source code management systems and interactive
debugging facilities,

{ heavily object-oriented programs using sophisti-
cated kits and frameworks composed in a variety
of ways,

{ automatically-generated programs of a variety of
types, created using specialized code-generation
systems or compilers for very-high-level lan-
guages.

This partial list is just a beginning|there are many
kinds of programs, written in a variety of styles, and

test application suites should include as many of them
as possible.
There are some di�culties in obtaining and using

such programs that can't be overlooked. The �rst is
that the most easily obtainable programs are often not
the most representative|freely available code is often
of a few types, such as script language interpreters,
which do not represent the bulk of actual computer
use, particularly memory use.
Those programs that are available are often di�-

cult to analyze, for various reasons. Many used hand-
optimized memory allocators, which must be removed
to reveal the \true" memory usage|and this \true"
memory usage itself may be skewed by the awkward
programming styles used to avoid general heap allo-
cation.

5.6 Challenges and Opportunities

Computer Science and Engineering is a
�eld that attracts a di�erent kind of
thinker: : : Such people are especially good
at dealing with situations where di�erent
rules apply in di�erent cases; they are in-
dividuals who can rapidly change levels of
abstraction, simultaneously seeing things \in
the large" and \in the small."
|Donald Knuth, quoted in [Har95]

Memory management is a fundamental area of com-
puter science, spanning several very di�erent lev-
els of abstraction|from the programmer's strategies
for dealing with data, language-level features for ex-
pressing those concepts, language implementations for
managing actual storage, and the varied hardware
memories that real machines contain. Memory man-
agement is where the rubber meets the road|if we
do the wrong thing at any level, the results will not
be good. And if we don't make the levels work well
together, we are in serious trouble. In many areas of
computer science, problems can be decomposed into
levels of abstraction, and di�erent problems addressed
at each level, in nearly complete isolation. Memory
management requires this kind of thinking, but that
is not enough|it also requires the ability to reason
about phenomena that span multiple levels. This is
not easy.
Unfortunately, the compartmentalization of com-

puting disciplines has discouraged the development of
a coherent memory management community. Mem-
ory management tends to be an orphan, sometimes

71

harbored by the programming language community,
sometimes by the operating systems community|and
usually ignored by the architecture community.

It seems obvious that memory management poli-
cies can have a profound impact on locality of refer-
ence, and therefore the overall performance of mod-
ern computers, but in the architecture community
locality of reference is generally treated as a mys-
terious, incomprehensible substance. (Or maybe two
or three substances, all fairly mysterious.) A pro-
gram is pretty much a black box, however abraded
and splintered, and locality comes out of the box if
you're lucky. It is not generally recognized that di�er-
ent memory management policies can have an e�ect
on memory hierarchies that is sometimes as signif-
icant as di�erences in programs' intrinsic behavior.
Recent work in garbage collection shows this to be
true ([WLM92, Wil95, GA95]), but few architects are
aware of it, or aware that similar phenomena must
occur (to at least some degree) in conventionally-
managed memories as well [GZH93].

The challenge is to develop a theory that can span
all of these levels. Such a theory will not come all
at once, and we think it is unlikely to be primarily
mathematical, at least not for a long time, because
of the complex and ill-de�ned interactions between
di�erent phenomena at di�erent levels of abstraction.

Computer science has historically been biased to-
ward the paradigms of mathematics and physics|and
often a rather naive view of the scienti�c process in
those �elds|rather than the \softer" natural sciences.
We recommend a more naturalistic approach [Den95],
which we believe is more appropriate for complexmul-
tilevel systems that are only partly hierarchically de-
composable.

The fact that fact that we study mostly deter-
ministic processes in formally-describable machines is
sometimes irrelevant and misleading. The degrees of
complexity and uncertainty involved in building real
systems require that we examine real data, theorize
carefully, and keep our eyes open.

Computer science is often a very \hard" science,
which develops along the lines of the great develop-
ments in the physical sciences and mathematics the
seventeenth, eighteenth and nineteenth centuries. It
owes a great deal to the examples set by Newton and
Descartes. But the nineteenth century also saw a very
great theory that was tremendously important with-
out being formalized at all|a theory that to this day
can only be usefully formalized in special, restricted

cases, but which is arguably the single most impor-
tant scienti�c theory ever. Perhaps we should look to
Darwin as an examplar, too.

