
Welcome and
Introduction
Lecture 1

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4700/

Course Overview

• Programs == Algorithms + Data structures

• Selecting the right data structure

 Selecting containers: trivial

 Selecting data types: type properties

• Selecting and developing algorithms

 Algorithmic thinking

 Parallelization almost an afterthought

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

2

Administrativia 1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

3

Admin & Organizational
• Course:

 Depth first introduction, C++ Standard Library, C++ Data structures and
algorithms, parallel algorithms, scientific applications, architectures, parallel
programming models…

 https://teaching.hkaiser.org

 hkaiser@cct.lsu.edu

 Discord server: https://discord.gg/Q32sGfKqMS

• Reading:
 Diehl’s Parallel C++

 Stepanov’s From Mathematics to Generic Programming

 Koenig’s Accelerated C++

 Stroustrup’s Programming - Principles and Practice Using C++

• Homework, project, quizzes, grading, honesty
 Use Github classroom for assignments

 Use VSCode as a tool

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

4

https://teaching.hkaiser.org/
mailto:hkaiser@cct.lsu.edu
https://discord.gg/Q32sGfKqMS

Important Dates

• Lectures

 Tuesday and Thursday, 10:30 to 11:50, 1212 PFT

• Grading

 Homework 50%

 Project 25%

 Midterm exam 10%

 Final exam 15%

• Exams

 Midterm exam: March 6

 Final exam: May 8, 5:30pm - 7:30pm

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

5

Ground Rules
• All information about the course: teaching.hkaiser.org

 Following that site is expected and will positively impact overall grade

• Lectures

 Attendance is expected and will positively impact overall grade

• Assignments

 Up to five individual assignments focusing on writing code

 Use of (standard C++) algorithms and (standard C++) data structures

 Use of various parallel programming models

 Assignment 0 has been posted (due: January 27, 11:59 pm)

• All assignments and the project are hosted on GitHub (github.com)
and managed through GitHub classroom (classroom.github.com)

 You will need to create an account on Github

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

6

https://hkaiserteaching.github.io/
github.com
https://classroom.github.com/

Honesty

• The LSU Code of Student Conduct defines plagiarism in Section
5.1.16:

 "Plagiarism is defined as the unacknowledged inclusion of someone else's words, structure,
ideas, or data. When a student submits work as his/her own that includes the words,
structure, ideas, or data of others, the source of this information must be acknowledged
through complete, accurate, and specific references, and, if verbatim statements are included,
through quotation marks as well. Failure to identify any source (including interviews,
surveys, etc.), published in any medium (including on the internet) or unpublished, from
which words, structure, ideas, or data have been taken, constitutes plagiarism;“

• Plagiarism will not be tolerated and will be dealt with in accordance
with and as outlined by the LSU Code of Student Conduct:
https://www.lsu.edu/saa/students/codeofconduct.php

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

7

https://www.lsu.edu/saa/students/codeofconduct.php

ChatGPT?

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

8

ChatGPT
• The goal for this course is to train our brains, not ChatGPT

 So, do yourself a favor and don’t use it

 There are too many software ‘developers’ out there who copy & paste their way to
the next paycheck

• However, if you do use it:

 Never use anything without carefully reviewing it

 Assume what you got is wrong! Prove to yourself it is correct!

 The skill of reading (and understanding) code becomes more important than ever

 Cite and annotate the copied code

• Whatever you do, remember:

 It’s plagiarism if you submit the same code as your neighbor

 No matter where you got it from, be it Google, ChatGPT, or your neighbors
computer

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

9

How to Learn
• Ask yourself at the beginning of this semester

 What scientific problem you want to solve?

 What do you want to learn from this course that can prepare you?

 Can you write a sequential program to solve it?

 What is the performance of it?

 …

• Ask yourself at the end of this semester
 Did you master the skillset to solve your scientific problem?

 Can you write a high-performance program to solve it?

 What is the performance of it?

 What is the speedup?

