Distributed

Parallelism
with HPX (1)

Lecture 19
Hartmut Kaiser
https://teaching.hkaiser.org/spring2025/csc4400/

4/10/2025, Lecture 19

Overview

SPMD / CSP recap

A simple mental model

Basic HPX

Four Function HPX Point to Point Version

Four Function HPX Collective Version

Laplace’s equation on a regular grid

G|
-
Ol
>3
(@]
S
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
=
—
=
wn
A
el
[N
N
o
(A
an
a
=i
~
o,
0]
o
S
L‘
Ay
Q
N
(@)

5, Lecture 19

¢
p4

Distributed Memory

4/10/20

L1
0

L1
(0}

L2

P ER

Wl il

L1
®)

Q}structions |
< Data >

L1
0

'_
w
LI I Y

L1
®)

BREE

Interconnect

<
=
E
(@]
]
2
=
r—
D
r—
r—
(2]
o
C!S
Ay
=
Q
=
-
e}
o=
=~
)
12
o
A
Yol
N
=
(A
an
(=]
o
g
(o
0]
=
S
[\
O
9P,
O

4/10/2025, Lecture 19

Distributed Memory

- This begs new questions:
« Should all nodes do exactly the same thing?
« Will there be speedup if we do?

- As we add more CPUs, we make the problem bigger

- Can we keep all the data on every node if we keep making the problem
bigger?
* Hint: No

- But. Do we need all the data on every node?
- Hint: No

- What do we keep? What do we not keep?

- Every node has some of data, however, the union of all should be the whole
problem

« “Collectively exhaustive”

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

Distributed Memory

- What about the program?
* Does 1t grow with problem size?

- Hint* No

- We probably need all of it everywhere anyways

<
+~
o
2
(@]
e
n
o=
r—
)
r—
r—
S~
&
S
o)
=
-
(@)
s
or
~
=
n
A
el
AN
=
(A
an
o
o=
~
(o
0]
=
=)
o
=
~t
O
N
O

4/10/2025, Lecture 19

SPMD (‘SpimDee’)

- Single program
* This 1s the same on all nodes

- Multiple Data

« This 1s not the same on all nodes, but coltectively exhaustive

To —— —

N L1
. 1
3
[P —

s L1
i ()

7

L2

Er[Fol)<

L3

o

M L1
2 (0]
3 I
Ta — | L2

s L1
[D)

r7

< Interconnect

4]
L1l |

NN

ErEoM

e
=
E
(@]
]
7
o=
r—
QJ
r—
r—
(2]
i
2]
Ay
S
Q
=
-
e}
o=
~
)
%)
o=
A
Yol
N
=
(A
an
(=]
o
g
(o
0]
=
S
[\
O
9P,
O

Communicating Sequential Processes

(CSP)

- Every node runs a sequential process (nowadays locally parallelized)
« All of the code 1s replicated

4/10/2025, Lecture 19

- Data 1s distributed using resource allocation mechanisms
However, data dependencies are probably not disjoint

Data has cross-node dependencies

Data may be needed by another node, but can’t be accessed directly

Data are partitioned

The union of the partitions should be the whole problem

<
+~
o
>3
(@]
]
2
o
r—
)
r—
r—
S~
&
S
)
=
-
(@)
0
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

R~ HErREr
LUttt
ErERR- kR

4/10/2025, Lecture 19

Distributed Memory

- Every process:
* Independent memory space
* Code 1s replicated

- Data are partitioned
* The union of the partitions should be the whole problem

3 [T —— 3 [T ——
0] 2 0 o] [2 0
3 3
] 7 — | L2 |] 7 — | L2 |
|l = < nsiructons | 5 [ey & 3
= s ©) E = T'e ©) =
= T7 = - 7 -
-l L3 - -l L3 =
= 0 I E = 0 i E
‘““ E "1“ E
1 |[o] -2 0 = 1 |[o] -2 0 =
[R] :Z — | L2 R :j — | L2
E s L1 s L1
To) To ©)
rz r7