Acknowledgements

We would like to thank Hans Boehm and especially
Henry Baker for many enlightening discussions of
memory management over the last few years, and for
comments on earlier versions of this paper.
Thanks to Ivor Page, for comments that seem to

connect important pieces of the puzzle more con-
cretely than we expected, and to Ben Zorn, Dirk
Grunwald and Dave Detlefs for making their test ap-
plicatons available.
Thanks also to Dave Barrett, Sheetal Kakkad, Doug

Lea, Doug McIlroy, and Phong Vo for comments that
have improved our understanding and presentation,
and to Henry Baker and Janet Swisher for their help
and extraordinary patience during the paper's prepa-
ration. (Of course, we bear sole responsibility for any
opinions and errors.)

References

[Abr67] John Abramowich. Storage allocation in a cer-
tain iterative process. Communications of the
ACM, 10(6):368{370, June 1967.

[AF94] G. Attardi and T. Flagella. A customizable
memory management framework. In Proceed-
ings of the USENIX C++ Conference, Cam-
bridge, Massachussetts, 1994.

[AS95] Sedat Aky�urek and Kenneth Salem. Adaptive
block rearrangement. ACM Transactions on
Computer Systems, 13(2):95{121, May 1995.

[Bae73] H. D. Baecker. Aspects of reference locality
in list structures in virtual memory. Software
Practice and Experience, 3(3):245{254, 1973.

[Bak93] Henry G. Baker. Infant mortality and genera-
tional garbage collection. SIGPLAN Notices,
28(4):55{57, April 1993.

[BAO85] B. M. Bigler, S. J. Allan, and R. R. Oldehoeft.
Parallel dynamic storage allocation. In 1985
International Conference on Parallel Process-
ing, pages 272{275, 1985.

[Bat76] Alan Batson. Program behavior at the sym-
bolic level. IEEE Computer, pages 21{26,
November 1976.

[Bay77] C. Bays. A comparison of next-�t, �rst-�t
and best-�t. Communications of the ACM,
20(3):191{192, March 1977.

72

[BB77] A. P. Batson and R. E. Brundage. Segment
sizes and lifetimes in ALGOL 60 programs.
Communications of the ACM, 20(1):36{44,
January 1977.

[BBDT84] G. Bozman, W. Buco, T. P. Daly, and W. H.
Tetzla�. Analysis of free storage algorithms|
revisited. IBM Systems Journal, 23(1):44{64,
1984.

[BC79] Daniel G. Bobrow and Douglas W. Clark.
Compact encodings of list structure. ACM
Transactions on Programming Languages and
Systems, 1(2):266{286, October 1979.

[BC92] Yves Bekkers and Jacques Cohen, editors. In-
ternational Workshop on Memory Manage-
ment, number 637 in Lecture Notes in Com-
puter Science, St. Malo, France, September
1992. Springer-Verlag.

[BCW85] B. S. Baker, E. G. Co�man, Jr., and D. E.
Willard. Algorithms for resolving conicts in
dynamic storage allocation. Journal of the
ACM, 32(2):327{343, April 1985.

[BDS91] Hans-J. Boehm, Alan J. Demers, and Scott
Shenker. Mostly parallel garbage collection.
In Proceedings of the 1991 SIGPLAN Confer-
ence on Programming Language Design and
Implementation [PLD91], pages 157{164.

[Bec82] Leland L. Beck. A dynamic storage allocation
technique based on memory residence time.
Communications of the ACM, 25(10):714{724,
October 1982.

[Ben81] V. E. Benes. Models and problems of dynamic
storage allocation. In Applied Probability and
Computer Science|the Interface. Institute of
Management Science and Operations Research
Society of America, January 1981.

[Bet73] Terry Betteridge. An analytical storage al-
location model. Acta Informatica, 3:101{122,
1973.

[Bet82] Terry Betteridge. An Algebraic Analysis of
Storage Fragmentation. UMI Research Press,
Ann Arbor, Michigan, 1982.

[BJW70] A. P. Batson, S. M. Ju, and D. C.Wood. Mea-
surements of segment size. Communications of
the ACM, 13(3):155{159, March 1970.

[BL92] Ball and Larus. Optimal pro�ling and trac-
ing of programs. In Conference Record of the
Nineteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 59{
70. ACM Press, January 1992.

[Boz84] Gerald Bozman. The software lookaside bu�er
reduces search overhead with linked lists.
Communications of the ACM, 27(3):222{227,
March 1984.

[BR64] Daniel G. Bobrow and Bertram Raphael.
A comparison of list-processing computer

languages. Communications of the ACM,
7(4):231{240, April 1964.

