
Working with Types
Lecture 2

Hartmut Kaiser

https://teaching.hkaiser.org/spring2025/csc4700/

What is a Type?

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

2

Abstract
• What are types? What are objects?

• A pattern for regular types: singleton
 Semi-regular singleton

 Regular singleton

 Totally ordered singleton

• Another useful regular type: instrumented

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

3

What is a ‘type’?
• A ‘type’ (of an object) defines the following things:

 The amount of memory required to store all the data that is needed to
support the operations valid for a type

 The rules of how to interpret the bits in that memory as values in order to
be able to make sense of the bit-salad

 The set of values that are valid

 The set of operations that are valid on those values

• Examples of types:

 int, double, float (built-in types)

 token, token_stream, std::vector, etc. (user-defined types)

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

4

What is an ’object’?
• An object is an instance of a type

 Occupies memory

 Has an optional name (is a variable)

 Has a lifetime

• Objects in C++ don’t change their type

 C++ is a type-safe language

 C++ checks types and type compatibility at compile time

• Examples of objects:

 int i = 0;

 token t('+');

 std::vector<int> v = {1, 2, 3, 4, 5};

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

5

Type Regularity

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

6

Regular Types
• Let’s informally define what it means for a type to be ‘Regular’

 It behaves like an int (or any other built-in type)

• Regularity defines a set of properties a type should have

• Understanding regularity is important as it will allow us to understand
what algorithms are allowed to do
 Use only operations allowed for regular types

• Regular types are those that can be stored in standard containers (like
std::vector<T>)
 What properties must T have to be regular?

 IOW, what properties must T have in order for it to be stored in a
std::vector<T>

• We should be able to rely on std::vector<T> being regular if T is regular

• We will use concepts to describe those properties

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

7

Semiregular Types: Copy constructor
• Semiregular is a bit weaker than Regular

• We should be able to write:
 Copy constructor (initializes a)

 T a(b);

 T a = b;

 Both are equivalent, even the same, if b is of type T

• What are the semantics of this operation?
 After this operation a should be equivalent to b

• What is equivalence?
 A relation R(a, b) = true is equivalence, if it satisfies

 symmetric: R(a, b) <=> R(b, a)

 reflexive: R(a, a)

 transitive: R(a, b) and R(b, c) => R(a, c)

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

8

Semiregular Types
• We actually want something significantly stronger. We want equality

• A copy is something which is equal to the original, but not identical to it

 After a is copy-constructed from b then a == b, whatever the meaning of
equality

 After a is copy-constructed from b they have distinct identity markers.

 In C++ the identity marker is usually the object’s address: &a != &b (location in
memory)

• All copy constructors must behave this way.

 If somebody clever comes and says, “oh we’re going to have semantics where
we’re going to have this shared thing”.

 Will it work? No. Copy has to construct a different thing.

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

9

Semiregular Types: Assignment
• Assignment operator:

 T a; a = b;

• Construction (initialization) and assignment must be equivalent (lead to
the same results):
 T a1(b) <=> T a2; a2 = b;  a1 == a2

• Initialization creates an initial state for a new object

• Assignment first cleans up old state of an existing object and then
initializes its new state

• In order for these operations to have correct semantics, the types
involved have to have equality defined (operator==())
 How would you know otherwise if two instances are equal?

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

10

Semiregular Types: Destructor
• Even if you don’t call destructors directly (the compiler does, though):

 ~T();

• Ends the lifetime of an object

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

11

C++ Class Anatomy 1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

12

Regular Types
• The concept Regular extends Semiregular with equality operators

which are == and !=

• We should define == so that after constructing a copy, the original
and the copy are equal

• != should always behave like: !(a == b)

• Fundamentally equal is a symmetric function. It compares two
things

 We will implement it as a friend function, not as a member function

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

13

Total orderings
• The concept TotallyOrdered extends Regular by adding a

comparison operator <

• operator < must obey the following mathematical properties:
 Axiom 1: Anti-reflexive: !(a < a)

 Axiom 2: Transitive: If a < b and b < c then a < c

 Axiom 3: Anti-symmetric: If a < b then !(b < a)

 Axiom 4: If a != b then a < b or b > a

• The semantics of < must be totally bound to the semantics of
equality and related operations
 The following should always be true, otherwise the world perishes.

 a >= b --> !(a < b)

 a > b --> b < a

 a <= b --> !(b < a)

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

14

Spaceship operator <=>
• C++20 introduced a simplified way of writing relational operators for

user defined types

• Instead of implementing all relation operators (<, <=, >, >=, ==, !=),
you can implement a three-way comparison operator <=>
 Returns < 0, if a < b

 Returns == 0, if a == b

 Returns > 0, if a > b

• The other relational operators are automatically synthesized by the
compiler

• Simplest way is to define a member function for X:
 friend auto operator(X const&, X const&) = default;

 Will apply spaceship operator member-wise

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

15

Singleton

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

16

A Pattern for Regular Types
• We’ll develop the simplest possible Regular (even TotallyOrdered)

type: singleton

• The dictionary says: singleton, pair, triple, quadruple, etc.

