
Distributed
Parallelism
with HPX (1)
Lecture 19

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4400/

Overview
• SPMD / CSP recap

• A simple mental model

• Basic HPX

• Four Function HPX Point to Point Version

• Four Function HPX Collective Version

• Laplace’s equation on a regular grid

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

2

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

Distributed Memory

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Interconnect

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

3

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

Distributed Memory
• This begs new questions:

 Should all nodes do exactly the same thing?

 Will there be speedup if we do?

• As we add more CPUs, we make the problem bigger

• Can we keep all the data on every node if we keep making the problem
bigger?
 Hint: No

• But. Do we need all the data on every node?
 Hint: No

• What do we keep? What do we not keep?
 Every node has some of data, however, the union of all should be the whole

problem

 “Collectively exhaustive”

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

4

Distributed Memory
• What about the program?

 Does it grow with problem size?

 Hint: No

• We probably need all of it everywhere anyways

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

5

SPMD (‘SpimDee’)

6

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

• Single program

 This is the same on all nodes

• Multiple Data

 This is not the same on all nodes, but collectively exhaustive

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Interconnect

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Communicating Sequential Processes
(CSP)
• Every node runs a sequential process (nowadays locally parallelized)

 All of the code is replicated

• Data is distributed using resource allocation mechanisms

 However, data dependencies are probably not disjoint

 Data has cross-node dependencies

 Data may be needed by another node, but can’t be accessed directly

 Data are partitioned

 The union of the partitions should be the whole problem

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

7

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Interconnect

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Interconnect

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Distributed Memory
• Every process:

 Independent memory space

 Code is replicated

• Data are partitioned

 The union of the partitions should be the whole problem

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

8

Numerical Integration (Sequential)

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

9

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

double h = 1.0 / N;
double pi = 0;
for (int i = 0; i != N; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

Distinguished Replicated Processes

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

10

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

int main(int argc, char* argv[])
{

long N = 1'000'000'000;
std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

double h = 1.0 / N;
double pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

if (locality == 0) println("pi: {}", pi);
}

int main(int argc, char* argv[])
{

long N = 1'000'000'000;
std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

double h = 1.0 / N;
double pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

if (locality == 0) println("pi: {}", pi);
}

int main(int argc, char* argv[])
{

long N = 1'000'000'000;
std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

double h = 1.0 / N;
double pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

if (locality == 0) println("pi: {}", pi);
}

int main(int argc, char* argv[])
{

long N = 1'000'000'000;
std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

double h = 1.0 / N;
double pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

if (locality == 0) println("pi: {}", pi);
}

HPX Collective Operations
• We assume that process with locality_id == 0 receives N from the command line

• This process sends N to all others
 This is an operation that is called broadcast

hpx::collectives::broadcast(
hpx::collectives::get_world_communicator(), N);

• Every process calculates its own begin and end based on its locality_id

• Every process now computes part of the overall solution

• So every process needs to provide its partial result, all of which need to be
consolidated
 This is an operation that is called reduce

hpx::collectives::reduce(
hpx::collectives::get_world_communicator(),
pi, std::plus{});

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

11

‘DropDee’ using HPX
int main(int argc, char* argv[]) {

long N = 1'000'000'000;

std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);

std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

hpx::collectives::broadcast(

hpx::collectives::get_world_communicator(), N)

std::size_t blocksize = N / num_localities;

std::size_t begin = blocksize * locality_id,

std::size_t begin = end = blocksize * (locality_id + 1);

double h = 1.0 / N, pi = 0.0;

for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

hpx::collectives::reduce(

hpx::collectives::get_world_communicator(), pi);

if (locality == 0) println("pi: {}", pi);

}

• Get our locality id and
number of other nodes

• Locality 0 gets N, shares N

• Everyone computes their
own partial result

• Locality 0 collects all
partial results, adds them,
and prints

This pattern is ubiquitous

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

12

Communicating Sequential Processes
• Every process can only read/write its own memory

 One process sends data

 Other processes receive data

• Communicating Sequential Processes operate purely local

 Every process talks to its own memory and to its own networking interface

 It is as if we operated in shared memory, but it is purely local

• When we run a “parallel program” we aren’t running a parallel
program (no ‘distributed parallelism’)