[Bre89] R. Brent. E�cient implementation of the
�rst-�t strategy for dynamic storage alloca-
tion. ACM Transactions on Programming
Languages and Systems, July 1989.

[Bro80] A. G. Bromley. Memory fragmentation in
buddy methods for dynamic storage alloca-
tion. Acta Informatica, 14(2):107{117, August
1980.

[Bur76] Warren Burton. A buddy system variation
for disk storage allocation. Communications
of the ACM, 19(7):416{417, July 1976.

[BW88] Hans-Juergen Boehm and Mark Weiser.
Garbage collection in an uncooperative envi-
ronment. Software Practice and Experience,
18(9):807{820, September 1988.

[BZ93] David A. Barrett and Bejamin G. Zorn. Using
lifetime predictors to improve memory alloca-
tion performance. In Proceedings of the 1993
SIGPLAN Conference on Programming Lan-
guage Design and Implementation [PLD93],
pages 187{196.

[BZ95] David A. Barrett and Benjamin G. Zorn.
Garbage collection using a dynamic threaten-
ing boundary. In Proceedings of the 1995 SIG-
PLAN Conference on Programming Language
Design and Implementation, pages 301{314,
La Jolla, California, June 1995. ACM Press.

[Cam71] J. A. Campbell. A note on an optimal-�t
method for dynamic allocation of storage.
Computer Journal, 14(1):7{9, February 1971.

[CG91] Vincent Cate and Thomas Gross. Combining
the concepts of compression and caching for a
two-level �le system. In Fourth International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems
(ASPLOS IV), pages 200{209, Santa Clara,
California, April 1991.

[CK93] Robert Cmelik and David Keppel. Shade:
A fast instruction-set simulator for execution
pro�ling. Technical Report UWCSE 93-06-06,
Dept. of Computer Science and Engineering,
University of Washington, Seattle, Washing-
ton, 1993.

[CKS85] E. G. Co�man, Jr., T. T. Kadota, and L. A.
Shepp. On the asymptotic optimality of �rst-
�t storage allocation. IEEE Transactions
on Software Engineering, SE-11(2):235{239,
February 1985.

[CL89] E. G. Co�man, Jr. and F. T. Leighton. A
provably e�cient algorithm for dynamic stor-
age allocation. Journal of Computer and Sys-
tem Sciences, 38(1):2{35, February 1989.

73

[Col61] G. O. Collins. Experience in automatic stor-
age allocation. Communications of the ACM,
4(10):436{440, October 1961.

[Com64] W. T. Comfort. Multiword list items. Com-
munications of the ACM, 7(6), June 1964.

[CT75] B. Cranston and R. Thomas. A simpli-
�ed recombination scheme for the Fibonacci
buddy system. Communications of the ACM,
18(6):331{332, July 1975.

[Dar59] Charles Darwin. The Origin of Species. 1859.
[DDZ93] David Detlefs, Al Dosser, and Benjamin Zorn.

Memory allocation costs in large C and C++
programs. Technical Report CU-CS-665-93,
University of Colorado at Boulder, Dept. of
Computer Science, Boulder, Colorado, August
1993.

[DEB94] R. Kent Dybvig, David Eby, and Carl Brugge-
man. Don't stop the BIBOP: Flexible and
e�cient storage management for dynamically
typed languages. Technical Report 400, In-
diana University Computer Science Dept.,
March 1994.

[Del92] V. Delacour. Allocation regions and imple-
mentation contracts. In Bekkers and Cohen
[BC92], pages 426{439.

[Den70] Peter J. Denning. Virtual memory. Comput-
ing Surveys, 3(2):153{189, September 1970.

[Den95] Daniel Dennett. Darwin's Dangerous Idea.
1995.

[Det92] David L. Detlefs. Garbage collection and run-
time typing as a C++ library. In USENIX
C++ Conference, Portland, Oregon, August
1992. USENIX Association.

[Dij69] Edsger W. Dijkstra. Notes on structured pro-
gramming. In Structured Programming. Aca-
demic Press, 1969.

[Dou93] Fred Douglis. The compression cache: Using
on-line compression to extend physical mem-
ory. In Proceedings of 1993 Winter USENIX
Conference, pages 519{529, San Diego, Cali-
fornia, January 1993.

[DTM93] Amer Diwan, David Tarditi, and Eliot Moss.
Memory subsystem performance of programs
with intensive heap allocation. Submitted for
publication, August 1993.

