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What is a Type?
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Abstract
• What are types? What are objects?

• A pattern for regular types: singleton
 Semi-regular singleton

 Regular singleton

 Totally ordered singleton

• Another useful regular type: instrumented

1
/2

8
/2

0
2

4
, 
L

e
ct

u
re

 2
C

S
C

4
7

0
0

, 
S

p
ri

n
g
 2

0
2

5
, 
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

3



What is a ‘type’?
• A ‘type’ (of an object) defines the following things:

 The amount of memory required to store all the data that is needed to 
support the operations valid for a type

 The rules of how to interpret the bits in that memory as values in order to 
be able to make sense of the bit-salad

 The set of values that are valid

 The set of operations that are valid on those values

• Examples of types:

 int, double, float (built-in types)

 token, token_stream, std::vector, etc. (user-defined types)
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What is an ’object’?
• An object is an instance of a type

 Occupies memory

 Has an optional name (is a variable)

 Has a lifetime

• Objects in C++ don’t change their type

 C++ is a type-safe language

 C++ checks types and type compatibility at compile time

• Examples of objects:

 int i = 0;

 token t('+');

 std::vector<int> v = {1, 2, 3, 4, 5};
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Type Regularity
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Regular Types
• Let’s informally define what it means for a type to be ‘Regular ’

 It behaves like an int (or any other built-in type)

• Regularity defines a set of properties a type should have

• Understanding regularity is important as it will allow us to understand 
what algorithms are allowed to do
 Use only operations allowed for regular types

• Regular types are those that can be stored in standard containers (like 
std::vector<T>)
 What properties must T have to be regular?

 IOW, what properties must T have in order for it to be stored in a 
std::vector<T>

• We should be able to rely on std::vector<T> being regular if T is regular

• We will use concepts to describe those properties
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Semiregular Types: Copy constructor
• Semiregular is a bit weaker than Regular

• We should be able to write:
 Copy constructor (initializes a)

 T a(b);

 T a = b;

 Both are equivalent, even the same, if b is of type T

• What are the semantics of this operation?
 After this operation a should be equivalent to b

• What is equivalence?
 A relation R(a, b) = true is equivalence, if it satisfies

 symmetric: R(a, b) <=> R(b, a)

 reflexive: R(a, a)

 transitive: R(a, b) and R(b, c) => R(a, c)
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Semiregular Types
• We actually want something significantly stronger. We want equality

• A copy is something which is equal to the original, but not identical to it

 After a is copy-constructed from b then a == b, whatever the meaning of 
equality

 After a is copy-constructed from b they have distinct identity markers. 

 In C++ the identity marker is usually the object’s address: &a != &b (location in 
memory)

• All copy constructors must behave this way. 

 If somebody clever comes and says, “oh we’re going to have semantics where 
we’re going to have this shared thing”. 

 Will it work? No. Copy has to construct a different thing.
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Semiregular Types: Assignment
• Assignment operator:

 T a; a = b;

• Construction (initialization) and assignment must be equivalent (lead to 
the same results): 
 T a1(b) <=> T a2; a2 = b;   a1 == a2

• Initialization creates an initial state for a new object

• Assignment first cleans up old state of an existing object and then 
initializes its new state

• In order for these operations to have correct semantics, the types 
involved have to have equality defined (operator==())
 How would you know otherwise if two instances are equal?
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Semiregular Types: Destructor
• Even if you don’t call destructors directly (the compiler does, though):

 ~T();

• Ends the lifetime of an object
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C++ Class Anatomy 1
/2

8
/2

0
2

4
, 
L

e
ct

u
re

 2
C

S
C

4
7

0
0

, 
S

p
ri

n
g
 2

0
2

5
, 
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

12



Regular Types
• The concept Regular extends Semiregular with equality operators 

which are == and !=

• We should define == so that after constructing a copy, the original 
and the copy are equal

• != should always behave like: !(a == b)

• Fundamentally equal is a symmetric function. It compares two 
things

 We will implement it as a friend function, not as a member function
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Total orderings
• The concept TotallyOrdered extends Regular by adding a 

comparison operator <

• operator < must obey the following mathematical properties:
 Axiom 1: Anti-reflexive: !(a < a)

 Axiom 2: Transitive: If a < b and b < c then a < c

 Axiom 3: Anti-symmetric: If a < b then !(b < a)

 Axiom 4: If a != b then a < b or b > a

• The semantics of < must be totally bound to the semantics of 
equality and related operations
 The following should always be true, otherwise the world perishes.

 a >= b --> !(a < b)

 a > b --> b < a

 a <= b --> !(b < a)
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Spaceship operator <=>
• C++20 introduced a simplified way of writing relational operators for 

user defined types

• Instead of implementing all relation operators (<, <=, >, >=, ==, !=), 
you can implement a three-way comparison operator <=>
 Returns < 0, if a < b

 Returns == 0, if a == b

 Returns > 0, if a > b

• The other relational operators are automatically synthesized by the 
compiler

• Simplest way is to define a member function for X:
 friend auto operator(X const&, X const&) = default;

 Will apply spaceship operator member-wise
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Singleton
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A Pattern for Regular Types
• We’ll develop the simplest possible Regular (even TotallyOrdered) 

type: singleton

• The dictionary says: singleton, pair, triple, quadruple, etc. 