 We are running multiple copies of a sequential program (nowadays
possibly locally parallelized)

 All copies execute exactly the same code (not in lock step)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

13

#include <cstdint>

#include <print>

#include <hpx/hpx.hpp> // make all of HPX available
#include <hpx/hpx_main.hpp> // initialize HPX before main

int main()

{

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);

std::uint32_t locality_id = hpx::get_locality_id();

std::println("Hello world!");

std::println("I am {} of {}", locality_id, num_localities);

return 0;

}

Hello HPX World

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

14

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

Minimal HPX CMake Support

project(spring2025-csc4700-distributed)

set(CMAKE_CXX_STANDARD 23) # possible values: 17, 20, 23

find_package(HPX REQUIRED) # make HPX available

create an executable hello_world from hello_world.cpp and link it to HPX
add_executable(hello_world code/hello_world.cpp)

target_link_libraries(hello_world PRIVATE HPX::hpx HPX::wrap_main)

make sure main() is run on all localities

target_compile_definitions(hello_world PRIVATE HPX_HAVE_RUN_MAIN_EVERYWHERE)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

15
Important!

Running an HPX Application
• Launch four copies of hello_world:

> hpxrun.py --localities=4 ./hello_world

• Output (printed from all processes since this was local on my laptop):

Hello world! I am 0 of 4

Hello world! I am 1 of 4

Hello world! I am 2 of 4

Hello world! I am 3 of 4

• hpxrun.py has more options, use --help for a list

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

16

Sending and Receiving
• First question: What is it we are we sending?

 “N” only has meaning in source code

 We are sending the value of “N”, i.e. a stream of bytes

 The bits in the memory location

 And we need to be able to id other processes

• Second question: Where are we sending the bits?

 How do we say “N@other_process”?

 “N” only has meaning in source code

 And its location only makes sense locally

 But sender and receiver can agree on an alias

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

17

Aside: Serialization
• HPX supports serialization of variables of arbitrary C++ types

 Serialization: convert C++ object into stream of bytes

 Deserialization: convert a stream of bytes back to a C++ object of a known type

 HPX sends the byte-stream generated from the arguments of the collective
operations over the network (return values also)

• All built-in types are directly supported
 int, short, long, double, float, etc.

• All C++ standard containers and utility types are directly supported
 E.g., std::vector<T> as long as T is serializable

 std::variant, std::tuple, std::optional, etc.

• Many of HPX’ own types are directly supported
 E.g., hpx::future<T> (as long as T is serializable)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

18

Aside: Serialization
• Serializing (and de-serializing) custom types

struct point {

double coord_x, coord_y;
std::vector<double> data;

template <typename Archive>
void serialize(Archive& ar, unsigned version)
{

ar & coord_x & coord_y & data;
}

};

• This will enable sending i.e., a std::vector<point> to other localities

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

19

A Simple Mental Model
• All HPX communication takes place in the context of a source locality

and a target (destination) locality

• Each locality is exposed by a sequential process

• HPX exposes two types of communicators

 Channel-based communicators (for peer-to-peer send/receives)

 Communicators for collective operations

• HPX exposes predefined communicators that refer to all localities

 hpx::collectives::get_world_communicator(): communicator for
collective operations across all localities

 hpx::collectives::get_world_channel_communicator(): channel
communicator for peer-to-peer operations between all localities

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

20

A Simple Mental Model
• A channel-based communicator enables the peer-to-peer communication between

all localities that are part of it

• A communicator for collective operations (in general) groups several localities

• Only localities in the communicator can use it

• All processes in the communicator see an identical
list of localities
 Behavior is as if this list was global and shared

• We use the index of a locality in the communicator to
identify other localities
 You can think of the index as the sequence number of participating

endpoints

• The size of a communicator is defined as the number
of endpoints it represents

• Localities/endpoints can query for the size and for their own
index in the communicator

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

21

Communicator

Locality 0 (Process 0)

Locality 1 (Process 1)

Locality 2 (Process 2)