[DWH+90] Alan Demers, Mark Weiser, Barry Hayes,
Daniel Bobrow, and Scott Shenker. Combin-
ing generational and conservative garbage col-
lection: Framework and implementations. In
Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Program-
ming Languages, pages 261{269, San Fran-
cisco, California, January 1990. ACM Press.

[EO88] C. S. Ellis and T. J. Olson. Algorithms for
parallel memory allocation. International

Journal of Parallel Programming, 17(4):303{
345, 1988.

[Fer76] H. R. P. Ferguson. On a generalization of
the Fibonacci numbers useful in memory al-
location schema. The Fibonacci Quarterly,
14(3):233{243, October 1976.

[For88] R. Ford. Concurrent algorithms for real-time
memory management. IEEE Software, pages
10{23, September 1988.

[FP74] J. S. Fenton and D. W. Payne. Dynamic stor-
age allocations of arbitrary sized segments. In
Proc. IFIPS, pages 344{348, 1974.

[FP91] Matthew Farrens and Arvin Park. Dynamic
base register caching: A technique for reducing
address bus width. In 18th Annual Interna-
tional Symposium on Computer Architecture,
pages 128{137, Toronto, Canada, May 1991.
ACM Press.

[GA95] Marcelo J. R. Goncalves and Andrew W. Ap-
pel. Cache performance of fast-allocating pro-
grams. In FPCA '95, 1995.

[Gar94] Laurie Garrett. The Coming Plague: Newly
Emerging Diseases in a World out of Balance.
Farrar, Straus and Giroux, New York, 1994.

[Gel71] E. Gelenbe. The two-thirds rule for dynamic
storage allocation under equilibrium. Infor-
mation Processing Letters, 1(2):59{60, July
1971.

[GGU72] M. R. Garey, R. L. Graham, and J. D. Ullman.
Worst-case analysis of memory allocation al-
gorithms. In Fourth Annual ACM Symposium
on the Theory of Computing, 1972.

[GM85] S. Gai and M. Mezzalama. Dynamic storage
allocation: Experiments using the C language.
Software Practice and Experience, 15(7):693{
704, July 1985.

[Gra] R. L. Graham. Unpublished technical report
on worst-case analysis of memory allocation
algorithms, Bell Labs.

[GW82] A. Gottlieb and J. Wilson. Parallelizing the
usual buddy algorithm. Technical Report Sys-
tem Software Note 37, Courant Institute, New
York University, 1982.

[GZ93] Dirk Grunwald and
Benjamin Zorn. CustoMalloc: E�cient syn-
thesized memory allocators. Software Practice
and Experience, 23(8):851{869, August 1993.

[GZH93] Dirk Grunwald, Benjamin Zorn, and Robert
Henderson. Improving the cache locality of
memory allocation. In Proceedings of the 1993
SIGPLAN Conference on Programming Lan-
guage Design and Implementation [PLD93],
pages 177{186.

[Han90] David R. Hanson. Fast allocation and deal-
location of memory based on object lifetimes.

74

Software Practice and Experience, 20(1), Jan-
uary 1990.

[Har95] Juris Hartmanis. Turing award lecture: On
computational complexity and the nature
of computer science. Computing Surveys,
27(1):7{16, March 1995.

[Hay91] Barry Hayes. Using key object opportunism
to collect old objects. In Andreas Paepcke,
editor, Conference on Object Oriented Pro-
gramming Systems, Languages and Applica-
tions (OOPSLA '91), pages 33{46, Phoenix,
Arizona, October 1991. ACM Press.

[Hay93] Barry Hayes. Key Objects in Garbage Collec-
tion. PhD thesis, Standford University, March
1993.

[Hin75] J. A. Hinds. An algorithm for locating adja-
cent storage blocks in the buddy system. Com-
munications of the ACM, 18(4):221{222, April
1975.

[Hir73] D. S. Hirschberg. A class of dynamic memory
allocation algorithms. Communications of the
ACM, 16(10):615{618, October 1973.

[HS64] V. C. Harris and C. C. Styles. A generaliza-
tion of the Fibonacci numbers. The Fibonacci
Quarterly, 2(4):227{289, December 1964.

[HS89] Mark D. Hill and Alan Jay Smith. Evaluat-
ing associativity in CPU caches. IEEE Trans-
actions on Computers, 38(12):1612{1629, De-
cember 1989.