<
+~
o
>3
(@]
]
2
o=
r—
)
r—
r—
[ay]
S~
&
S
)
=
-
(@)
0
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

< Interconnect

o
—

o)

<

=)
-

Q

o)
—
Yol
N
(@)
X
~~
(@)
—
~—
=

Numerical Integration (Sequential)

double h = 1.0 / N;
double pi = 0;
for (int 1 = 0; 1 != N; ++1i)

pi +=h * 4.0 / (1 + sgr(i * h)); g

4.5 2

4.0 5

[a W]

! i

3.5 E

3.0 é

7 3

(A

2310 1)

2.0 3 Z

. h " i) 8

— i+1 5

1.5 o N-1 2

1.0 v

0.0 0.2 0.4 0.6 0.8 1.0

5, Lecture 19

¢
p4

/10/20

Distinguished Replicated Processes

int main(int argc, char* argv[]) nt argc, char* argv[]) ar* argv[]) argv[])

{
long N = 1'000'000'000; = 1'000'000'000; P'000; po ;
std::uint32_t num_localities = int32_t num_localities = | localities = cralities =

localities(hpx::launch::sync);
ality = hpx::get locality id();

alities(hpx::launch::sync);
ty = hpx::get locality id();

hpx::get num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get locality_ id();

x::get num_localities(hpx::launch::sync);
int32_t locality = hpx::get locality_ id();
if (locality == 0 && argc > 1) N = stol(argv[1l]); [cality == © && argc > 1) N = stol(argv[1l]); |&& argc > 1) N = stol(argv[1l]); |argc > 1) N = stol(argv[1l]);
size = N / num_localities; e = N / num_localities;
= blocksize * locality_id; nlocksize * locality_id;
blocksize * (locality id + 1); bcksize * (locality id + 1);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

ize t blocksize = N / num_localities;
ize_t begin = blocksize * locality_id;
ize_t end = blocksize * (locality_id + 1);

double h = 1.0 / N; h=1.0/N; N;

double pi = 0.09; pi = 0.0;

for (long i = begin; i != end; ++1) ong i = begin; i != end; ++1i) in; i != end; ++i) i = end; ++i)
pi 4= h * 4.0 / (1 + sqr(i * h)); += h * 4.0 / (1 + sqr(i * h)); / (1 + sgr(i * h)); 1+ sgr(i * h));

if (locality == @) println("pi: {}", pi);

cality == @) println("pi: {}", pi);

) println("pi: {}", pi);

rintln("pi: {}", pi);

. i e A e AN

[Frmmg) [remme)
[=] L1 L [E] ™) | Lo]
[o] [| o) 0 [o] e | o
[l 2 2 j 2 2
] [[

[pormef E [pormef
1 = = < instructions [

© ©) E ©

3 F 3

u
o
u
©
u
o

2 2

u El
©)

= <instructions

CSC4700, Spring 2

HPX (1)

4/10/2025, Lecture 19

HPX Collective Operations

- We assume that process with locality id == 0 receives N from the command line

This process sends N to all others
+ This 1s an operation that is called broadcast

hpx::collectives: :broadcast(
hpx::collectives::get world communicator(), N);

Every process calculates its own begin and end based on its locality id

Every process now computes part of the overall solution

So every process needs to provide its partial result, all of which need to be
consolidated

+ This 1s an operation that is called reduce

hpx::collectives: :reduce(
hpx::collectives::get world communicator(),
pi, std::plus{});

<
+~
o
>3
(@]
]
2
o
r—
)
r—
r—
S~
&
S
)
=
-
(@)
0
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

