
Tasks & Concurrency
(1)
Lecture 14

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4400/

Task-Parallel Model
• Focuses on distributing tasks concurrently performed

by processes or threads across different processors (and nodes)

• Task parallelism is distinguished by running many different --
possibly unrelated -- tasks at the same time

 On the same data

 On different, even unrelated data

• A common type of task parallelism is pipelining (e.g. chaining tasks)

 Consists of moving a single set of data through a series of separate tasks

 Where each task can execute independently of the others

• Explicitly relies on dependencies between tasks

 Represented by intermediate results computed

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

2

Task-Parallel Model
Data parallelism Task parallelism

Same operations are performed on different

subsets of same data

Different operations are performed on the

same or different data

Synchronous computation Asynchronous computation

Speedup is more as there is only one type of

execution thread operating on all sets of

data

Speedup is less as each processor will

execute a different thread or process on the

same or different set of data

Amount of parallelization is proportional to

the input data size

Amount of parallelization is proportional to

the number of independent tasks to be

performed

Designed for optimum load balance on

multi processor system

Load balancing depends on the availability

of the hardware and scheduling algorithms

like static and dynamic scheduling

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

3

Threads and Asynchrony

• Service Request takes T seconds to process

• Thus the Service rate will be 1/T

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

4

Threads and Asynchrony

• Service request takes T seconds to process
 Service requests are served concurrently

• Thread takes t << T seconds to spawn

• The overall service rate will be 1/t << 1/T

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

5

• On multiple cores, concurrent tasks can run in parallel

Multitasking on Multicore

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

6

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

7

The Challenges
• We need to find a usable way to fully parallelize our applications

 Remember Amdahl’s Law
 Avoid ‘sequential’ pieces of execution by all means possible

 Fork/Join parallelism has hidden
sequential pieces

• Goals are:
 Expose asynchrony to the programmer
 Make data dependencies explicit, hide notion of ‘thread’ and ‘communication’
 Provide manageable paradigms for handling parallelism

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

8

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

9

Proposed Solution

• Asynchronous programming model
 Objects interact using asynchronous functions calls

 Remote calls are sent as active messages

 Futures are used to represent data dependencies in asynchronous
execution and dataflow

 View the entire (super-) computer as a single C++ abstract
machine (HPX’ AGAS: active global address space)

 Tasks operate on C++ objects possibly distributed across the
system

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

10

Proposed Solution
• Semantic and syntactic equivalence of local and remote operation

 Enables performance portability

 Unified approach to vector-, core-, and node- level parallelism

• Futurization technique
 Formal way of transforming sequential code into auto-parallelized, asynchronous code

• Fully conforming to API as prescribed by C++ Standard

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

11

Asynchronous Tasks

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

12

Think in Terms of Tasks, not Threads
• A thread is an implementation concept, a way of thinking about the

machine

• A task is an application notion, something you'd like to do

 Preferably concurrently with other tasks

 Sequencing happens based on data dependencies, not function order

 Application concepts are easier to reason about

• Try to reason about “What to do?”, “What needs to be done before
this?” (tasks)

• Rather to think about “How to do things?” (threads)

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

13

• Simple code:

auto P = compute_p();

auto X = compute_x();

auto H = compute_h(P, X);

• Dependency graph (implicit):

• The program is executed line by line

• Each time a function is called the calling code waits until the functions
finishes

• We could compute P and X at the same time, since the data is independent

Synchronous Programming

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

14

H

XP

Asynchronous Tasks
• As we have seen before, using plain threads

 Make it complicated to ‘return’ results from separate computations

 Often requires additional thread-safety measures to aggregate over many
results

• Today, we will see what facilities can be applied to overcome these
limitations

• The idea is to create mechanisms that allow to directly access the
return value of a function spawned asynchronously

 That also allows for keeping the asynchronous functions side-effect free

• Additionally we will develop an asynchronous programming model
that minimizes thread suspension and synchronization

 We will introduce C++ language features that directly support this model

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

15

Aside: The Future of Computation

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

16

• Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal_answer() { return 42; }

void deep_thought()
{

future<int> promised_answer = async(&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get() << endl; // prints 42
}

What is a (the) Future?