…

Locality P-1 (Process P-1)

A Simple Mental Model
• Query properties of a communicator:

void communicator_properties()
{

auto comm = hpx::collectives::get_world_communicator();
auto [num_localities, this_locality] = comm.get_info();

std::println("The global communicator has: ");
std::println(" Number of connected localities: {}", num_localities);
std::println(" Sequence number of this locality: {}", this_locality);

}

void channel_communicator_properties()
{

auto comm = hpx::collectives::get_world_channel_communicator();
auto [num_localities, this_locality] = comm.get_info();

std::println("The global channel communicator has: ");
std::println(" Number of connected localities: {}", num_localities);
std::println(" Sequence number of this locality: {}", this_locality);

}

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

22

A Simple Mental Model
int main(int argc, char* argv[])
{

auto comm = hpx::collectives::get_world_communicator();
long N = 1'000'000'000;

auto [num_localities, locality] = comm.get_info();
if (locality == 0 && argc > 1) N = std::stol(argv[1]);

hpx::collectives::broadcast(comm, N);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t begin = end = blocksize * (locality_id + 1);
double h = 1.0 / N, pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

hpx::collectives::reduce(comm, pi);
if (locality == 0) std::println("pi: {}", pi);

}

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

23

• High level abstraction of communication operations
 Perfect for asynchronous boundary exchange

 Allows to send/receive arbitrary data types, sender and receiver have to agree on the type,
though

• Modelled after Go-channels
 Simple (uni-directional) pipeline between two endpoints

 Channel can hold one element at any time

• Create on one locality, refer to it from another locality
 Conceptually similar to bidirectional P2P (MPI) communicators

• A channel_communicator is a collection of channels, one for each combination of
endpoints

• Asynchronous in nature
 get() and set() return futures

 But there exist synchronous variations

(A)synchronous Channels

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

24

hpx::collectives::set
template <typename T>
void set(hpx::launch::sync_policy, channel_communicator comm,

that_site_arg site, T&& value, tag_arg tag);

template <typename T>
hpx::future<void> set(channel_communicator comm,

that_site_arg site, T&& value, tag_arg tag);

• Here:
 sync_policy: special predefined type that instructs to execute the set operation synchronously

(wait for operation to finish)
 comm: the channel-communicator instance used for this message

 site: the locality_id of the recipient

 value: the value to send

 tag: the message tag (identifies a particular communication operation, default: tag_arg())

• The sender is implicit (the locality that called this function)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

25

hpx::collectives::get
template <typename T>
T get(hpx::launch::sync_policy, channel_communicator comm,

that_site_arg site, tag_arg tag);

template <typename T>
hpx::future<T> get(channel_communicator comm,

that_site_arg site, tag_arg tag);

• Here:

 sync_policy: special predefined type that instructs to execute the get operation synchronously (wait for
operation to finish)

 comm: the channel-communicator instance used for this message

 site: the locality_id of the sender

 tag: the message tag (identifies a particular communication operation, default: tag_arg())

• Function returns the received data

• The receiver is implicit (the locality that called this function)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

26

set and get
• In order for a data item to be delivered

 Both, the sender must call set and the receiver must call get

 With a matching tag and matching sender and receiver locality_id’s

 (i.e. the receiver must specify the sender, while the sender specifies the receiver)

• The data type passed to set must match the data type explicitly
specified for get<T>

 This is because the message that is being transferred is essentially a bit-
stream

 This bit-stream represents the value of the variable that is being
sent/received

 In order to properly interpret this bit-stream the receiver must ‘know’ what
type of the variable the sender used to generate the bit-stream from

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

27

set and get
• Both functions are asynchronous by default

 set returns a future that becomes ready once the message was accepted by
the channel

 get returns a future that holds the received value that becomes ready once
the data has been received

• If invoked with hpx::launch::sync as the first argument, both
functions will be synchronous

 hpx::launch::sync is a predefined instance of a
hpx::launch::sync_policy

 Return only after the requested operation has finished

• BTW: Using hpx::launch::sync as the first argument to a
asynchronous function is generally possible for many of HPX’ APIs

 Will turn this function into the synchronous equivalent

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

28

Ping Pong

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

29

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

int main(int argc, char* argv[])

{
using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

int sent = 42, received = 0;

set(hpx::launch::sync, comm, that_site_arg(1), sent, tag_arg(123));

received = get<int>(hpx::launch::sync, comm, that_site_arg(0), tag_arg(123));

set(hpx::launch::sync, comm, that_site_arg(0), received, tag_arg(123));

sent = get<int>(hpx::launch::sync, comm, that_site_arg(1), tag_arg(123));

std::println("Received: {}", sent);

}

Ping Pong

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

30

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

• What happened?