4/10/2025, Lecture 19

‘DropDee’ using HPX
int main(int argc, char* argv[]) {

long N = 1'000'000'000; / - Get our lofcaliﬁy 1d and
std::uint32_t num_localities = number of other nodes

hpx::get num localities(hpx::launch::sync);

std::uint32_t locality = hpx::get_locality id(); / - Locality O gets N, shares N

if (locality == 0 && argc > 1) N = stol(argv[l]); Everyone computes their

hpx::collectives: :broadcast(own partlal result
hpx::collectives::get world communicator(), N) .
« Locality O collects all
std::size t blocksize = N / num_localities; partial results, adds them,

std::size_t begin = blocksize * locality_id, and prints
std::size_t begin = end = blocksize * (locality id + 1);
double h = 1.0 / N, pi = 0.0;
for (long i = begin; i != end; ++1i)

pi 4= h * 4.0 / (1 + sqr(i * h));

This pattern is ubiquitous

hpx::collectives: :reduce(
hpx::collectives::get_world communicator(), pi);

<
+~
E
(@]
]
7
=
r—
)
r—
r—
i
[a W]
S
Q
-
=)
Q0
=
~
-
17
ot
/A
Yol
(o]
=
(A
on
=]
o
g
Q
n
S
[‘
O
N
O

if (locality == @) println("pi: {}", pi);

4/10/2025, Lecture 19

Communicating Sequential Processes

- Every process can only read/write 1its own memory
* One process sends data
« Other processes receive data

- Communicating Sequential Processes operate purely local
- Every process talks to its own memory and to its own networking interface
- It 1s as if we operated in shared memory, but it is purely local

- When we run a “parallel program” we aren’t running a parallel
program (no ‘distributed parallelism’)

- We are running multiple copies of a sequential program (nowadays
possibly locally parallelized)

- All copies execute exactly the same code (not in lock step)

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

Hello HPX World

#include <cstdint>
#include <print>

#include <hpx/hpx.hpp> // make all of HPX available
#include <hpx/hpx_main.hpp> // initialize HPX before main

int main()

{
std::uint32 t num_localities = hpx::get num localities(hpx::launch::sync);
std::uint32 t locality id = hpx::get locality id();

std::println("Hello world!");
std::println("I am {} of {}", locality id, num_localities);

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

return 0;

4/10/2025, Lecture 19

Minimal HPX CMake Support

project(spring2025-csc4700-distributed)
set (CMAKE _CXX_STANDARD 23) # possible values: 17, 20, 23

find_package (HPX REQUIRED) # make HPX available

create an executable hello _world from hello world.cpp and link it to HPX
add_executable(hello_world code/hello world.cpp)

target _link libraries(hello _world PRIVATE HPX::hpx HPX::wrap _main)

make sure main() is run on all localities
target _compile definitions(hello world PRIVATE HPX HAVE RUN_MAIN_ EVERYWHERE)

e
=
E
(@]
]
2
=
r—
QJ
r—
r—
(2]
i
2]
Ay
S
Q
=
-
e}
5
~
)
%)
5=
A
Yol
(o]
=
(A
an
(=]
o
g
Q
0]
=
S
[\
O
9P,
O

Important!

4/10/2025, Lecture 19

Running an HPX Application

- Launch four copies of hello_world:

> hpxrun.py --localities=4 ./hello_world

. Output (printed from all processes since this was local on my laptop):

Hello world! I am © of 4
Hello world! I am 1 of 4
Hello world! I am 2 of 4
Hello world! I am 3 of 4

- hpxrun.py has more options, use --help for a list

G|
-
Ol
>3
(@]
S
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
[N
(@)
(A
an
a
=i
~
o,
0]
o
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

Sending and Recelving

- First question: What 1s it we are we sending?
« “N” only has meaning in source code
* We are sending the value of “N”, 1.e. a stream of bytes
* The bits in the memory location
- And we need to be able to 1d other processes

- Second question: Where are we sending the bits?
- How do we say “N@other_process”?
+ “N” only has meaning in source code
« And its location only makes sense locally
* But sender and receiver can agree on an alias

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

Aside: Serialization

- HPX supports serialization of variables of arbitrary C++ types
 Serialization: convert C++ object into stream of bytes
- Deserialization: convert a stream of bytes back to a C++ object of a known type

- HPX sends the byte-stream generated from the arguments of the collective
operations over the network (return values also)

- All built-in types are directly supported
- int, short, long, double, float, etc.