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

17

What is a (the) Future
• A std::future provides a mechanism to access the result of an

asynchronous operations

 Like one created by std::async and

 It provides methods for synchronization with the result

• Synchronization:

 .get() suspends until the computation has finished and returns the result
of the function

 .wait() waits until the computation has finished

 .wait_for(std::chrono::seconds(1)) returns if the result is not
available after the specified timeout duration

 .wait_until(std::chrono::now()+std::chrono::seconds(1)) waits for
a result to become available until given point in time

 Both block until specified timeout time has been reached or the result
becomes available, whichever comes first.

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

18

What is a (the) future
• A future is an object representing a result which has not been calculated yet

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

19

Locality 1

Suspend
consumer
thread

Execute
another
thread

Resume
consumer
thread

Locality 2

Execute
Future:

Producer
thread

Future object

Result is being
returned

 Enables transparent synchronization
with producer

 Hides notion of dealing with threads

 Represents a data-dependency

 Makes asynchrony manageable

 Allows for composition of several
asynchronous operations

 (Turns concurrency into parallelism)

• Simple code:

auto P = compute_p();

auto X = compute_x();

auto H = compute_h(P, X);

• Dependency graph (implicit):

• The program is executed line by line

• Each time a function is called the calling code waits until the functions
finishes

• We could compute P and X at the same time, since the data is independent

Synchronous Programming

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

20

H

XP

Asynchronous Programming
• Computing independent things concurrently:

std::future<int> f = std::async(compute_p);

auto X = compute_x();

auto H = compute_h(f.get(), X);

• The program is still executed line by line

• However, std::async returns right away, even if the compute_p has
not finished yet
 Returned future f, which represents the result that will be computed

 It can be used to synchronize with the execution of compute_p

• In the code above compute_p and compute_x are being run
concurrently (if compute resources are available)

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

21

Asynchronous Execution of
Functions
• Testing whether a given number is a prime:

bool is_prime (long x) {

std::println("Calculating. Please , wait ...");

long limit = std::sqrt(x);

for (long i = 2; i < limit; ++i)

if (x % i == 0) return false;

return true;

}

std::future<bool> f = std::async(is_prime, 313222313);

// ... Do other things

std::println("313222313 is {}a prime", f.get() ? "" : "not ");

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

22

Asynchronous Execution of
Functions
• std::async

 The first argument is a function (pointer) to execute, any ‘invocable’ works

 The second argument is the first argument of the function, and so on

 The return value is a std::future<T> where T is the return type of the
function

• For each call, std::async launches a new thread to execute the

function

• The returned future can be used to ‘wait’ for the result to be
available

 The value eventually provided by the future is whatever the function
returned that was passed to std::async

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

23

Numeric Integration with Tasks

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

24

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

double pi = 0;
for (int64_t i = 0; i != N/4; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

double pi = 0;
for (int64_t i = N/4; i != N/2; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

double pi = 0;
for (int64_t i = 3*N/4; i != N; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

double pi = 0;
for (int64_t i = N/2; i != 3*N/4; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

Numeric Integration with Tasks

double calculate_pi()

{

int64_t N = 1'000'000'000; // really large number

double h = 1.0 / (double) num_intervals; // Decomposition

double pi = 0.0;

int num_blocks = 4;

int64_t block_size = N / num_blocks;

// For each set of discretized points

for (int k = 0; k < num_blocks; ++k) {

pi += pi_helper(n * block_size, (n + 1) * block_size, h);

}

return pi;

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

25

Numeric Integration with Tasks
• Helper function that computes the sub-result for one of the blocks

double pi_helper(int64_t begin, int64_t end, double h)

{

double local_pi = 0.0;

for (int64_t i = begin; i != end; ++i)

local_pi += h * 4.0 / (1 + sqr(i * h));

return local_pi;

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

26

Numeric Integration with Tasks
int main(int argc, char* argv[])