[IGK71] S. Isoda, E. Goto, and I. Kimura. An e�cient
bit table technique for dynamic storage allo-
cation of 2n-word blocks. Communications of
the ACM, 14(9):589{592, September 1971.

[IJ62] J. K. Ili�e and J. G. Jodeit. A dynamic stor-
age allocation scheme. Computer Journal,
5(3):200{209, October 1962.

[Ing61] P. Z. Ingerman. Thunks. Communications of
the ACM, 4(1):55{58, January 1961.

[Iye93] Arun K. Iyengar. Parallel dynamic storage al-
location algorithms. In Fifth IEEE Sympo-
sium on Parallel and Distributed Processing,
1993.

[Joh72] G. D. Johnson. Simscript II.5 User's Manual,
S/360-370 Version, Release 6, 1972.

[Joh91] Theodore Johnson. A concurrent fast �ts
memory manager. Technical Report 91-009,
University of Florida, 1991.

[JS92] T. Johnson and D. Sasha. Parallel buddy
memory management. Parallel Processing
Letters, 2(4):391{398, 1992.

[Kau84] Arie Kaufman. Tailored-list and
recombination-delaying buddy systems. ACM
Transactions on Programming Languages and
Systems, 6(4):118{125, 1984.

[KLS92] Phillip J. Koopman, Jr., Peter Lee, and
Daniel P. Siewiorek. Cache performance of
combinator graph reduction. ACM Trans-
actions on Programming Languages and Sys-
tems, 14(2):265{297, April 1992.

[Kno65] Kenneth C. Knowlton. A fast storage alloca-
tor. Communications of the ACM, 8(10):623{
625, October 1965.

[Knu73] Donald E. Knuth. The Art of Computer
Programming, volume 1: Fundamental Al-
gorithms. Addison-Wesley, Reading, Mas-
sachusetts, 1973. First edition published in
1968.

[Kri72] Saul A. Kripke. Naming and Necessity. Har-
vard University Press, 1972.

[Kro73] S. Krogdahl. A dynamic storage allocation
problem. Information Processing Letters,
2:96{99, 1973.

[Kuh70] Thomas S. Kuhn. The Structure of Scien-
ti�c Revolutions (Second Edition, Enlarged).
University of Chicago Press, Chicago, Illinois,
1970.

[KV85] David G. Korn and Kiem-Phong Vo. In search
of a better malloc. In Proc. USENIX Summer
1985, pages 489{506, Portland, Oregon, June
1985. USENIX Association.

[LH82] B. W. Leverett and P. G. Hibbard. An adap-
tive system for dynamic storage allocation.
Software Practice and Experience, 12(6):543{
556, June 1982.

[LH83] Henry Lieberman and Carl Hewitt. A real-
time garbage collector based on the lifetimes
of objects. Communications of the ACM,
26(6):419{429, June 1983.

[M+69] J. Minker et al. Analysis of data processing
systems. Technical Report 69-99, University
of Maryland, College Park, Maryland, 1969.

[Mah61] R. J. Maher. Problems of storage allocation
in a multiprocessor multiprogrammed system.
Communications of the ACM, 4(10):421{422,
October 1961.

[Mar82] David Marr. Vision. Freeman, New York,
1982.

[McC91] Ronald McClamrock. Marr's three levels: a re-
evaluation. Minds and Machines, 1:185{196,
1991.

[McC95] Ronald McClamrock. Existential Cognition:
Computational Minds in the World. Univer-
sity of Chicago Press, 1995.

[McI82] M. D. McIlroy. The number of states of a dy-
namic storage allocation system. Computer
Journal, 25(3):388{392, August 1982.

[MK88] Marshall Kirk McKusick and Michael J.
Karels. Design of a general-purpose memory

75

allocator for the 4.3bsd UNIX kernel. In Pro-
ceedings of the Summer 1988 USENIX Con-
ference, San Francisco, California, June 1988.
USENIX Association.

[Moo84] David Moon. Garbage collection in a large
Lisp system. In Conference Record of the
1984 ACM Symposium on LISP and Func-
tional Programming, pages 235{246, Austin,
Texas, August 1984. ACM Press.

[MPS71] B. H. Margolin, R. P. Parme-
lee, and M. Schatzo�. Analysis of free-storage
algorithms. IBM Systems Journal, 10(4):283{
304, 1971.

[MS93] Paul E. McKenney and Jack Slingwine. Ef-
�cient kernel memory allocation on shared-
memory multiprocessors. In USENIX 1993
Winter Technical Conference, San Diego, Cal-
ifornia, January 1993. USENIX Association.