- All C++ standard containers and utility types are directly supported
- E.g., std::vector<T> as long as T is serializable
« std::variant, std: :tuple, std::optional, etc.

- Many of HPX’ own types are directly supported
- E.g., hpx::future<T> (as long as T is serializable)

<
+~
o
>3
(@]
]
2
o
r—
)
r—
r—
S~
&
S
)
=
-
(@)
0
o
~
=
%)
A
el
(o]
=
(A
an
o
=i
~
Q
0]
S
()
L‘
~t
O
N
O

4/10/2025, Lecture 19

Aside: Serialization

. Serializing (and de-serializing) custom types

struct point {

double coord x, coord vy;
std::vector<double> data;

template <typename Archive>
void serialize(Archive& ar, unsigned version)

{
}

ar & coord x & coord y & data;

s

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

- This will enable sending i.e., a std: :vector<point> to other localities

4/10/2025, Lecture 19

A Simple Mental Model

- All HPX communication takes place in the context of a source locality
and a target (destination) locality

- Each locality 1s exposed by a sequential process

- HPX exposes two types of communicators
- Channel-based communicators (for peer-to-peer send/receives)
« Communicators for collective operations

- HPX exposes predefined communicators that refer to all localities

* hpx::collectives::get world communicator(): communicator for
collective operations across all localities

* hpx::collectives::get world channel communicator(): channel
communicator for peer-to-peer operations between all localities

<
+~
Ol
>3
(@]
e
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
=i
~
o,
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

A Simple Mental Model

- A channel-based communicator enables the peer-to-peer communication between
all localities that are part of it

- A communicator for collective operations (in general) groups several localities

+ Only localities in the communicator can use it
, , , , Communicator
- All processes in the communicator see an identical
list of localities
+ Behavior 1s as if this list was global and shared Locality 0 (Process 0)
- We use the index of a locality in the communicator to Locality 1 (Process 1)

1dentify other localities

* You can think of the index as the sequence number of participating
endpoints

Locality 2 (Process 2)

- The size of a communicator is defined as the number Locality P-1 (Process P-1)
of endpoints it represents

<
+~
Ol
>3
(@]
e
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
=i
~
o,
0]
S
S
L‘
Ay
Q
N
(@)

- Localities/endpoints can query for the size and for their own
index 1n the communicator

-
—

)

<

=)
-

Q

)
—
Yol
N
(@)
X
~~
(@)
—
~—

A Simple Mental Model

« Query properties of a communicator:

void communicator properties()

{
auto comm = hpx::collectives::get world communicator(); =
auto [hum_ localltles, this_locality] = comm.get_info(); -
std::println("The global communicator has: "); %
std::println(" Number of connected localities: {}", num_localities); 5
std::println(" Sequence number of this locality: {}", this_locality); -
}
void channel communicator_ properties() E
{ "
auto comm = hpx::collectives::get world channel communicator(); S
auto [num_ loca11t1es, this _locality] = comm.get info(); i
std::println("The global channel communicator has: "); f
std::println(" Number of connected localities: {}", num_localities); 5
std::println(" Sequence number of this locality: {}", this locality); O
2

A Simple Mental Model

int main(int argc, char* argv[])

{

auto comm = hpx::collectives::get world communicator();
long N = 1'000'000'000;

auto [num_localities, locality] = comm.get info();
if (locality == © && argc > 1) N = std::stol(argv[1]);

hpx::collectives::broadcast(comm, N);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_ id;
std::size_t begin = end = blocksize * (locality_ id + 1);
double h = 1.0 / N, pi = 0.0;
for (long i = begin; i != end; ++1)
pi += h * 4.0 / (1 + sqr(i * h));

hpx::collectives::reduce(comm, pi);
if (locality == @) std::println("pi: {}", pi);