 Compare your sequential program with your high-performance program

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

10

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Tour of the Course
• Basic CPU machine model

 Hierarchical memory (registers, cache, virtual memory)

 Instruction level parallelism

 Multicore processors

• Scientific computing

 Linearization of physics model

• Shared memory parallelism

• GPU

• Distributed memory parallelism

• Use running examples to explain concepts and APIs C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

11

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Tour of the Course

• Elements of C++

• Elements of software organization

• Elements of software practice

• Elements of performance measurement and
optimization

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

12

Hardware

Software

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

What This Course is About
• How algorithms, data, software, and hardware interact to affect

performance (and how to orchestrate them to get high performance)

• At the completion of this course, you will be able to

 Write software that fully utilizes hardware performance features

 Describe the principal architecture mechanisms for high performance and
algorithmic and software techniques to take advantage of them

 Recognize opportunities for performance improvement in extant code

 Describe a strategy for tuning HPC code

• Today and years from now

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

13

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Computing is Indispensable to
Science and Engineering

• The 3rd (and 4th?) pillar(s)

• Can carry out investigations where
physical experiments would be too
fast, too slow, too hot, too cold, too
costly, too dangerous, etc.

• Examples: Weather, climate, fusion,
crash testing, etc.

• HPC means more and better
scientific discovery

• Better world, survival of the planet

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

14

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

The HPC Canon (as of 2025)

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

15

Technology Paradigm Hammer

CPU (single core) Sequential C compiler

SIMD/Vector (single core) Data parallel Intrinsics (asm)

Multicore Threads pthreads (C) library

NUMA shared memory Threads pthreads (C) library

GPU GPU CUDA

Clusters Message passing MPI (C) library

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Scaling progression of CPUs

Fetch

Decode

R Read

Execute

R Write

i0

Instructions

Data

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

16

Simplest model CPU fetches and
executes instructions

Many cycles
per instruction

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Pipelining

Fetch

Decode

R Read

Execute

R Write

i6
i5
i4
i3
i0

Instructions

Data

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

17

Pipelining
Instructions are

fetched in a
stream

A long trip from
memory

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Hierarchical Memory

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

Data

Instructions

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

18

Use special, fast
memory to keep

data and instructions
close

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Multicore CPUs

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

19

Replicate 2X Cores share
slower memory

Caches need to
be kept coherent

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Even more Cores

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W

F

D

R

E

W

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

20

Replicate 4X Cores share
slower memory

Caches need to
be kept coherent

Include super-
slow DRAM

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Symmetric Multi-Processor (SMP)

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

21

Multiple CPU
chips

AKA “sockets”

Memory may be
uniformly

shared among
sockets

Caches still need to
be kept

(somewhat)
coherent

Uniform
memory access

(UMA)

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Asymmetric Multi-Processor

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

22

Multiple CPU
chips

AKA “sockets”

Memory may be
non- uniformly
shared among

sockets

Caches still need to
be kept

(somewhat)
coherent: CC-

NUMA

Non-uniform
memory access
(NUMA – most

common)

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

GPU

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

23

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

The Next Step

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

24

Put sockets
on a blade

Put blades
in a chassis

Put chassis
in a rack

Put racks
in a center

Put centers
in the cloud

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Then you have a Supercomputer

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

25

But how
do you
use it?

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Technology Paradigm Hammer

CPU (single core) Sequential C compiler

SIMD/Vector (single core) Data parallel Intrinsic

Multicore Threads pthreads library

NUMA shared memory Threads pthreads library

GPU GPU CUDA

Clusters Message passing MPI

The HPC Canon (as of 2025)

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

26

T
h

is
 s

e
m

e
st

e
r

C++

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Editorial Comment

• The most exciting phrase to hear in
science, the one that heralds new
discoveries, is not “Eureka!” (I found
it) but “That’s funny”

 Attributed to Isaac Asimov (and others)

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

27

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Uses of HPC (a Sample)
• Cosmology

• Earthquake

• Weather

• Climate modeling

• Automobile crash testing

• Aircraft design

• Jet engine design

• Stockpile stewardship

• Nuclear fusion

• Protein folding

• Modeling the brain

• Modeling bloodstream

• Epidemiology

• Rendering (CGI)

• Sigint

• Block chains

• Gene sequencing

• Etc C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

28

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Multiphysics Solver

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

29

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Physics: Systems of Partial
Differential Equations (PDEs)

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

30Courtesy Karel Matous, U. Notre Dame

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

Computational Science

C
S

C
4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

31

System of Partial

Differential Eqns

System of

Nonlinear Eqns

System of

Linear Eqns

discretize

linearize
All scientific

computing is this

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

C++! But Why?