 A pair has two things, well a singleton has just one thing

• Can be used as a pattern (or “template”) for any types you will want
to create

 It is the most simple class possible

 It will have no (functionality oriented) code whatsoever

 It is the most complete class possible

 It will have all the language details about type creation that you need to know

 It is a ‘pure’ regular type

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

17

Template Type Functions
• Singleton:

template <typename T>

struct singleton

{

T value;

};

• template <typename T>
 Why template?

 We want to write something which takes one type and returns another type, i.e. a ‘type function’

 In C++ the template mechanism is just that

• Simplest type function example
 int*: i.e. get an int and return an int*

 Transform one type into another type

• Singleton is a type function that takes a T and gives us a singleton<T>

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

18

Create new Types with Classes and
Structs 1

/2
8

/2
0

2
4

,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

19

• Classes are used to encapsulate data
 along with methods to process them

• Every class or struct defines a new type

• Terminology:

 Type or class to talk about the defined type

• A variable of such type is an instance of class (or an object)

• Classes allow C++ to be used as an Object Oriented Programming

language

 std::string, std::vector, etc. are all classes (predefined in the C++

standard library)

Compiler Generated Functions
• In C++, each user defined type has 6 special functions

 Those are being generated by the compiler, if not explicitly provided

 These functions are always available

• Here are the 6 functions
 Default constructor

 Destructor

 Copy constructor

 Copy assignment

 Move constructor

 Move assignment

• The special functions are being automatically used in certain situations

• The compiler generated functions simply apply its operation to all members of
the type

• Unfortunately the spaceship operator is not automatically generated, you have to
be explicit

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

20

Compiler Generated Functions
• Constructors are automatically used whenever a new instance of a user

defined type is created (start lifetime of object)
 Default constructor is used when no additional arguments are supplied:

singleton<int> s;

• Destructor is automatically called whenever an instance of a user
defined type goes out of scope (ends the lifetime of an object)

• Copy constructor is used whenever a new instance of a user defined type
is created and initialized from another instance of that type:

singleton<int> s1 = s;

• Copy assignment is used whenever an existing instance of a user defined
type is assigned to another instance of that type:

singleton<int> s2; s2 = s1;

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

21

Compiler Generated Functions
• Any compiler generated special function by default invokes the

corresponding special functions for all member data of the user
defined type

 Default constructor invokes default constructor of all members (in order of
their definition)

 Destructor invokes destructors of all members (in reverse order)

 Etc.

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

22

Semi-regular singleton
• Let’s implement support to make singleton Semiregular

struct singleton {

// Semiregular:

singleton() {} // default constructor: could be implicitly declared sometimes

~singleton() {} // destructor: could be implicitly declared

singleton(singleton const& x) // copy constructor: could be implicitly declared

: value(x.value)

{

}

singleton& operator=(singleton const& x) // copy assignment operator: could be implicitly declared

{

value = x.value;

return *this;

}

};

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

23

Semi-regular singleton
• Let’s implement support to make singleton
Semiregular

// Semiregular:

singleton() = default; // default constructor

~singleton() = default; // destructor

// copy constructor
singleton(singleton const& x) = default;

// copy assignment
singleton& operator=(singleton const& x) = default;

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

24

Semi-regular singleton
• What are the semantics of the default constructor?

 In this case you want whatever the default value of T is, to be constructed.
The compiler will do this for us.

• The default constructor will always be synthesized by the compiler
unless you have another constructor.

 Always add it to avoid surprises!

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

25

Semi-regular singleton
• Should the destructor be virtual?

 No! Why should it be?

 Some people say ‘all destructors have to be virtual’ – they couldn’t be more
wrong than that!

• Feel free to make singleton final to prevent people from deriving
from it
 There is no point in ever deriving from it anyways:

template <typename T>

struct singleton final

{

// ...

};

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

26

Regular singleton
// Regular

friend bool operator==(singleton const& x, singleton const& y)

{

return x.value == y.value;

}

friend bool operator!=(singleton const& x, singleton const& y)

{

return !(x == y);

}

• Recall that we decided not to define these as member functions
 they are symmetric

 friend functions inside the class declaration are not member functions
 but still have all the access to all the members

 More importantly this signature is nice. If you put it outside you
discover you have to write an ugly thing

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

27

Equality and the three laws of
thought
• The law of identity: a == a

 Popeye the Sailor used to say, “I am, what I am”

• The law of non-contradiction:

 You cannot have a predicate P be true and !P be true at the same time.

• The law of excluded middle:

 Every predicate P must be either true, or false.