4/10/2025, Lecture 19

<
+~
E
(@]
]
7
=
r—
)
r—
r—
i
[a W]
S
Q
-
=)
Q0
=
~
-
17
ot
/A
Yol
(o]
=
(A
on
=]
o
g
Q
n
S
[‘
O
N
O

4/10/2025, Lecture 19

(A)synchronous Channels

- High level abstraction of communication operations
 Perfect for asynchronous boundary exchange

. fﬂlow}s1 to send/receive arbitrary data types, sender and receiver have to agree on the type,
oug

- Modelled after Go-channels

- Simple (uni-directional) pipeline between two endpoints
* Channel can hold one element at any time

- Create on one locality, refer to it from another locality
- Conceptually similar to bidirectional P2P (MPI) communicators

- A channel_communicator is a collection of channels, one for each combination of
endpoints

. Channel (pipe)
- Asynchronous in nature

- get() and set() return futures Q%)@ ' ! @@@

« But there exist synchronous variations

<
+~
o
>3
(@]
]
2
]
r—
)
r—
r—
(_‘!:
S~
&
S
)
=
-
(@)
s
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

4/10/2025, Lecture 19

hpx::collectives: :set

template <typename T>
void set(hpx::launch::sync_policy, channel_communicator comm,
that_site_arg site, T&& value, tag_arg tag);

template <typename T>
hpx: :future<void> set(channel_communicator comm,
that_site_arg site, T&& value, tag_arg tag);

* Here:
« sync_policy: special predefined type that instructs to execute the set operation synchronously
(wait for operation to finish)
« comm: the channel-communicator instance used for this message
+ site’the locality_id of the recipient
+ value: the value to send
- tag: the message tag (identifies a particular communication operation, default: tag_arg())

- The sender is implicit (the locality that called this function)

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

hpx::collectives: :get

template <typename T>
T get(Chpx::launch::sync_policy, channel_communicator comm,
that_site_arg site, tag_arg tag);

template <typename T>
hpx: :future<T> get(channel_communicator comm,
that_site_arg site, tag_arg tag);

- Here:

- sync_policy: special predefined type that instructs to execute the get operation synchronously (wait for
operation to finish)

+ comm: the channel-communicator instance used for this message
« site’the locality_id of the sender
- tag: the message tag (identifies a particular communication operation, default: tag_arg())

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

« Function returns the received data

- The receiver is implicit (the locality that called this function)

set and get

- In order for a data item to be delivered
- Both, the sender must call set and the receiver must call get
- With a matching tag and matching sender and receiver locality id’s

- (i.e. the receiver must specify the sender, while the sender specifies the receiver)

- The data type passed to set must match the data type explicitly
specified for get<T>

« This 1s because the message that is being transferred is essentially a bit-
stream

« This bit-stream represents the value of the variable that is being
sent/received

 In order to properly interpret this bit-stream the receiver must ‘know’ what
type of the variable the sender used to generate the bit-stream from

4/10/2025, Lecture 19

<
+~
Ol
>3
(@]
e
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
=i
~
o,
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

set and get

- Both functions are asynchronous by default

- set returns a future that becomes ready once the message was accepted by
the channel

- get returns a future that holds the received value that becomes ready once
the data has been received

- If invoked with hpx::launch::sync as the first argument, both
functions will be synchronous

* hpx::1launch::sync is a predefined instance of a
hpx::launch::sync policy

« Return only after the requested operation has finished

- BTW: Using hpx: :1launch::sync as the first argument to a
asynchronous function is generally possible for many of HPX’ APIs
« Will turn this function into the synchronous equivalent

<
+~
o
>3
(@]
]
2
o
r—
)
r—
r—
S~
&
S
)
=
-
(@)
0
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