$ hpxrun.py --localities=2 ./pingpong
Received: 42
... ^C ... Process terminated

Ping Pong
int main(int argc, char* argv[])

{
using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

int sent = 42, received = 0;

set(hpx::launch::sync,

comm, that_site_arg(1), sent, tag_arg(123));

received = get<int>(hpx::launch::sync,

comm, that_site_arg(0), tag_arg(123));

set(hpx::launch::sync,

comm, that_site_arg(0), received, tag_arg(123));

sent = get<int>(hpx::launch::sync,

comm, that_site_arg(1), tag_arg(123));

std::println("Received: {}", sent);

}

• All processes run this same
program

• Both processes send this

• And try to receive

• Process with locality_id == 0
will never receive anything

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

31

Ping Pong 2.0
int main(int argc, char* argv[]) {

std::uint32_t locality_id = hpx::get_locality_id();

using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

int sent = 42, received = 0;

if (locality_id == 0) {

set(hpx::launch::sync, comm, that_site_arg(1), sent, tag_arg(123));

received = get<int>(hpx::launch::sync, comm, that_site_arg(1), tag_arg(123));

std::println("Received: {}", received);

}

if (locality_id == 1) {

received = get<int>(hpx::launch::sync, comm, that_site_arg(0), tag_arg(123));

set(hpx::launch::sync, comm, that_site_arg(0), received, tag_arg(123));

}

}

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

32

Ping Pong 2.0
int main(int argc, char* argv[]) {

std::uint32_t locality_id = hpx::get_locality_id();

using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

int sent = 42, received = 0;

if (locality_id == 0) {

set(hpx::launch::sync,

comm, that_site_arg(1), sent, tag_arg(123));

received = get<int>(hpx::launch::sync,

comm, that_site_arg(1), tag_arg(123));

std::println("Received: {}", received);

}

if (locality_id == 1) {

received = get<int>(hpx::launch::sync,

comm, that_site_arg(0), tag_arg(123));

set(hpx::launch::sync,

comm, that_site_arg(0), received, tag_arg(123));

}

}

• Only process 0 sends this

• Only process 0 receives this

• Only process 1 receives this

• Only process 1 sends this

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

33

Ping Pong 2.0

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

34

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

$ hpxrun.py --localities=2 ./pingpong2
Received: 42
$

$ hpxrun.py --localities=8 ./pingpong2
Received: 42
$

Four Function HPX (Point to Point)
int main()

{

using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

auto [num_localities, locality_id] = comm.get_info();

if (locality_id == 0) {

int received = get<int>(hpx::launch::sync, comm, that_site_arg(1));

std::println("locality_id(0): received: {}", received);

}

else {

set(comm, that_site_arg(0), 42);

}

}

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

35

The Other Four HPX Functions
int main(int argc, char* argv[]) {

auto comm = hpx::collectives::get_world_communicator();

long N = 1'000'000'000;

auto [num_localities, locality] = comm.get_info();

if (locality == 0 && argc > 1) N = std::stol(argv[1]);

hpx::collectives::broadcast(

hpx::collectives::get_world_communicator(), N)

std::size_t blocksize = N / num_localities;

std::size_t begin = blocksize * locality_id,

std::size_t begin = end = blocksize * (locality_id + 1);

double h = 1.0 / N, pi = 0.0;

for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

hpx::collectives::reduce(

hpx::collectives::get_world_communicator(), pi);

if (locality == 0) println("pi: {}", pi);