{

int64_t N = 1'000'000'000; // really large number

double h = 1.0 / N;

int num_blocks = 4;

double pi = 0.0;

int64_t block_size = N / num_blocks;

std::vector<std::future<double>> part_pi;

for (int64_t n = 0; n != num_blocks; ++n)

part_pi.push_back(

std::async(pi_helper, n * block_size, (n + 1) * block_size, h));

for (int n = 0; n != num_blocks; ++n)

pi += part_pi[n].get();

std::println("pi: {} ", pi);

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

27

Numeric Integration with Tasks
• All tasks run in parallel (as long as compute resources are available

 The helper function pi_helper has no ‘awareness’ that it is run on a
separate thread

 It is still a ‘normal’ function

 Simply returns calculated result

• No synchronization is needed (at all)

• Little change compared to sequential version

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

28

Results
pi_async 1000000000 1

pi: 3.1415926545900716, time: 1068 [ms]

pi_async 1000000000 2

pi: 3.1415926545897657, time: 575 [ms]

pi_async 1000000000 4

pi: 3.141592654589842, time: 386 [ms]

pi_async 1000000000 6

pi: 3.141592646589882, time: 313 [ms]

pi_async 1000000000 8

pi: 3.141592654589781, time: 298 [ms]

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

29

• Sequential

• 2 threads, speedup of ~2

• 4 threads, speedup of ~3

• 6 threads, speedup of ~4

• 8 threads, speedup of ~4

Launch Policies for std::async
• std::async takes an optional first argument:

for (int n = 0; n != num_blocks; ++n)

part_pi.push_back(std::async(std::launch::async, pi_helper,

n * block_size, (n + 1) * block_size, h));

• Launch policy, could be:

std::launch::async could the task is executed on a different thread,
potentially by creating and launching it first

std::launch::deferred the task is executed on the calling thread the first
time its result is requested (lazy evaluation)

• The default is ‘whatever’

 Always make sure your specify the launch policy

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

30

Results when using deferred
pi_async 1000000000 1

pi: 3.1415926545900716, time: 1125 [ms]

pi_async 1000000000 2

pi: 3.1415926545897657, time: 1055 [ms]

pi_async 1000000000 4

pi: 3.141592654589842, time: 1062 [ms]

pi_async 1000000000 6

pi: 3.141592646589882, time: 1060 [ms]

pi_async 1000000000 8

pi: 3.141592654589781, time: 1146 [ms]

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

31

• Sequential

• 2 threads, speedup of ~1

• 4 threads, speedup of ~1

• 6 threads, speedup of ~1

• 8 threads, speedup of ~1

Aside: Name This Famous Couple

Clyde

Barrow

Bonnie

Parker

32

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

Bonnie and Clyde Use ATMs
int bank_balance = 300;

void withdraw(std::string const& name, int amount)

{

int bal = bank_balance; // Get current balance

std::println("{} withdraws {}", name, amount);

bank_balance = bal - amount; // compute new balance and save it

}

int main() {

std::println("Starting balance {}", bank_balance);

std::future<void> f1 =

std::async(std::launch::async, withdraw, "Bonnie", 100);

std::future<void> f2 =

std::async(std::launch::async, withdraw, "Clyde", 100);

f1.get();

f2.get();

std::println("Final balance {}", bank_balance);

return 0;

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

33

Bonnie and Clyde Use ATMs

Why is this not correct?

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

34

Prevent Race Condition
std::mutex msg_mutex; // protect printing the message

std::mutex atm_mutex; // protect the bank balance

void withdraw(std::string const& name, int amount)

{

std::lock(msg_mutex, atm_mutex); // Prevent deadlock

int bal = bank_balance; // Get current balance

std::lock_guard msg_lock(msg_mutex, std::adopt_lock);

std::println("{} withdraws {}", name, amount);

std::lock_guard atm_lock(atm_mutex, std::adopt_lock);

bank_balance = bal - amount; // compute new balance and save it

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

35

Back to the Future

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

36

Ways to Create a future
• Standard defines 3 possible ways to create a future

 3 different ‘asynchronous providers’

 std::async

 std::packaged_task

 std::promise

• As we will see, with HPX there are many more ways to create one

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

37

Promising a Future
• std::promise is main ‘maker’ of futures

 It gives away a future representing the value it received

 Promise/future is a one-shot pipeline where the promise is the ‘sender’ and
the future is the ‘receiver’

• Promise and future represent a anonymous connection between a
producer and a consumer

 The producer sets the value in the promise

 The consumer receives the value from the future

• The promise initially creates a shared state

 The future created by the promise shares the state with it

 The shared state stores the value, etc.