4/10/2025, Lecture 19

Ping Pong
int main(int argc, char* argv[])
{

using namespace hpx::collectives;

auto comm = get world channel communicator();
int sent = 42, received = 0;

set(hpx::launch::sync, comm, that site arg(l), sent, tag arg(123));
received = get<int>(hpx::launch::sync, comm, that site arg(@), tag arg(123));

set(hpx::launch::sync, comm, that site arg(@), received, tag arg(123));
sent = get<int>(hpx::launch::sync, comm, that site arg(l), tag arg(123));

std::println("Received: {}", sent);

<
+~
o
>3
(@]
]
2
o
r—
)
r—
r—
S~
&
S
)
=
-
(@)
0
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

4/10/2025, Lecture 19

Ping Pong
- What happened?

$ hpxrun.py --localities=2 ./pingpong
Received: 42
... "C ... Process terminated

G|
-
Ol
>3
(@]
S
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
[N
(@)
(A
an
a
=i
~
o,
0]
o
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

Ping Pong

int main(int argc, char* argv[])

{

All processes run this same

using namespace hpx::collectives; program

auto comm = get world channel communicator();
int sent = 42, received = 0;

Both processes send this
/ p

set(hpx::launch::sync,
comm, that site arg(1l), sent, tag arg(123));
received = get<int>(hpx::launch::sync,

comm, that site arg(9), tag_ar‘g(123))‘;5~"“~.~~~~~

set(hpx::launch::sync,

And try to receive

comm, that site arg(@), received, tag arg(123));
sent = get<int>(hpx::launch::sync,

comm, that_site_arg(1), tag_arg(123)); Process with locality id == ©

std::println("Received: {}", sent); will never receive anythlng

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

Ping Pong 2.0

int main(int argc, char* argv[]) {
std::uint32_t locality id = hpx::get locality id();

using namespace hpx::collectives;

auto comm = get_world channel communicator();
int sent = 42, received = 0;

if (locality id == 0) {
set(hpx::launch::sync, comm, that site arg(l), sent, tag arg(123));
received = get<int>(hpx::launch::sync, comm, that site arg(l), tag arg(123));
std::println("Received: {}", received);

}

if (locality id == 1) {
received = get<int>(hpx::launch::sync, comm, that site arg(@), tag arg(123));
set(hpx::launch::sync, comm, that site arg(@), received, tag arg(123));

<
+~
E
(@]
]
7
=
r—
)
r—
r—
i
[a W]
S
Q
-
=)
Q0
=
~
-
17
ot
/A
Yol
(o]
=
(A
on
=]
o
g
Q
n
S
[‘
O
N
O

4/10/2025, Lecture 19

Ping Pong 2.0

int main(int argc, char* argv[]) { R Only pTOCGSS O SendS thlS

std::uint32_t locality id = hpx::get_locality id();

using namespace hpx::collectives;

auto comm = get_world_channel communicator(); R Only prOCQSS O receives thlS

int sent = 42, received = 0;

if (locality id == @) {
set(hpx::launch::sync,
comm, that_site arg(l), sent, tag_arg(127));
received = get<int>(hpx::launch::sync,
comm, that_site arg(l), tag_arg(123));
std::println("Received: {}", received);
:{f (locality id == 1) { — Only process 1 receives this
received = get<int>(hpx::launch::sync,
comm, that_site arg(@), tag_arg(123));
set(hpx::launch::sync,

comm, that_site_arg(@), received, tagm . Only process 1 Sends thlS

<
+~
o
>3
(@]
]
2
o
r—
)
r—
r—
S~
&
S
)
=
-
(@)
0
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

4/10/2025, Lecture 19

Ping Pong 2.0

$ hpxrun.py --localities=2 ./pingpong?2
Received: 42

$

$ hpxrun.py --localities=8 ./pingpong2
Received: 42

$

G|
-
Ol
>3
(@]
S
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
[N
(@)
(A
an
a
=i
~
o,
0]
o
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