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

32

Why C++ ?
• You can’t learn to program without a programming language

• The purpose of a programming language is to allow you to express
your ideas in code

• C++ is the language that most directly allows you to express ideas
from the largest number of application areas

• C++ is the most widely used language in engineering areas

 http://www.research.att.com/~bs/applications.html

• Our society runs on software

 Large parts of that software directly or indirectly rely on C/C++

 Windows, Linux, Office Suite, Adobe Products, …

 Self driving cars, industry equipment, …

 Internet

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

33

http://www.research.att.com/~bs/applications.html

Why C++ ?

• C++ is precisely and comprehensively defined by an ISO standard

 C++17! Now also C++23!

 And that standard is almost universally accepted

• C++ is available on almost all kinds of computers

• Programming concepts that you learn using C++ can be used fairly
directly in other languages

 Including C, Java, C#, and (less directly) Fortran

• Last but not least: C++ jobs are one of the best paid jobs available

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

34

A First C++ Program
// Our first C++ program

#include <algorithm>

#include <print>

#include <vector>

int main() // main() is where a C++ program starts

{

std::vector<double> data = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };

auto sum = std::reduce(data.begin(), data.end());

std::print(std::stdout, "Sum of all values: {}\n", sum);

return 0;

}

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

35

A deeper Look
• Expressions

 Compute something, yields result, may have side effects

 Operands and operators – types!

• Scope

 Part of the program in which a name has its meaning

 Global scope

 Namespace scope

 Block scope

• Algorithms

auto sum = std::reduce(data.begin(), data.end());

std::println(std::stdout, "Sum of all values: {}", sum);

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

36

Details

• Program structure

 Free form except string literals, #include, comments

• Types

 Data structures and their operations

 Built in and user defined

• Functions

 Code structure

 Helps isolating (abstracting) sub-functionalities

• Namespaces

 Grouping related names

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

37

Details
• Special character literals

 \n newline character

 \t horizontal tabulator

 \b backspace character

 \" same as " but does not terminate string

 \' same as ' but does not terminate character literal

 \\ same as \ but does not give special meaning to next character

• Definitions and headers

• The main() function

• Braces and semicolons

• Output

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

38

Why Parallel C++?
• Modern computers have more than one core

 Often many more

 Many programs require to do many things at once (MTAO)

• Scientific computing requires a lot of number crunching

 Parallelization required to reduce required execution times

• C++ offers

 Parallel algorithms

 Divide a loop into subtasks, which are processed simultaneously

 Task and Data parallelism

 Focuses on distributing tasks across cores

 Divides data arrays into smaller chunks and processes them in parallel

 Asynchronous execution

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

39

Motivation for Parallelism
• Operating systems must handle multiple things at once (MTAO)

 Processes, interrupts, background system maintenance

• Networked servers must handle MTAO

 Multiple connections handled simultaneously

• Parallel programs must handle MTAO

 To achieve better performance

• Programs with user interface often must handle MTAO

 To achieve user responsiveness while doing computation

• Network and disk bound programs must handle MTAO

 To hide network/disk latency

 Sequence steps in access or communicatoin

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

40

A First Parallel C++ Program
// Our first parallel C++ program

#include <algorithm>
#include <execution>
#include <print>
#include <vector>

int main() // main() is where a C++ program starts
{

std::vector<double> data = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
auto sum = std::reduce(std::execution::par, data.begin(), data.end());
std::println("Sum of all values: {}", sum);
return 0;

}

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

41

A deeper Look

• Parallel algorithms

 std::execution::par: execution policy tells library that it is ok to execute out of
order

auto sum = reduce(std::execution::par, data.begin(), data.end());

• This is a hint to the library

 Implementation is free to decide what to do

 No real control over how things are being executed

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

42

A First Parallel HPX Program
// Our first parallel HPX program

#include <hpx/algorithm.hpp>

#include <hpx/execution.hpp>

#include <print>

#include <vector>

int main() // main() is where a C++ program starts

{

std::vector<double> data = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };

hpx::execution::experimental::num_cores nc(2);

auto sum = hpx::reduce(hpx::execution::par.with(nc), data.begin(), data.end());

std::println("Sum of all values: {}", sum);

return 0;

}

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

43

A deeper Look
• Parallel algorithms

 hpx::execution::par: execution policy tells library that it is ok to execute
out of order

 hpx::execution::experimental::num_cores encapsulates a way to control
number of cores to be used

 .with(nc): associates this with the execution policy

hpx::execution::experimental::num_cores nc(2);

auto sum = hpx::reduce(

hpx::execution::par.with(nc), data.begin(), data.end());

