
Distributed
Parallelism
with HPX (1)
Lecture 19

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4400/

Overview
• SPMD / CSP recap

• A simple mental model

• Basic HPX

• Four Function HPX Point to Point Version

• Four Function HPX Collective Version

• Laplace’s equation on a regular grid

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

2

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

Distributed Memory

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Interconnect

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

3

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

Distributed Memory
• This begs new questions:

 Should all nodes do exactly the same thing?

 Will there be speedup if we do?

• As we add more CPUs, we make the problem bigger

• Can we keep all the data on every node if we keep making the problem
bigger?
 Hint: No

• But. Do we need all the data on every node?
 Hint: No

• What do we keep? What do we not keep?
 Every node has some of data, however, the union of all should be the whole

problem

 “Collectively exhaustive”

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

4

Distributed Memory
• What about the program?

 Does it grow with problem size?

 Hint: No

• We probably need all of it everywhere anyways

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

5

SPMD (‘SpimDee’)

6

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

• Single program

 This is the same on all nodes

• Multiple Data

 This is not the same on all nodes, but collectively exhaustive

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Interconnect

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Communicating Sequential Processes
(CSP)
• Every node runs a sequential process (nowadays locally parallelized)

 All of the code is replicated

• Data is distributed using resource allocation mechanisms

 However, data dependencies are probably not disjoint

 Data has cross-node dependencies

 Data may be needed by another node, but can’t be accessed directly

 Data are partitioned

 The union of the partitions should be the whole problem

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

7

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Interconnect

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Interconnect

Instructions

Data

F

D

R

E

W

r0

r1

r2

r3

r4

r5

r6

r7

L1

(D)

L1

(I)

L2

r0

r1

r2

r3

r4

r5

r6

r7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

Data

Instructions

Data

Instructions

Distributed Memory
• Every process:

 Independent memory space

 Code is replicated

• Data are partitioned

 The union of the partitions should be the whole problem

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

8

Numerical Integration (Sequential)

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

9

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

double h = 1.0 / N;
double pi = 0;
for (int i = 0; i != N; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

Distinguished Replicated Processes

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

10

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Instructions

Data

F

D

R

E

W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W
L1

(D)

L1

(I)

L2

L3

L1

(D)

L1

(I)

L2

L1

(D)

L1

(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F

D

R

E

W

F

D

R

E

W

Bus
I/O

Devices

int main(int argc, char* argv[])
{

long N = 1'000'000'000;
std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

double h = 1.0 / N;
double pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

if (locality == 0) println("pi: {}", pi);
}

int main(int argc, char* argv[])
{

long N = 1'000'000'000;
std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

double h = 1.0 / N;
double pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

if (locality == 0) println("pi: {}", pi);
}

int main(int argc, char* argv[])
{

long N = 1'000'000'000;
std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

double h = 1.0 / N;
double pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

if (locality == 0) println("pi: {}", pi);
}

int main(int argc, char* argv[])
{

long N = 1'000'000'000;
std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);
std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t end = blocksize * (locality_id + 1);

double h = 1.0 / N;
double pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

if (locality == 0) println("pi: {}", pi);
}

HPX Collective Operations
• We assume that process with locality_id == 0 receives N from the command line

• This process sends N to all others
 This is an operation that is called broadcast

hpx::collectives::broadcast(
hpx::collectives::get_world_communicator(), N);

• Every process calculates its own begin and end based on its locality_id

• Every process now computes part of the overall solution

• So every process needs to provide its partial result, all of which need to be
consolidated
 This is an operation that is called reduce

hpx::collectives::reduce(
hpx::collectives::get_world_communicator(),
pi, std::plus{});

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

11

‘DropDee’ using HPX
int main(int argc, char* argv[]) {

long N = 1'000'000'000;

std::uint32_t num_localities =

hpx::get_num_localities(hpx::launch::sync);

std::uint32_t locality = hpx::get_locality_id();

if (locality == 0 && argc > 1) N = stol(argv[1]);

hpx::collectives::broadcast(

hpx::collectives::get_world_communicator(), N)

std::size_t blocksize = N / num_localities;

std::size_t begin = blocksize * locality_id,

std::size_t begin = end = blocksize * (locality_id + 1);

double h = 1.0 / N, pi = 0.0;

for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

hpx::collectives::reduce(

hpx::collectives::get_world_communicator(), pi);

if (locality == 0) println("pi: {}", pi);