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

38

Promising a Future
• Futures are created by promises: f = promise.get_future()

• The promise is used to set the result value: promise.set_value(r)

• The future is used to access the result value: r = f.get()

• The shared state is invisible

 Stores the value

 Manages synchronization and ensures
thread safety

• Promises and futures are thread-safe

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

39

std::future<T>

get();
wait();

std::promise<T>

get_future();
set_value(...);

Shared

State

T value;

Promising a Future: async

template <typename F, typename... Args>

std::future<std::invoke_result_t<F, Args...>> async(F f, Args... args)

{

using result_type = std::invoke_result_t<F, Args...>;

std::promise<result_type> p;

std::future<result_type> f = p.get_future();

std::thread t([=]() { p.set_value(f(args...)); }); // note: simplified!

t.detach(); // detach the thread from t

return f;

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

40

Waiting for the Future
int main() {

std::promise<int> p;

std::future<int> f = p.get_future();

std::jthread t([=]() {

std::this_thread::sleep_for(std::chrono::seconds(5));

p.set_value(42);

});

for (int i = 0; /**/; ++i) {

std::println("Waiting attempt {} ...", i);

std::future_status status = f.wait_for(std::chrono::seconds(1));

if (status != std::future_status::timeout) break;

}

std::println("Computed result: {}", f.get());

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

41

Waiting attempt 0 ...
Waiting attempt 1 ...
Waiting attempt 2 ...
Waiting attempt 3 ...
Waiting attempt 4 ...
Computed result: 42

Packaging a Future: packaged_task
• std::packaged_task is a function object

 It gives away a future representing the result of its invocation

• Can be used as a synchronization primitive

 Pass to APIs that accepts a callback function

• Converting a callback into a future

 Observer pattern, allows to wait for a callback to happen

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

42

Promising a Future: packaged_task
• Very Simple example:

int main()

{

std::packaged_task<int(int, int)> task(

[](int a, int b) { return std::pow(a, b); });

std::future<int> result = task.get_future();

task(2, 9);

std::println("task: {}", result.get()); // prints: task: 512 (2^9)

return 0;

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

43

Promising a Future: packaged_task
template <typename F> class packaged_task;

template <typename R, typename... Args>

class packaged_task<R(Args...)>

{

std::function<R(Args...)> fn;

std::promise<R> p; // the promise for the result

public:

template <typename F>

explicit packaged_task(F f) : fn(f) {}

void operator()(Args... args) { p.set_value(fn(args...)); }

std::future<R> get_future() { return p.get_future(); }

};

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

44

Packaging a Future: async

template <typename F, typename... Args>

std::future<std::invoke_result_t<F, Args...>> async(F f, Args... args)

{

std::packaged_task<F(Args...)> pt(f);

auto f = pt.get_future();

std::thread t(pt, args...); // note: simplified!

t.detach(); // detach the thread from t

return f;

}

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

45

Lessons Learnt so far
• Assume that someone someday will run your code as part of a multi-

threaded program

• Avoid data races

• Minimize explicit sharing of writable data

• Think in terms of tasks, rather than threads (std::async is your

friend!)

• Use RAII, never plain lock()/unlock()

• Use std::lock() to acquire multiple mutexes

• Use std::launch::async when using std::async()

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

46

3
/1

8
/2

0
2

5
,
L

e
ct

u
re

 1
4

C
S

C
4

7
0

0
,
S

p
ri

n
g
 2

0
2

5
,
T

a
sk

s
&

 C
o
n

cu
rr

e
n

cy
 (

1
)

47