• This makes sure that the algorithm runs on 2 cores only

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

44

Hello, world!
• “Hello world” is a very important program

 Its purpose is to help you get used to your tools

 Compiler

 Program development environment

 Program execution environment

 Type in the program carefully

 After you get it to work, please make a few mistakes to see how the tools
respond; for example

 Forget the header

 Forget to terminate the string

 Misspell return (e.g. retrun)

 Forget a semicolon

 Forget { or }

 …

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

45

Number of Unique Elements
• Let’s start with a sequence of integers:

int a[] = { 1, 3, 1, 4, 1, 5 };

• How many unique integers do we have?
 Simple solution:

#include <iostream>

#include <set>

int main() {

std::set<int> set_of_ints(a, a + 6);

std::println("{}", set_of_ints.size());

}

• This solution is correct! But … very slow! Why?

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

46

Equality vs. Ordering

• std::set is implemented using Red-Black-Trees, which according

to textbooks is the best way of implementing it

 Will do 𝑂(𝑛 log(𝑛)) comparison operations, but with a large constant
coefficient

 Has to re-sort whole data structure for each insertion without need

• It might appear, that finding unique elements does not require
ordering, it just requires equality

 But, actually we need a search or find

 Equality gives us linear search 𝑂(𝑛), while sorting gives us binary search
𝑂(log(𝑛)) so we can find much, much faster.

• Correct solution is to use std::unique

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

47

Number of Unique Elements
• Sequence must be sorted, however. std::unique eliminates equal elements and

returns reference to first duplicated element:

#include <algorithm>

#include <iostream>

int main() {

std::sort(a, a + std::size(a));

std::println("{}", std::unique(a, a + std::size(a)) – a);

}

• For example:

1 2 2 2

^

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

48

Use the correct STL Data Structures

• What container type should you use?

 Whenever you can, use std::vector.

 If you cannot, find a way so you can.

• Avoid any data structures except arrays. “Well aren’t there
exceptions?” No, not for you.

 Typically advanced data structures are slower than simple data structures.

 Data structures which appear to be alright when textbook writers wrote
their books, are no longer all right now.

 Computers changed so much. Things no longer work as taught 10 years ago.

• Occasionally we will ask you to use other data structures

 Mostly to make our point, though

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

49

A Word about
Compilation

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

50

Compilation and Linking

• You write C++ source code

 Source code is (in principle) human readable

• The compiler translates what you wrote into object code (sometimes called machine code)

 Object code is simple enough for a computer to “understand”

• The linker links your code to system code needed to execute

 E.g. input/output libraries, operating system code, and windowing code

• The result is an executable program

 E.g. a .exe file on windows or an a.out file on Unix

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

51

C++ compiler

C++ source code

Object code Linker
Executable

program

Library Object code

See: Decoding C++ Compilation Process: From Source Code to Binary

https://hackthedeveloper.com/c-program-compilation-process/

CMake

• CMake is a family of tools

 Building software

 Testing software

 Packaging software

• We will use it for building and testing

• CMake generates build systems files (Makefiles and or workspaces)

 Those can be used to automatically build and test your code

• The user writes a single set of descriptive scripts

 Define Targets and their inter-dependencies

• CMake is well integrated with many IDEs

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

52

Simplest Example

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

53

Simplest Example

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

54

Homework and Projects

• We will use Visual Studio Code as our development environment

 Assignment 0 will ask you to install everything and make it work

 Alternatively use Github Codespaces (development fully online)

• We will use Github Classroom for managing your submission

 Please go get a login on github.com, if you have none yet (this is part of
assignment 0)

 This will teach you the use of the Git source code control system along the
lines

 Special lecture will talk about development environment (git, cmake, etc.)

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

55

Summary
• Today, single-thread-of-control performance is improving very

slowly

 To run programs significantly faster, programs must utilize multiple
processing elements or specialized processing hardware

 Which means you need to know how to reason about and write parallel
and efficient code

• Writing parallel programs can be challenging

 Requires problem partitioning, communication, synchronization

 Knowledge of machine characteristics is important

 In particular, understanding data movement!

• I suspect you will find that modern computers have tremendously
more processing power than you might realize, if you just use it
efficiently! C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1

56

1
/1

4
/2

0
2

5
,

L
e
ct

u
re

 1
C

S
C

4
7
0
0
,

S
p

ri
n

g
 2

0
2
5
,

W
e
lc

o
m

e
 a

n
d

 I
n

tr
o
d

u
ct

io
n

57