Four Function HPX (Point to Point)

int main()

{

using namespace hpx::collectives;

auto comm = get world channel communicator();
auto [num_localities, locality id] = comm.get info();

if (locality id == 0) {
int received = get<int>(hpx::launch::sync, comm, that site arg(l));
std::println("locality id(@): received: {}", received);

<
+~
o
>3
(@]
]
2
o=
r—
)
r—
r—
[ay]
S~
&
S
)
=
-
(@)
s
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

}
else {

set(comm, that site arg(@), 42);
}

The Other Four HPX Functions

int main(int argc, char* argv[]) {
auto comm = hpx::collectives::get world communicator();
long N = 1'000'000'000;

4/10/2025, Lecture 19

- Get our locality 1d and
number of other nodes

\

auto [num_localities, locality] = comm.get_info(); - locality O gets N, shares N

if (locality == 0 && argc > 1) N = std::stol(ar
hpx::collectives::broadcast(
hpx::collectives::get world communicator(), N)

Everyone computes their
own partial

locality O collects all

std::size t blocksize = N / num_localities;
partials, adds them, and

std::size t begin = blocksize * locality_ id,

\

std::size_t begin = end = blocksize * (locality _id + 1); :pIﬁlltS
double h = 1.0 / N, pi = 0.0;
for (long i = begin; i != end; ++1i)

pi 4= h * 4.0 / (1 + sqr(i * h));

\

hpx::collectives: :reduce(ThlS pattern 1S UbquItouS

hpx::collectives::get_world communicator(), pi);

<
+~
E
(@]
]
7
=
r—
)
r—
r—
i
[a W]
S
Q
-
=)
Q0
=
~
-
17
ot
/A
Yol
(o]
=
(A
on
=]
o
g
Q
n
S
[‘
O
N
O

if (locality == @) println("pi: {}", pi);

4/10/2025, Lecture 19

hpx::collectives: :broadcast

template <typename T>

void broadcast(communicator comm, T& value,
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

P | A

Broadcast>

<
+~
E
(@]
]
7
o=
r—
)
r—
r—
i
[a W]
"o
Q
-
=)
Q0
o
~
-
17
o=
/A
Yol
(o]
=
(A
on
=]
o
g
Q
n
S
[‘
O
N
O

>
> | > | > P

4/10/2025, Lecture 19

hpx::collectives: :broadcast

- The value is the ‘send buffer’ for root (locality 0), but is the ‘receive
buffer’ for all others

- After broadcast returns, all will all have a copy of what root had

- Note (true for all collective operations):
« All localities connected to the given communicator must call the function
* Otherwise none of the localities will finish the operation

G|
-
Ol
>3
(@]
S
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
)]
A
el
[N
(@)
(A
an
a
=i
~
o,
0]
o
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

hpx::collectives: :broadcast

template <typename T>

void broadcast(communicator comm, T& value,
this_site_arg this_site = this_site_argQ),
generation_arg generatlon = generation_ arg())

 Here:
- comm: the communicator instance used for this message
- value:
- on locality O [in]: local data value to use for broadcast,
- on all localities: [out]: result
- this_site: the local ‘endpoint’ (defaults to this locality)
- generation: asequenceruunberoftheoperamon(deﬁnﬂtsto1nvomﬂnoncounhn0

- Only this _site == 0 provides the value to broadcast to all participating
localities

- Note: this function is synchronous by default (use broadcast_to /
broadcast_from for asynchronous operation)

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

hpx::collectives: :broadcast

template <typename T>
hpx: :future<T> broadcast_to(communicator comm,
T local_result, this_site_arg this_site, generation_arg generation);

template <typename T>
hpx: :future<T> broadcast_from(communicator fid,
this_site_arg this_site, generation_arg generation);