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

28

Exercise: Figure out a type that

violates the law of identity

Totally ordered singleton
// TotallyOrdered

friend bool operator<(singleton const& x, singleton const& y)

{

return x.value < y.value;

}

friend bool operator>(singleton const& x, singleton const& y)

{

return y < x;

}

friend bool operator<=(singleton const& x, singleton const& y)

{

return !(y < x);

}

friend bool operator>=(singleton const& x, singleton const& y)

{

return !(x < y);

}

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

29

Totally ordered singleton (C++20)
// TotallyOrdered, synthesizes ==, !=, <, >, <=, >=

friend auto operator<=>(singleton const& x, singleton const& y)

{

return x.value <=> y.value;

}

• Or even better:

// TotallyOrdered, synthesizes ==, !=, <, >, <=, >=

friend auto operator<=>(singleton const& x, singleton const& y) = default;

• Spaceship operator <=>: should have been part of the language forever
and should be synthesized by the compiler (same as 6 predefined
functions)

 Unfortunately it is not predefined

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

30

Concepts in C++ (since C++20)
• What requirements do we have to apply to T in order for singleton<T>

to be valid?
 C++20 introduced concepts allowing to constrain use of singleton

template <typename T>

requires(std::regular<T> || std::semiregular<T> || std::totally_ordered<T>)

struct singleton final

{

// ...

};

• You might wonder how == will work, if you plug-in only a semiregular
type T

 In C++ templates, things don’t have to be defined unless they are used

 If T has no equality, singleton<T> will have copy constructor and assignment but no
equality.

 If T has an equality, then singleton<T> will have equality

 Etc.

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

31

Exercise: Copy the file for singleton
and modify it to write pair

Instrumented
A performance measuring tool

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

32

instrumented<T>
• We will write a wrapper (adapter, decorator) class instrumented<T>

which will take a type T and behave exactly like T

• We will be able to use instrumented<T> for any algorithm or container

 It will behave normally, just like a T

 In addition it will count all the operations that are applied to it

• Which operations should we count?

 The ones specified by our concepts!

• T will be SemiRegular, Regular, or TotallyOrdered

 Redefine all the operations: copy constructor, assignment, operator<, etc,
adding code to count them

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

33

instrumented<T>
• For example:

std::vector<double> vec;

my_func(vec.begin(), vec.end());

• Could be replaced by:
std::vector<instrumented<double>> vec;

my_func(vec.begin(), vec.end());

• And it will count all operations

• Writing this particular class will teach to write Regular
classes right.

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

34

instrumented<T>
• What to do with all the counts? Where do they get stored?

• We will define a base class to hold this data:

struct instrumented_base

{

enum operations {

n = 0, copy, assignment, destructor, default_constructor,

equality, comparison, construction

};

static constexpr size_t number_ops = 8;

static constexpr char const* counter_names[number_ops] = {

"n", "copy", "assignment", "destructor", "default_constructor",

"equality", "comparison", "construction"

};

static double counts[number_ops];

};

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

35

instrumented<T>
• Use this base class as:

template <typename T>

requires(std::semiregular<T> || std::regular<T> || std::totally_ordered<T>)

struct instrumented : instrumented_base

{

// ...

};

• Note that the base class does not change the size of instrumented<T>, i.e.

sizeof(instrumented<T>) == sizeof(T)

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

36

instrumented<T>
• Copy and paste the singleton.hpp file we created

• Replace the string singleton with instrumented

• In addition to existing operations, we’ll add counting, e.g.:

instrumented(instrumented const& x) // copy constructor

: value(x.value)

{

++counts[copy]; // ‘copy’ is a constant index

}

instrumented() // default constructor

{

++counts[default_constructor]; // ‘default_constructor’ is another constant index

}

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

37

Number of Unique Elements
 Counting operations and measuring execution time:

 Using std::set

std::vector<instrumented<int>> v = {...};

std::set<instrumented<int>> set_of_ints(v.begin(), v.end());

std::println("{}", set_of_ints.size());

 Using std::sort and std::unique:

std::sort(v.begin(), v.end());

std::println("{}", std::unique(v.begin(), v.end()) - v.begin());

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

38

Measuring Execution Time
• We will use a simple class timer:

class timer {
private:

using time_t = std::chrono::time_point<std::chrono::system_clock>;
time_t start_time, stop_time;

public:
timer() = default;

time_t start() { return (start_time = std::chrono::system_clock::now()); }
time_t stop() { return (stop_time = std::chrono::system_clock::now()); }

double elapsed() {
auto diff = stop_time - start_time;
return std::chrono::duration_cast<std::chrono::milliseconds>(diff).count();

}
};

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

39

Measuring Execution Time
#include "timer.hpp"

int main(int argc, char* argv[]) {

timer t;

t.start();