}

• Get our locality id and
number of other nodes

• Locality 0 gets N, shares N

• Everyone computes their
own partial result

• Locality 0 collects all
partial results, adds them,
and prints

This pattern is ubiquitous

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

12

Communicating Sequential Processes
• Every process can only read/write its own memory

 One process sends data

 Other processes receive data

• Communicating Sequential Processes operate purely local

 Every process talks to its own memory and to its own networking interface

 It is as if we operated in shared memory, but it is purely local

• When we run a “parallel program” we aren’t running a parallel
program (no ‘distributed parallelism’)

 We are running multiple copies of a sequential program (nowadays
possibly locally parallelized)

 All copies execute exactly the same code (not in lock step)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

13

#include <cstdint>

#include <print>

#include <hpx/hpx.hpp> // make all of HPX available
#include <hpx/hpx_main.hpp> // initialize HPX before main

int main()

{

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);

std::uint32_t locality_id = hpx::get_locality_id();

std::println("Hello world!");

std::println("I am {} of {}", locality_id, num_localities);

return 0;

}

Hello HPX World

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

14

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

Minimal HPX CMake Support

project(spring2025-csc4700-distributed)

set(CMAKE_CXX_STANDARD 23) # possible values: 17, 20, 23

find_package(HPX REQUIRED) # make HPX available

create an executable hello_world from hello_world.cpp and link it to HPX
add_executable(hello_world code/hello_world.cpp)

target_link_libraries(hello_world PRIVATE HPX::hpx HPX::wrap_main)

make sure main() is run on all localities

target_compile_definitions(hello_world PRIVATE HPX_HAVE_RUN_MAIN_EVERYWHERE)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

15
Important!

Running an HPX Application
• Launch four copies of hello_world:

> hpxrun.py --localities=4 ./hello_world

• Output (printed from all processes since this was local on my laptop):

Hello world! I am 0 of 4

Hello world! I am 1 of 4

Hello world! I am 2 of 4

Hello world! I am 3 of 4

• hpxrun.py has more options, use --help for a list

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

16

Sending and Receiving
• First question: What is it we are we sending?

 “N” only has meaning in source code

 We are sending the value of “N”, i.e. a stream of bytes

 The bits in the memory location

 And we need to be able to id other processes

• Second question: Where are we sending the bits?

 How do we say “N@other_process”?

 “N” only has meaning in source code

 And its location only makes sense locally

 But sender and receiver can agree on an alias

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

17

Aside: Serialization
• HPX supports serialization of variables of arbitrary C++ types

 Serialization: convert C++ object into stream of bytes

 Deserialization: convert a stream of bytes back to a C++ object of a known type

 HPX sends the byte-stream generated from the arguments of the collective
operations over the network (return values also)

• All built-in types are directly supported
 int, short, long, double, float, etc.

• All C++ standard containers and utility types are directly supported
 E.g., std::vector<T> as long as T is serializable

 std::variant, std::tuple, std::optional, etc.

• Many of HPX’ own types are directly supported
 E.g., hpx::future<T> (as long as T is serializable)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

18

Aside: Serialization
• Serializing (and de-serializing) custom types

struct point {

double coord_x, coord_y;
std::vector<double> data;

template <typename Archive>
void serialize(Archive& ar, unsigned version)
{

ar & coord_x & coord_y & data;
}

};

• This will enable sending i.e., a std::vector<point> to other localities

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

19

A Simple Mental Model
• All HPX communication takes place in the context of a source locality

and a target (destination) locality

• Each locality is exposed by a sequential process

• HPX exposes two types of communicators

 Channel-based communicators (for peer-to-peer send/receives)

 Communicators for collective operations

• HPX exposes predefined communicators that refer to all localities

 hpx::collectives::get_world_communicator(): communicator for
collective operations across all localities

 hpx::collectives::get_world_channel_communicator(): channel
communicator for peer-to-peer operations between all localities

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

20

A Simple Mental Model
• A channel-based communicator enables the peer-to-peer communication between

all localities that are part of it

• A communicator for collective operations (in general) groups several localities

• Only localities in the communicator can use it

• All processes in the communicator see an identical
list of localities
 Behavior is as if this list was global and shared

• We use the index of a locality in the communicator to
identify other localities
 You can think of the index as the sequence number of participating

endpoints

• The size of a communicator is defined as the number
of endpoints it represents

• Localities/endpoints can query for the size and for their own
index in the communicator