[Nel91] Mark Nelson. The Data Compression Book.
M & T Books, 1991.

[Nie77] N. R. Nielsen. Dynamic memory allocation in
computer simulation. Communications of the
ACM, 20(11):864{873, November 1977.

[OA85] R. R. Oldehoeft and S. J. Allan. Adaptive
exact-�t storage management. Communica-
tions of the ACM, 28(5):506{511, May 1985.

[Pag82] Ivor P. Page. Optimal �t of arbitrary sized
segments. Computer Journal, 25(1), January
1982.

[Pag84] Ivor P. Page. Analysis of a cyclic placement
scheme. Computer Journal, 27(1):18{25, Jan-
uary 1984.

[PH86] Ivor P. Page and Je� Hagins. Improving the
performance of buddy systems. IEEE Trans-
actions on Computers, C-35(5):441{447, May
1986.

[PLD91] Proceedings of the 1991 SIGPLAN Conference
on Programming Language Design and Imple-
mentation, Toronto, Ontario, June 1991. ACM
Press. Published as SIGPLAN Notices 26(6),
June 1992.

[PLD93] Proceedings of the 1993 SIGPLAN Conference
on Programming Language Design and Imple-
mentation, Albuquerque, New Mexico, June
1993. ACM Press.

[PN77] J. L. Peterson and T. A. Norman. Buddy
systems. Communications of the ACM,
20(6):421{431, June 1977.

[PS70] P.W. Purdom and S. M. Stigler. Statistical
properties of the buddy system. Journal of
the ACM, 17(4):683{697, October 1970.

[PSC71] P. W. Purdom, S. M. Stigler, and Tat-Ong
Cheam. Statistical investigation of three stor-
age allocation algorithms. BIT, 11:187{195,
1971.

[Put77] Hilary Putnam. Meaning and reference. In
Stephen P. Schwartz, editor, Naming, Neces-
sity, and Natural Kinds. Cornell University
Press, Ithaca, New York, 1977.

[Qui77] W. V. Quine. Natural kinds. In Stephen P.
Schwartz, editor, Naming, Necessity, and Nat-
ural Kinds. Cornell University Press, Ithaca,
New York, 1977.

[Ran69] Brian Randell. A note on storage fragmenta-
tion and program segmentation. Communica-
tions of the ACM, 12(7):365{372, July 1969.

[Ree79] C. M. Reeves. Free store distribution un-
der random-�t allocation. Computer Journal,
22(4):346{351, November 1979.

[Ree80] C. M. Reeves. Free store distribution under
random-�t allocation: Part 2. Computer Jour-
nal, 23(4):298{306, November 1980.

[Ree82] C. M. Reeves. A lumped-state model of clus-
tering in dynamic storage allocation. Com-
puter Journal, 27(2):135{142, 1982.

[Ree83] C. M. Reeves. Free store distribution under
random-�t allocation, part 3. Computer Jour-
nal, 26(1):25{35, February 1983.

[Rei94] Mark B. Reinhold. Cache performance of
garbage-collected programs. In Proceedings of
the 1994 SIGPLAN Conference on Program-
ming Language Design and Implementation,
pages 206{217, Orlando, Florida, June 1994.
ACM Press.

[RO91] Mendel Rosenblum and John K. Ousterhout.
The design and implementation of a log-
structured �le system. In Proceedings of the
Thirteenth Symposium on Operating Systems
Principles, pages 1{15, Paci�c Grove, Califor-
nia, October 1991. ACM Press. Published as
Operating Systems Review 25(5).

[Rob71] J. M. Robson. An estimate of the store
size necessary for dynamic storage allocation.
Journal of the ACM, 18(3):416{423, July 1971.

[Rob74] J. M. Robson. Bounds for some functions con-
cerning dynamic storage allocation. Journal of
the ACM, 21(3):491{499, July 1974.

[Rob77] J. M. Robson. Worst case fragmentation of
�rst �t and best �t storage allocation strate-
gies. Computer Journal, 20(3):242{244, Au-
gust 1977.

[Ros61] D. T. Ross. A generalized technique for sym-
bol manipulation and numerical calculation.
Communications of the ACM, 4(3):147{150,
March 1961.

[Ros67] D. T. Ross. The AED free storage package.
Communications of the ACM, 10(8):481{492,
August 1967.