}

• Get our locality id and
number of other nodes

• locality 0 gets N, shares N

• Everyone computes their
own partial

• locality 0 collects all
partials, adds them, and
prints

This pattern is ubiquitous

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

36

hpx::collectives::broadcast

37

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

template <typename T>

void broadcast(communicator comm, T& value,
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

hpx::collectives::broadcast
• The value is the ‘send buffer’ for root (locality 0), but is the ‘receive

buffer’ for all others

• After broadcast returns, all will all have a copy of what root had

• Note (true for all collective operations):

 All localities connected to the given communicator must call the function

 Otherwise none of the localities will finish the operation

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

38

hpx::collectives::broadcast

template <typename T>
void broadcast(communicator comm, T& value,

this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

• Here:
 comm: the communicator instance used for this message
 value:

 on locality 0 [in]: local data value to use for broadcast,
 on all localities: [out]: result

 this_site: the local ‘endpoint’ (defaults to this locality)
 generation: a sequence number of the operation (defaults to invocation counter)

• Only this_site == 0 provides the value to broadcast to all participating
localities

• Note: this function is synchronous by default (use broadcast_to /
broadcast_from for asynchronous operation)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

39

hpx::collectives::broadcast

template <typename T>
hpx::future<T> broadcast_to(communicator comm,

T local_result, this_site_arg this_site, generation_arg generation);

template <typename T>
hpx::future<T> broadcast_from(communicator fid,

this_site_arg this_site, generation_arg generation);

• Here:
 comm: the communicator instance used for this broadcast operation

 value:
 broadcast_to [in]: local data value to broadcast to all other participating sites,

 broadcast_from: on all localities: function returns received result

 this_site: the local ‘endpoint’ (defaults to this locality)

 generation: a sequence number of the operation (defaults to invocation counter)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

40

hpx::collectives::reduce

41

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

template <typename T, typename F>

void reduce(communicator comm, T& result, F&& op,
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

hpx::collectives::reduce
• The value is the ‘send buffer’ for all localities, but is the ‘send/receive

buffer’ for the root (locality 0)

• After reduce returns, locality 0 will have the reduction result of the
values supplied by all localities

• Note (true for all collective operations):

 All localities connected to the given communicator must call the function

 Otherwise none of the localities will finish the operation

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

42

hpx::collectives::reduce

template <typename T, typename F>
void reduce(communicator comm, T& result, F&& op,

this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

• Here:
 comm: the communicator instance used for this message
 result:

 [in] local data value to use for reduction
 on locality 0: [in/out]: result

 op: reduction operator (defaults to std::plus)
 this_site: the local ‘endpoint’ (defaults to this locality)
 generation: a sequence number of the operation (defaults to invocation counter)

• Only this_site == 0 receives the reduced value from all participating
localities

• Note: this function is synchronous by default (use reduce_to / reduce_from
for asynchronous operation)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

43

hpx::collectives::reduce

template <typename T, typename F>
hpx::future<T> reduce_here(communicator fid, T&& result,

F&& op, this_site_arg this_site, generation_arg generation);

template <typename T>
hpx::future<void> reduce_there(communicator fid, T&& result,

this_site_arg this_site, generation_arg generation);

• Here:
 comm: the communicator instance used for this message
 result:

 reduce_there, reduce_here: [in] local data value to use for reduction
 reduce_here: also returns reduction result

 op: reduction operator (defaults to std::plus)
 this_site: the local ‘endpoint’ (defaults to this locality)
 generation: a sequence number of the operation (defaults to invocation

counter)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

44

Conclusions
• DropDee (Distibuished Replicated Processes with Distributed Data)

requires data decomposition and communication
 To make data small enough to fit into one node’s memory

• DropDee model can be implemented using four functions of HPX
 Use peer-to-peer communication (channel-based set/get)

 Use collective operations (reduce, broadcast, etc.)

• DropDee Processes operate purely local
 Every process talks to its own memory and to its own networking interface

 It is as if we operated in shared memory, but it is purely local

• When we run a “parallel program” we aren’t running a parallel program
 We are running multiple copies of a sequential program (possibly locally

parallelized)

 All copies execute exactly the same code (not in lock step)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

45

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

46