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

21

Communicator

Locality 0 (Process 0)

Locality 1 (Process 1)

Locality 2 (Process 2)

…

Locality P-1 (Process P-1)

A Simple Mental Model
• Query properties of a communicator:

void communicator_properties()
{

auto comm = hpx::collectives::get_world_communicator();
auto [num_localities, this_locality] = comm.get_info();

std::println("The global communicator has: ");
std::println(" Number of connected localities: {}", num_localities);
std::println(" Sequence number of this locality: {}", this_locality);

}

void channel_communicator_properties()
{

auto comm = hpx::collectives::get_world_channel_communicator();
auto [num_localities, this_locality] = comm.get_info();

std::println("The global channel communicator has: ");
std::println(" Number of connected localities: {}", num_localities);
std::println(" Sequence number of this locality: {}", this_locality);

}

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

22

A Simple Mental Model
int main(int argc, char* argv[])
{

auto comm = hpx::collectives::get_world_communicator();
long N = 1'000'000'000;

auto [num_localities, locality] = comm.get_info();
if (locality == 0 && argc > 1) N = std::stol(argv[1]);

hpx::collectives::broadcast(comm, N);

std::size_t blocksize = N / num_localities;
std::size_t begin = blocksize * locality_id;
std::size_t begin = end = blocksize * (locality_id + 1);
double h = 1.0 / N, pi = 0.0;
for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

hpx::collectives::reduce(comm, pi);
if (locality == 0) std::println("pi: {}", pi);

}

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

23

• High level abstraction of communication operations
 Perfect for asynchronous boundary exchange

 Allows to send/receive arbitrary data types, sender and receiver have to agree on the type,
though

• Modelled after Go-channels
 Simple (uni-directional) pipeline between two endpoints

 Channel can hold one element at any time

• Create on one locality, refer to it from another locality
 Conceptually similar to bidirectional P2P (MPI) communicators

• A channel_communicator is a collection of channels, one for each combination of
endpoints

• Asynchronous in nature
 get() and set() return futures

 But there exist synchronous variations

(A)synchronous Channels

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

24

hpx::collectives::set
template <typename T>
void set(hpx::launch::sync_policy, channel_communicator comm,

that_site_arg site, T&& value, tag_arg tag);

template <typename T>
hpx::future<void> set(channel_communicator comm,

that_site_arg site, T&& value, tag_arg tag);

• Here:
 sync_policy: special predefined type that instructs to execute the set operation synchronously

(wait for operation to finish)
 comm: the channel-communicator instance used for this message

 site: the locality_id of the recipient

 value: the value to send

 tag: the message tag (identifies a particular communication operation, default: tag_arg())

• The sender is implicit (the locality that called this function)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

25

hpx::collectives::get
template <typename T>
T get(hpx::launch::sync_policy, channel_communicator comm,

that_site_arg site, tag_arg tag);

template <typename T>
hpx::future<T> get(channel_communicator comm,

that_site_arg site, tag_arg tag);

• Here:

 sync_policy: special predefined type that instructs to execute the get operation synchronously (wait for
operation to finish)

 comm: the channel-communicator instance used for this message

 site: the locality_id of the sender

 tag: the message tag (identifies a particular communication operation, default: tag_arg())

• Function returns the received data

• The receiver is implicit (the locality that called this function)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

26

set and get
• In order for a data item to be delivered

 Both, the sender must call set and the receiver must call get

 With a matching tag and matching sender and receiver locality_id’s

 (i.e. the receiver must specify the sender, while the sender specifies the receiver)

• The data type passed to set must match the data type explicitly
specified for get<T>

 This is because the message that is being transferred is essentially a bit-
stream

 This bit-stream represents the value of the variable that is being
sent/received

 In order to properly interpret this bit-stream the receiver must ‘know’ what
type of the variable the sender used to generate the bit-stream from

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

27

set and get
• Both functions are asynchronous by default

 set returns a future that becomes ready once the message was accepted by
the channel

 get returns a future that holds the received value that becomes ready once
the data has been received

• If invoked with hpx::launch::sync as the first argument, both
functions will be synchronous

 hpx::launch::sync is a predefined instance of a
hpx::launch::sync_policy

 Return only after the requested operation has finished

• BTW: Using hpx::launch::sync as the first argument to a
asynchronous function is generally possible for many of HPX’ APIs

 Will turn this function into the synchronous equivalent

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

28

Ping Pong

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

29

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

int main(int argc, char* argv[])

{
using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

int sent = 42, received = 0;

set(hpx::launch::sync, comm, that_site_arg(1), sent, tag_arg(123));

received = get<int>(hpx::launch::sync, comm, that_site_arg(0), tag_arg(123));

set(hpx::launch::sync, comm, that_site_arg(0), received, tag_arg(123));

sent = get<int>(hpx::launch::sync, comm, that_site_arg(1), tag_arg(123));

std::println("Received: {}", sent);

}

Ping Pong

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

30

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

• What happened?