[Rus77] D. L. Russell. Internal fragmentation in a
class of buddy systems. SIAM J. Comput.,

76

6(4):607{621, December 1977.
[Sam89] A. Dain Samples. Mache: No-loss trace com-

paction. In ACM SIGMETRICS, pages 89{97,
May 1989.

[Sha88] Robert A. Shaw. Empirical Analysis of a Lisp
System. PhD thesis, Stanford University, Palo
Alto, California, February 1988. Technical
Report CSL-TR-88-351, Stanford University
Computer Systems Laboratory.

[Sho75] J. E. Shore. On the external storage fragmen-
tation produced by �rst-�t and best-�t alloca-
tion strategies. Communications of the ACM,
18(8):433{440, August 1975.

[Sho77] J. E. Shore. Anomalous behavior of the �fty-
percent rule in dynamic memory allocation.
Communications of the ACM, 20(11):558{562,
November 1977.

[SKW92] Vivek
Singhal, Sheetal V. Kakkad, and Paul R. Wil-
son. Texas: an e�cient, portable persistent
store. In Antonio Albano and Ron Morrison,
editors, Fifth International Workshop on Per-
sistent Object Systems, pages 11{33, San Mini-
ato, Italy, September 1992. Springer-Verlag.

[SP74] K. K. Shen and J. L. Peterson. A weighted
buddy method for dynamic storage allocation.
Communications of the ACM, 17(10):558{562,
October 1974.

[ST85] Daniel Dominic Sleator and Robert Endre
Tarjan. Self-adjusting binary search trees.
Journal of the ACM, 32(3), 1985.

[Sta80] Thomas Standish. Data Structure Tech-
niques. Addison-Wesley, Reading, Mas-
sachusetts, 1980.

[Ste83] C. J. Stephenson. Fast �ts: New methods for
dynamic storage allocation. In Proceedings of
the Ninth Symposium on Operating Systems
Principles, pages 30{32, Bretton Woods, New
Hampshire, October 1983. ACM Press. Pub-
lished as Operating Systems Review 17(5), Oc-
tober 1983.

[Sto82] Harold S. Stone. Parallel memory alloca-
tion using the FETCH-AND-ADD instruction.
Technical report, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York,
November 1982.

[Tad78] M. Tadman. Fast-�t: A new hierarchical dy-
namic storage allocation technique. Master's
thesis, UC Irvine, Computer Science Dept.,
1978.

[Thi89] Dominique Thiebaut. The fractal dimension
of computer programs and its application to
the prediction of the cache miss ratio. IEEE
Transactions on Computers, pages 1012{1026,
July 1989.

[Tot65] R. A. Totschek. An empirical investigation
into the behavior of the SDC timesharing sys-
tem. Technical Report SP2191, Systems De-
velopment Corporation, 1965.

[UJ88] David Ungar and Frank Jackson. Tenuring
policies for generation-based storage reclama-
tion. In Norman Meyrowitz, editor, Confer-
ence on Object Oriented Programming Sys-
tems, Languages and Applications (OOPSLA
'88) Proceedings, pages 1{17, San Diego, Cal-
ifornia, September 1988. ACM Press.

[Ull95] Je�rey D. Ullman. The role of theory today.
Computing Surveys, 27(1):43{44, March 1995.

[Ung86] David Ungar. Design and Evaluation of a
High-Performance Smalltalk System. MIT
Press, Cambridge, Massachusetts, 1986.

[VC90] P. Vongsathorn and S. D. Carson. A sys-
tem for adaptive disk rearrangement. Soft-
ware Practice and Experience, 20(3):225{242,
March 1990.

[VMH+83] J. Voldman, B. Mandelbrot, L. W. Hoevel,
J. Knight, and P. Rosenfeld. Fractal nature
of software-cache interaction. IBM Journal
of Research and Development, 27(2):164{170,
March 1983.

[Vo95] Kiem-Phong Vo. Vmalloc: A general and e�-
cient memory allocator. Software Practice and
Experience, 1995. To appear.

[Vui80] Jean Vuillemin. A unifying look at data
structures. Communications of the ACM,
29(4):229{239, April 1980.

[Wal66] B. Wald. Utilization of a multiprocessor in
command and control. Proceedings of the
IEEE, 53(12):1885{1888, December 1966.

[WB95] Paul R. Wilson and V. B. Balayoghan. Com-
pressed paging. In preparation, 1995.

[WDH89] Mark Weiser, Alan Demers, and Carl Hauser.
The portable common runtime approach to in-
teroperability. In Proceedings of the Twelfth
Symposium on Operating Systems Principles,
December 1989.