 A pair has two things, well a singleton has just one thing

• Can be used as a pattern (or “template”) for any types you will want 
to create

 It is the most simple class possible

 It will have no (functionality oriented) code whatsoever

 It is the most complete class possible

 It will have all the language details about type creation that you need to know

 It is a ‘pure’ regular type
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Template Type Functions
• Singleton:

template <typename T>

struct singleton

{

T value;

};

• template <typename T>
 Why template?

 We want to write something which takes one type and returns another type, i.e. a ‘type function’

 In C++ the template mechanism is just that

• Simplest type function example
 int*: i.e. get an int and return an int*

 Transform one type into another type

• Singleton is a type function that takes a T and gives us a singleton<T>
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Create new Types with Classes and 
Structs 1
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• Classes are used to encapsulate data
 along with methods to process them

• Every class or struct defines a new type

• Terminology:

 Type or class to talk about the defined type

• A variable of such type is an instance of class (or an object)

• Classes allow C++ to be used as an Object Oriented Programming 

language 

 std::string, std::vector, etc. are all classes (predefined in the C++ 

standard library)



Compiler Generated Functions
• In C++, each user defined type has 6 special functions

 Those are being generated by the compiler, if not explicitly provided

 These functions are always available

• Here are the 6 functions
 Default constructor

 Destructor

 Copy constructor

 Copy assignment

 Move constructor

 Move assignment

• The special functions are being automatically used in certain situations

• The compiler generated functions simply apply its operation to all members of 
the type

• Unfortunately the spaceship operator is not automatically generated, you have to 
be explicit
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Compiler Generated Functions
• Constructors are automatically used whenever a new instance of a user 

defined type is created (start lifetime of object)
 Default constructor is used when no additional arguments are supplied:

singleton<int> s;

• Destructor is automatically called whenever an instance of a user 
defined type goes out of scope (ends the lifetime of an object)

• Copy constructor is used whenever a new instance of a user defined type 
is created and initialized from another instance of that type:

singleton<int> s1 = s;

• Copy assignment is used whenever an existing instance of a user defined 
type is assigned to another instance of that type:

singleton<int> s2; s2 = s1;
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Compiler Generated Functions
• Any compiler generated special function by default invokes the 

corresponding special functions for all member data of the user 
defined type

 Default constructor invokes default constructor of all members (in order of 
their definition)

 Destructor invokes destructors of all members (in reverse order)

 Etc.
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Semi-regular singleton
• Let’s implement support to make singleton Semiregular

struct singleton {

// Semiregular:

singleton() {} // default constructor: could be implicitly declared sometimes

~singleton() {} // destructor: could be implicitly declared

singleton(singleton const& x) // copy constructor: could be implicitly declared

: value(x.value)

{

}

singleton& operator=(singleton const& x) // copy assignment operator: could be implicitly declared

{

value = x.value;

return *this;

}

};
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Semi-regular singleton
• Let’s implement support to make singleton 
Semiregular

// Semiregular:

singleton() = default; // default constructor

~singleton() = default; // destructor

// copy constructor
singleton(singleton const& x) = default;

// copy assignment
singleton& operator=(singleton const& x) = default;
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Semi-regular singleton
• What are the semantics of the default constructor? 

 In this case you want whatever the default value of T is, to be constructed. 
The compiler will do this for us.

• The default constructor will always be synthesized by the compiler 
unless you have another constructor.

 Always add it to avoid surprises!
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Semi-regular singleton
• Should the destructor be virtual?

 No! Why should it be?

 Some people say ‘all destructors have to be virtual’ – they couldn’t be more 
wrong than that!

• Feel free to make singleton final to prevent people from deriving 
from it
 There is no point in ever deriving from it anyways:

template <typename T>

struct singleton final

{

// ...

};
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Regular singleton
// Regular

friend bool operator==(singleton const& x, singleton const& y)

{

return x.value == y.value;

}

friend bool operator!=(singleton const& x, singleton const& y)

{

return !(x == y);

}

• Recall that we decided not to define these as member functions
 they are symmetric 

 friend functions inside the class declaration are not member functions
 but still have all the access to all the members

 More importantly this signature is nice. If you put it outside you 
discover you have to write an ugly thing
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Equality and the three laws of 
thought
• The law of identity: a == a

 Popeye the Sailor used to say, “I am, what I am”

• The law of non-contradiction: 

 You cannot have a predicate P be true and !P be true at the same time.