$ hpxrun.py --localities=2 ./pingpong
Received: 42
... ^C ... Process terminated

Ping Pong
int main(int argc, char* argv[])

{
using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

int sent = 42, received = 0;

set(hpx::launch::sync,

comm, that_site_arg(1), sent, tag_arg(123));

received = get<int>(hpx::launch::sync,

comm, that_site_arg(0), tag_arg(123));

set(hpx::launch::sync,

comm, that_site_arg(0), received, tag_arg(123));

sent = get<int>(hpx::launch::sync,

comm, that_site_arg(1), tag_arg(123));

std::println("Received: {}", sent);

}

• All processes run this same
program

• Both processes send this

• And try to receive

• Process with locality_id == 0
will never receive anything

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

31

Ping Pong 2.0
int main(int argc, char* argv[]) {

std::uint32_t locality_id = hpx::get_locality_id();

using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

int sent = 42, received = 0;

if (locality_id == 0) {

set(hpx::launch::sync, comm, that_site_arg(1), sent, tag_arg(123));

received = get<int>(hpx::launch::sync, comm, that_site_arg(1), tag_arg(123));

std::println("Received: {}", received);

}

if (locality_id == 1) {

received = get<int>(hpx::launch::sync, comm, that_site_arg(0), tag_arg(123));

set(hpx::launch::sync, comm, that_site_arg(0), received, tag_arg(123));

}

}

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

32

Ping Pong 2.0
int main(int argc, char* argv[]) {

std::uint32_t locality_id = hpx::get_locality_id();

using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

int sent = 42, received = 0;

if (locality_id == 0) {

set(hpx::launch::sync,

comm, that_site_arg(1), sent, tag_arg(123));

received = get<int>(hpx::launch::sync,

comm, that_site_arg(1), tag_arg(123));

std::println("Received: {}", received);

}

if (locality_id == 1) {

received = get<int>(hpx::launch::sync,

comm, that_site_arg(0), tag_arg(123));

set(hpx::launch::sync,

comm, that_site_arg(0), received, tag_arg(123));

}

}

• Only process 0 sends this

• Only process 0 receives this

• Only process 1 receives this

• Only process 1 sends this

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

33

Ping Pong 2.0

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

34

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

$ hpxrun.py --localities=2 ./pingpong2
Received: 42
$

$ hpxrun.py --localities=8 ./pingpong2
Received: 42
$

Four Function HPX (Point to Point)
int main()

{

using namespace hpx::collectives;

auto comm = get_world_channel_communicator();

auto [num_localities, locality_id] = comm.get_info();

if (locality_id == 0) {

int received = get<int>(hpx::launch::sync, comm, that_site_arg(1));

std::println("locality_id(0): received: {}", received);

}

else {

set(comm, that_site_arg(0), 42);

}

}

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

35

The Other Four HPX Functions
int main(int argc, char* argv[]) {

auto comm = hpx::collectives::get_world_communicator();

long N = 1'000'000'000;

auto [num_localities, locality] = comm.get_info();

if (locality == 0 && argc > 1) N = std::stol(argv[1]);

hpx::collectives::broadcast(

hpx::collectives::get_world_communicator(), N)

std::size_t blocksize = N / num_localities;

std::size_t begin = blocksize * locality_id,

std::size_t begin = end = blocksize * (locality_id + 1);

double h = 1.0 / N, pi = 0.0;

for (long i = begin; i != end; ++i)

pi += h * 4.0 / (1 + sqr(i * h));

hpx::collectives::reduce(

hpx::collectives::get_world_communicator(), pi);

if (locality == 0) println("pi: {}", pi);