[Wei76] Charles B. Weinstock. Dynamic Storage Al-
location Techniques. PhD thesis, Carnegie-
Mellon University, Pittsburgh, Pennsylvania,
April 1976.

[Whi80] Jon L. White. Address/memory management
for a gigantic Lisp environment, or, GC con-
sidered harmful. In LISP Conference, pages
119{127, Redwood Estates, California, August
1980.

[Wil90] Paul R. Wilson. Some issues and strategies in
heap management and memory hierarchies. In
OOPSLA/ECOOP '90 Workshop on Garbage
Collection in Object-Oriented Systems, Octo-
ber 1990. Also appears in SIGPLAN Notices

77

23(3):45{52, March 1991.
[Wil91] Paul R. Wilson. Operating system support

for small objects. In International Workshop
on Object Orientation in Operating Systems,
pages 80{86, Palo Alto, California, October
1991. IEEE Press.

[Wil92] Paul R. Wilson. Uniprocessor garbage col-
lection techniques. In Bekkers and Cohen
[BC92], pages 1{42.

[Wil95] Paul R. Wilson. Garbage collection. Com-
puting Surveys, 1995. Expanded ver-
sion of [Wil92]. Draft available via anony-
mous internet FTP from cs.utexas.edu as
pub/garbage/bigsurv.ps. In revision, to ap-
pear.

[Wis78] David S. Wise. The double buddy-system.
Technical Report 79, Computer Science De-
partment, Indiana University, Bloomington,
Indiana, December 1978.

[WJ93] Paul R. Wilson and Mark S. Johnstone. Truly
real-time non-copying garbage collection. In
OOPSLA '93 Workshop on Memory Manage-
ment and Garbage Collection, December 1993.
Expanded version of workshop position paper
submitted for publication.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael
Neely, and David Boles. Memory allocation
policies reconsidered. Technical report, Uni-
versity of Texas at Austin Department of Com-
puter Sciences, 1995.

[WJW+75] William A. Wulf, R. K. Johnsson, C. B. We-
instock, S. O. Hobbs, and C. M. Geschke. De-
sign of an Optimizing Compiler. American El-
sevier, 1975.

[WLM91] Paul R. Wilson, Michael S. Lam,
and Thomas G. Moher. E�ective static-graph
reorganization to improve locality in garbage-
collected systems. In Proceedings of the 1991
SIGPLAN Conference on Programming Lan-
guage Design and Implementation [PLD91],
pages 177{191. Published as SIGPLAN No-
tices 26(6), June 1992.

[WLM92] Paul R. Wilson, Michael S. Lam,
and Thomas G. Moher. Caching considera-
tions for generational garbage collection. In
Conference Record of the 1992 ACM Sympo-
sium on LISP and Functional Programming,
pages 32{42, San Francisco, California, June
1992. ACM Press.

[WM89] Paul R. Wilson and Thomas G. Moher. De-
sign of the Opportunistic Garbage Collector.
In Conference on Object Oriented Program-
ming Systems, Languages and Applications
(OOPSLA '89) Proceedings, pages 23{35, New
Orleans, Louisiana, 1989. ACM Press.

[Wol65] Eric Wolman. A �xed optimum cell-size for
records of various lengths. Journal of the
ACM, 12(1):53{70, January 1965.

[WW88] Charles B. Weinstock and William A. Wulf.
Quick�t: an e�cient algorithm for heap stor-
age allocation. ACM SIGPLAN Notices,
23(10):141{144, October 1988.

[Yua90] Taichi Yuasa. The design and implementation
of Kyoto Common Lisp. Journal of Informa-
tion Processing, 13(3), 1990.

[ZG92] Benjamin Zorn and Dirk Grunwald. Empir-
ical measurements of six allocation-intensive
C programs. Technical Report CU-CS-604-92,
University of Colorado at Boulder, Dept. of
Computer Science, July 1992.

[ZG94] Benjamin Zorn and Dirk Grunwald. Evaluat-
ing models of memory allocation. ACM Trans-
actions on Modeling and Computer Simula-
tion, 1(4):107{131, 1994.

[Zor93] Benjamin Zorn. The measured cost of conser-
vative garbage collection. Software|Practice
and Experience, 23(7):733{756, July 1993.

This article was processed using the LaTEX macro package
with LLNCS style

78

View publication stats

https://www.researchgate.net/publication/2448703