• The law of excluded middle: 

 Every predicate P must be either true, or false.
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Exercise: Figure out a type that 

violates the law of identity



Totally ordered singleton
// TotallyOrdered

friend bool operator<(singleton const& x, singleton const& y)

{

return x.value < y.value;

}

friend bool operator>(singleton const& x, singleton const& y)

{

return y < x;

}

friend bool operator<=(singleton const& x, singleton const& y)

{

return !(y < x);

}

friend bool operator>=(singleton const& x, singleton const& y)

{

return !(x < y);

}
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Totally ordered singleton (C++20)
// TotallyOrdered, synthesizes ==, !=, <, >, <=, >=

friend auto operator<=>(singleton const& x, singleton const& y)

{

return x.value <=> y.value;

}

• Or even better:

// TotallyOrdered, synthesizes ==, !=, <, >, <=, >=

friend auto operator<=>(singleton const& x, singleton const& y) = default;

• Spaceship operator <=>: should have been part of the language forever 
and should be synthesized by the compiler (same as 6 predefined 
functions)

 Unfortunately it is not predefined
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Concepts in C++ (since C++20)
• What requirements do we have to apply to T in order for singleton<T>

to be valid?
 C++20 introduced concepts allowing to constrain use of singleton

template <typename T>

requires(std::regular<T> || std::semiregular<T> || std::totally_ordered<T>) 

struct singleton final

{

// ...

};

• You might wonder how == will work, if you plug-in only a semiregular 
type T 

 In C++ templates, things don’t have to be defined unless they are used

 If T has no equality, singleton<T> will have copy constructor and assignment but no 
equality. 

 If T has an equality, then singleton<T> will have equality

 Etc.
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Exercise: Copy the file for singleton
and modify it to write pair



Instrumented
A performance measuring tool
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instrumented<T>
• We will write a wrapper (adapter, decorator) class instrumented<T>

which will take a type T and behave exactly like T

• We will be able to use instrumented<T> for any algorithm or container

 It will behave normally, just like a T

 In addition it will count all the operations that are applied to it

• Which operations should we count?

 The ones specified by our concepts!

• T will be SemiRegular, Regular, or TotallyOrdered

 Redefine all the operations: copy constructor, assignment, operator<, etc, 
adding code to count them
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instrumented<T>
• For example:

std::vector<double> vec;

my_func(vec.begin(), vec.end());

• Could be replaced by:
std::vector<instrumented<double>> vec;

my_func(vec.begin(), vec.end());

• And it will count all operations

• Writing this particular class will teach to write Regular
classes right.
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instrumented<T>
• What to do with all the counts? Where do they get stored?

• We will define a base class to hold this data:

struct instrumented_base

{

enum operations {

n = 0, copy, assignment, destructor, default_constructor,

equality, comparison, construction

};

static constexpr size_t number_ops = 8;

static constexpr char const* counter_names[number_ops] = {

"n", "copy", "assignment", "destructor", "default_constructor",

"equality", "comparison", "construction"

};

static double counts[number_ops];

};
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instrumented<T>
• Use this base class as:

template <typename T>

requires(std::semiregular<T> || std::regular<T> || std::totally_ordered<T>)

struct instrumented : instrumented_base

{

// ...

};

• Note that the base class does not change the size of instrumented<T>, i.e. 

sizeof(instrumented<T>) == sizeof(T)
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instrumented<T>
• Copy and paste the singleton.hpp file we created

• Replace the string singleton with instrumented

• In addition to existing operations, we’ll add counting, e.g.:

instrumented(instrumented const& x) // copy constructor

: value(x.value)

{

++counts[copy]; // ‘copy’ is a constant index

}

instrumented() // default constructor

{

++counts[default_constructor]; // ‘default_constructor’ is another constant index

}
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Number of Unique Elements
 Counting operations and measuring execution time:

 Using std::set

std::vector<instrumented<int>> v = {...};

std::set<instrumented<int>> set_of_ints(v.begin(), v.end());

std::println("{}", set_of_ints.size());

 Using std::sort and std::unique:

std::sort(v.begin(), v.end());

std::println("{}", std::unique(v.begin(), v.end()) - v.begin());

1
/2

8
/2

0
2

4
, 
L

e
ct

u
re

 2
C

S
C

4
7

0
0

, 
S

p
ri

n
g
 2

0
2

5
, 
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

38



Measuring Execution Time
• We will use a simple class timer:

class timer {
private:

using time_t = std::chrono::time_point<std::chrono::system_clock>;
time_t start_time, stop_time;

public:
timer() = default;

time_t start() { return (start_time = std::chrono::system_clock::now()); }
time_t stop() { return (stop_time = std::chrono::system_clock::now()); }

double elapsed() { 
auto diff = stop_time - start_time;
return std::chrono::duration_cast<std::chrono::milliseconds>(diff).count(); 