// do something that you would like t to measure the

// execution time for

t.stop();

std::println("The code took {} milliseconds to execute", t.elapsed());

return 0;

}

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

40

Using std::set

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

41

n copy assign destruct default equal less construct time

16 30 44 62 16 0 101 16 5.40E-06

32 57 82 121 32 0 254 32 8.34E-06

64 123 182 251 64 0 609 64 1.48E-05

128 252 376 508 128 0 1465 128 2.73E-05

256 506 756 1018 256 0 3432 256 5.28E-05

512 1021 1530 2045 512 0 7416 512 1.08E-04

1024 2038 3052 4086 1024 0 16594 1024 2.29E-04

2048 4090 6132 8186 2048 0 36241 2048 4.81E-04

4096 8181 12266 16373 4096 0 78842 4096 1.10E-03

8192 16375 24558 32759 8192 0 171085 8192 2.17E-03

16384 32756 49128 65524 16384 0 363905 16384 5.05E-03

32768 65522 98276 131058 32768 0 787628 32768 1.16E-02

65536 131061 196586 262133 65536 0 1661009 65536 2.67E-02

131072 262130 393188 524274 131072 0 3523544 131072 6.02E-02

262144 524283 786422 1048571 262144 0 7466404 262144 2.92E-01

524288 1048560 1572832 2097136 524288 0 15722084 524288 5.16E-01

1048576 2097134 3145692 4194286 1048576 0 33040561 1048576 9.66E-01

2097152 4194292 6291432 8388596 2097152 0 69149127 2097152 2.61992

4194304 8388590 12582876 16777198 4194304 0 144585049 4194304 5.95636

8388608 16777197 25165786 33554413 8388608 0 304459793 8388608 15.0111

Using std::sort and std::unique

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

42

n copy assign destruct default equal less construct time

16 29 125 61 16 15 162 16 4.01E-06

32 61 421 125 32 31 620 32 4.63E-06

64 157 651 285 64 63 916 64 6.45E-06

128 404 1614 660 128 127 2435 128 1.18E-05

256 856 3190 1368 256 255 4635 256 2.35E-05

512 2200 7000 3224 512 511 10852 512 4.65E-05

1024 4895 14949 6943 1024 1023 23605 1024 9.58E-05

2048 10202 31452 14298 2048 2047 51086 2048 2.03E-04

4096 23809 69595 32001 4096 4095 113542 4096 4.26E-04

8192 54365 151993 70749 8192 8191 248293 8192 9.22E-04

16384 104148 294590 136916 16384 16383 517540 16384 1.94E-03

32768 227532 630928 293068 32768 32767 1109616 32768 4.15E-03

65536 512780 1374424 643852 65536 65535 2382854 65536 8.76E-03

131072 1051039 2805207 1313183 131072 131071 5026342 131072 1.85E-02

262144 2329354 6063902 2853642 262144 262143 10725970 262144 3.85E-02

524288 4619934 12041526 5668510 524288 524287 22361752 524288 8.29E-02

1048576 10067973 25735953 12165125 1048576 1048575 47145904 1048576 1.88E-01

2097152 21256236 53714098 25450540 2097152 2097151 98872361 2097152 4.15E-01

4194304 44364666 111139688 52753274 4194304 4194303 206907364 4194304 9.06E-01

8388608 93613867 232055273 110391083 8388608 8388607 432896702 8388608 1.88E+00

Number of unique elements 1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

43

Conclusions
• Even if the number of operations is larger, the code may run faster

• Textbook solutions are often outdated

 They are based on the understanding of how computers worked 15 years ago

• Understanding computer architecture is critically important in order
to write efficient software

• Understanding Big-O complexity characteristics of algorithms (and
data structure functionalities) is equally important

• All depends on the used data structures and how well those are
aligned with how computers work

 Always use std::vector<T>

 If you think you can’t use it, try again and find a way so you can

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

44

Exercise
• Measure and compare the amount of operations and the overall

execution time for

 std::sort

 std::stable_sort

• Explain what you’re seeing

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

45

Summary
• We know that singleton<T> and instrumented<T> conform to the type

requirements (concepts) that all standard algorithms and containers expect
 They can be used anywhere it would be valid to use T

• This guarantees that these types can be used with all algorithms and
containers
 This will not change the semantics of the algorithms

• The understanding of what concepts are assumed to apply for a given
function or data structure is important
 Allows to formalize in what contexts a function or data structure is guaranteed to

produce correct results

• If a function or data structure works with a type that conforms to a set of
concepts
 We know that it will work with any other type that conforms to those concepts as

well

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

46

1
/2

8
/2

0
2

4
,
L

e
ct

u
re

 2
C

S
C

4
7

0
0

,
S

p
ri

n
g
 2

0
2

5
,
W

o
rk

in
g
 w

it
h

 T
y
p

e
s

47