* Here:
« comm: the communicator instance used for this broadcast operation

- value:
- broadcast_to [in]: local data value to broadcast to all other participating sites,
* broadcast_from: on all localities: function returns received result

- this_site: the local ‘endpoint’ (defaults to this locality)
- generation: a sequence number of the operation (defaults to invocation counter)

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

hpx::collectives: :reduce

template <typename T, typename F>

void reduce(communicator comm, T& result, F&& op,
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

Py |aic A

<ij Reduce

<
+~
E
(@]
]
7
=
r—
)
r—
r—
i
[a W]
S
Q
-
=)
Q0
=
~
-
17
ot
/A
Yol
(o]
=
(A
on
=]
o
g
Q
n
S
[‘
O
N
O

4/10/2025, Lecture 19

hpx::collectives: :reduce

- The value 1s the ‘send buffer’ for all localities, but 1s the ‘send/receive
buffer’ for the root (locality 0)

- After reduce returns, locality O will have the reduction result of the
values supplied by all localities

- Note (true for all collective operations):
« All localities connected to the given communicator must call the function
* Otherwise none of the localities will finish the operation

<
+~
Ol
>3
(@]
e
wn
o=
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

4/10/2025, Lecture 19

hpx::collectives: :reduce

template <typename T, typename F>

void reduce(communicator comm, T& result, F&& op,
this_site_arg this_site = this_site_arg(),
generation_arg generation = generationZarg());

 Here:
- comm: the communicator instance used for this message
* result:
+ [in] local data value to use for reduction
- on locality 0: [in/out]: result
- op: reduction operator (defaults to std: :plus)
- this_site: the local ‘endpoint’ (defaults to this locality)
- generation: a sequence number of the operation (defaults to invocation counter)

« Only this site == 0 receives the reduced value from all participating
localities

- Note: this function is synchronous by default (use reduce_to / reduce from
for asynchronous operation)

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

hpx::collectives: :reduce

template <typename T, typename F>
hpx::future<T> reduce here(communicator fid, T&& result,
F& & op, this site arg this_site, generation_arg generation);

template <typename T>
hpx::future<void> reduce there(communicator fid, T&& result,
this_site arg this_site, generation_arg generation);

* Here:

- comm: the communicator instance used for this message

* result:
- reduce_there, reduce_here: [in] local data value to use for reduction
* reduce_here: also returns reduction result

- op: reduction operator (defaults to std: :plus)

- this_site: the local ‘endpoint’ (defaults to this locality)

- generation: a sequence number of the operation (defaults to invocation
counter)

4/10/2025, Lecture 19

<
+~
Ol
>3
(@]
e
wn
o
r—
3
r—
r—
S~
&
S
D
=
-
(@)
o
o
—
=
wn
A
el
(o]
(@)
(A
an
a
Ol
g
Q
0]
S
S
L‘
Ay
Q
N
(@)

Conclusions

- DropDee (Distibuished Replicated Processes with Distributed Data)
requires data decomposition and communication

« To make data small enough to fit into one node’s memory

4/10/2025, Lecture 19

- DropDee model can be implemented using four functions of HPX
- Use peer-to-peer communication (channel-based set/get)
- Use collective operations (reduce, broadcast, etc.)

- DropDee Processes operate purely local
- Every process talks to its own memory and to its own networking interface
* It 1s as 1f we operated 1in shared memory, but it is purely local

- When we run a “parallel program” we aren’t running a parallel program

* We are running multiple copies of a sequential program (possibly locally
parallelized)

- All copies execute exactly the same code (not in lock step)

<
+~
o
>3
(@]
]
2
o
r—
)
r—
r—
S~
&
S
)
=
-
(@)
0
o
~
=
%)
A
el
(o]
=
(A
an
o
o
g
Q
0]
S
()
L‘
~t
O
N
O

CENTER FOR COMPUTATION
& TECHNOLOGY

CSC4700, Spring 2025, Distributed Parallelism with

N
Op

4/10/2025, Lecture 19