}
};
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Measuring Execution Time
#include "timer.hpp"

int main(int argc, char* argv[]) {

timer t;

t.start();

// do something that you would like t to measure the

// execution time for

t.stop();

std::println("The code took {} milliseconds to execute", t.elapsed());

return 0;

}
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Using std::set
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n copy assign destruct default equal less construct time

16 30 44 62 16 0 101 16 5.40E-06

32 57 82 121 32 0 254 32 8.34E-06

64 123 182 251 64 0 609 64 1.48E-05

128 252 376 508 128 0 1465 128 2.73E-05

256 506 756 1018 256 0 3432 256 5.28E-05

512 1021 1530 2045 512 0 7416 512 1.08E-04

1024 2038 3052 4086 1024 0 16594 1024 2.29E-04

2048 4090 6132 8186 2048 0 36241 2048 4.81E-04

4096 8181 12266 16373 4096 0 78842 4096 1.10E-03

8192 16375 24558 32759 8192 0 171085 8192 2.17E-03

16384 32756 49128 65524 16384 0 363905 16384 5.05E-03

32768 65522 98276 131058 32768 0 787628 32768 1.16E-02

65536 131061 196586 262133 65536 0 1661009 65536 2.67E-02

131072 262130 393188 524274 131072 0 3523544 131072 6.02E-02

262144 524283 786422 1048571 262144 0 7466404 262144 2.92E-01

524288 1048560 1572832 2097136 524288 0 15722084 524288 5.16E-01

1048576 2097134 3145692 4194286 1048576 0 33040561 1048576 9.66E-01

2097152 4194292 6291432 8388596 2097152 0 69149127 2097152 2.61992

4194304 8388590 12582876 16777198 4194304 0 144585049 4194304 5.95636

8388608 16777197 25165786 33554413 8388608 0 304459793 8388608 15.0111



Using std::sort and std::unique
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n copy assign destruct default equal less construct time

16 29 125 61 16 15 162 16 4.01E-06

32 61 421 125 32 31 620 32 4.63E-06

64 157 651 285 64 63 916 64 6.45E-06

128 404 1614 660 128 127 2435 128 1.18E-05

256 856 3190 1368 256 255 4635 256 2.35E-05

512 2200 7000 3224 512 511 10852 512 4.65E-05

1024 4895 14949 6943 1024 1023 23605 1024 9.58E-05

2048 10202 31452 14298 2048 2047 51086 2048 2.03E-04

4096 23809 69595 32001 4096 4095 113542 4096 4.26E-04

8192 54365 151993 70749 8192 8191 248293 8192 9.22E-04

16384 104148 294590 136916 16384 16383 517540 16384 1.94E-03

32768 227532 630928 293068 32768 32767 1109616 32768 4.15E-03

65536 512780 1374424 643852 65536 65535 2382854 65536 8.76E-03

131072 1051039 2805207 1313183 131072 131071 5026342 131072 1.85E-02

262144 2329354 6063902 2853642 262144 262143 10725970 262144 3.85E-02

524288 4619934 12041526 5668510 524288 524287 22361752 524288 8.29E-02

1048576 10067973 25735953 12165125 1048576 1048575 47145904 1048576 1.88E-01

2097152 21256236 53714098 25450540 2097152 2097151 98872361 2097152 4.15E-01

4194304 44364666 111139688 52753274 4194304 4194303 206907364 4194304 9.06E-01

8388608 93613867 232055273 110391083 8388608 8388607 432896702 8388608 1.88E+00
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Conclusions
• Even if the number of operations is larger, the code may run faster

• Textbook solutions are often outdated

 They are based on the understanding of how computers worked 15 years ago

• Understanding computer architecture is critically important in order 
to write efficient software

• Understanding Big-O complexity characteristics of algorithms (and 
data structure functionalities) is equally important

• All depends on the used data structures and how well those are 
aligned with how computers work

 Always use std::vector<T>

 If you think you can’t use it, try again and find a way so you can
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Exercise
• Measure and compare the amount of operations and the overall 

execution time for

 std::sort

 std::stable_sort

• Explain what you’re seeing
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Summary
• We know that singleton<T> and instrumented<T> conform to the type 

requirements (concepts) that all standard algorithms and containers expect
 They can be used anywhere it would be valid to use T

• This guarantees that these types can be used with all algorithms and 
containers
 This will not change the semantics of the algorithms

• The understanding of what concepts are assumed to apply for a given 
function or data structure is important
 Allows to formalize in what contexts a function or data structure is guaranteed to 

produce correct results

• If a function or data structure works with a type that conforms to a set of 
concepts
 We know that it will work with any other type that conforms to those concepts as 

well
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