}

• Get our locality id and
number of other nodes

• locality 0 gets N, shares N

• Everyone computes their
own partial

• locality 0 collects all
partials, adds them, and
prints

This pattern is ubiquitous

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

36

hpx::collectives::broadcast

37

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

template <typename T>

void broadcast(communicator comm, T& value,
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

hpx::collectives::broadcast
• The value is the ‘send buffer’ for root (locality 0), but is the ‘receive

buffer’ for all others

• After broadcast returns, all will all have a copy of what root had

• Note (true for all collective operations):

 All localities connected to the given communicator must call the function

 Otherwise none of the localities will finish the operation

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

38

hpx::collectives::broadcast

template <typename T>
void broadcast(communicator comm, T& value,

this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

• Here:
 comm: the communicator instance used for this message
 value:

 on locality 0 [in]: local data value to use for broadcast,
 on all localities: [out]: result

 this_site: the local ‘endpoint’ (defaults to this locality)
 generation: a sequence number of the operation (defaults to invocation counter)

• Only this_site == 0 provides the value to broadcast to all participating
localities

• Note: this function is synchronous by default (use broadcast_to /
broadcast_from for asynchronous operation)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

39

hpx::collectives::broadcast

template <typename T>
hpx::future<T> broadcast_to(communicator comm,

T local_result, this_site_arg this_site, generation_arg generation);

template <typename T>
hpx::future<T> broadcast_from(communicator fid,

this_site_arg this_site, generation_arg generation);

• Here:
 comm: the communicator instance used for this broadcast operation

 value:
 broadcast_to [in]: local data value to broadcast to all other participating sites,

 broadcast_from: on all localities: function returns received result

 this_site: the local ‘endpoint’ (defaults to this locality)

 generation: a sequence number of the operation (defaults to invocation counter)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

40

hpx::collectives::reduce

41

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

template <typename T, typename F>

void reduce(communicator comm, T& result, F&& op,
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

hpx::collectives::reduce
• The value is the ‘send buffer’ for all localities, but is the ‘send/receive

buffer’ for the root (locality 0)

• After reduce returns, locality 0 will have the reduction result of the
values supplied by all localities

• Note (true for all collective operations):

 All localities connected to the given communicator must call the function

 Otherwise none of the localities will finish the operation

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

42

hpx::collectives::reduce

template <typename T, typename F>
void reduce(communicator comm, T& result, F&& op,

this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg());

• Here:
 comm: the communicator instance used for this message
 result:

 [in] local data value to use for reduction
 on locality 0: [in/out]: result

 op: reduction operator (defaults to std::plus)
 this_site: the local ‘endpoint’ (defaults to this locality)
 generation: a sequence number of the operation (defaults to invocation counter)

• Only this_site == 0 receives the reduced value from all participating
localities

• Note: this function is synchronous by default (use reduce_to / reduce_from
for asynchronous operation)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

43

hpx::collectives::reduce

template <typename T, typename F>
hpx::future<T> reduce_here(communicator fid, T&& result,

F&& op, this_site_arg this_site, generation_arg generation);

template <typename T>
hpx::future<void> reduce_there(communicator fid, T&& result,

this_site_arg this_site, generation_arg generation);

• Here:
 comm: the communicator instance used for this message
 result:

 reduce_there, reduce_here: [in] local data value to use for reduction
 reduce_here: also returns reduction result

 op: reduction operator (defaults to std::plus)
 this_site: the local ‘endpoint’ (defaults to this locality)
 generation: a sequence number of the operation (defaults to invocation

counter)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

44

Conclusions
• DropDee (Distibuished Replicated Processes with Distributed Data)

requires data decomposition and communication
 To make data small enough to fit into one node’s memory

• DropDee model can be implemented using four functions of HPX
 Use peer-to-peer communication (channel-based set/get)

 Use collective operations (reduce, broadcast, etc.)

• DropDee Processes operate purely local
 Every process talks to its own memory and to its own networking interface

 It is as if we operated in shared memory, but it is purely local

• When we run a “parallel program” we aren’t running a parallel program
 We are running multiple copies of a sequential program (possibly locally

parallelized)

 All copies execute exactly the same code (not in lock step)

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

45

4
/1

0
/2

0
2

5
,
L

e
ct

u
re

 1
9

C
S

C
4
7
0
0
,
S

p
ri

n
g
 2

0
2
5
,
D

is
tr

ib
u

te
d

 P
a
ra

ll
e
li

sm
 w

it
h

H
P

X
 (

1
)

46

