Four Fundamental
OS Concepts

Lecture 2

Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103/

G ©INj09r| spdeouo))

9%03%/L3/T ‘9%0%/ST/T SO [eyudwepunj anoy ‘9z0g surtdg ‘c01¥0S0

1via

Admistratr

Lecture 2

1/15/2026, 1/27/2026

Homework and Early Drop Deadline

- Assignment 0: due January 26, 11:59pm
. Project 0: due February 9, 11:59pm

- You should be working on both already!

« Get familiar with all the CSC4103 tools, set up environment, submitting to
autograder via git

- Early drop deadline: January 215t

n
o
r—
o
<+
o
2
e
<
o
o
=)
=
=~
=)
o
=
S
AN
=
(A
)
o
&S|
o
(o
N
o
o
—
<t
o O
Application wn
S

n
+~
o
jo
)
Q
g
@]
O

Group Projects are Looming

- Group Formation is due Friday January 23

* Send email with preferences, each group will consist of four students
(three students in exceptional cases)

- I will assign remaining students arbitrarily

- Start working through Study Guide 0: C/x86

+ Answer all questions!

Application

-~ -

Operating system
{1 -

Hardware

1/15/2026, 1/27/2026

N
—
<
=
a
<
S|
<
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
+~
o
jo
)
Q
g
@]
O

Lecture 2

G ©IN309r spdeouo))

9603/La/T "9G0G/ST/T SO [eIusWEpUN] INOY ‘9g0g Sul1dg ‘¢OT¥;

—
v
42
-
D
S
v
o
-
-
[
Bt
-
o
[

OS Concepts

Lecture 2

Recall: What 1s an Operating
System?

- Special layer of software that provides application software access to
hardware resources

« Convenient abstraction of complex hardware devices

1/15/2026, 1/27/2026

* Protected access to shared resources
« Security and authentication
« Communication

= 1

N
—
<
=
a
<
S|
<
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
+~
o
jo
)
Q
g
@]
O

Application

-~ -

Operating system
{1 -

Hardware

Lecture 2

Recall: What 1s an Operating
System?

- Referee \9
- Manage protection, isolation, and sharing of resources
* Resource allocation and communication

- Illusionist
- Provide clean, easy-to-use abstractions of physical resources
+ Infinite memory, dedicated machine

1/15/2026, 1/27/2026

- Higher level objects: files, users, messages
- Masking limitations, virtualization

- Glue

+ Common services
+ Storage, Window system, Networking

» Sharing, Authorization

N
—
<
+~
(o]
<
S|
<
TS
(=]
5]
e
~
5
o
=
o)
N
o
N
o0
(=]
o
~
Q
0]
o
o
—
O
N
O

n
+~
[oR
)
Q
=
©
o

- Look and feel A ——
1 [

Operating system
- -

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

-~ -

Operating system
{1 -

Hardware

1/15/2026, 1/27/2026

N
—
oo
=
a
<
S|
o
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
-
o
jon
D)
Q
=
@]
O

Lecture 2

Lecture 2

©
(o]
S
(&l
~
L\
(&
~
—
©
N
S
N
~—~
e
—
~
—

OS Bottom Line: Run Programs

OxFFF...
Program Source Executable 0S
0xC00...
. Editor Compller and data stack J/
Linker =

o o ’?5

instructions et T E :

g

data 2

foo.c a.out 2

o

- OS Loader) =

* Create “PCB”, address space, stack and heap instructions S

* Load instruction and data segments of executable file into memory £

« “Transfer control to program” 2
S 3
PC: 5 9
. 08
* Provide services to program . =

registers

* While protecting OS and program

Processor

Hardware

OxFFF...
Executable o
N 0xCO00...
data stack ! .
OS Loader :
instructions heap A E
data
instructi‘;ns
process from a :
p I'ng‘ am registers

Processor

/2026, 1/27/2026
Lecture 2

5)

Recall: CPU Instruction Cycle

1/1

PC:
instruction

Instruction fetch

Decode

Registers

Execute

N
o
r—
o
=
=
=
e}
<
S
(=
=}
e
=~
=
o
=
.
(o]
=
(A
on
=
i
o
Sk
)]
(@]
—
~
— O
Application wn
O

+~
[oN
)
Q
=
Q

O

data -~ -

Operating system

-~ -

Hardware

Lecture 2

©
(o]
S
(&l
~
L\
(&
~
—
©
N
S
N
~—~
e
—
~—~
—

Review: How Programs Execute

Addr 232-1 « Execution sequence:

* Fetch Instruction at PC
* Decode

Execute (possibly using registers)
Write results to registers/mem
PC = Next Instruction(PC)

Repeat

Datal
DataO
Inst237
InSt236

Inst4
Inst3
Inst2
Instl
InstO

N
S
N

)

g
=

=

o,
n
=
—
O
2
©

0

e
[oN
)
>}
=
Q

(@)

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

1 L°

Operating system
] [

Hardware

1/15/2026, 1/27/2026

N
o
r—
<
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
-
[oR
D)
Q
=
@]
O

Lecture 2

Lecture 2

1/15/2026, 1/27/2026

Key OS Concept: Thread

- Definition: A single, unique execution context
- Program counter, registers, stack, execution state

- A thread is the OS abstraction for a CPU core
« A “virtual CPU” of sorts

- Registers hold the root state of the thread:
* Including program counter — pointer to the currently executing instruction
* The rest is “in memory”

- Registers point to thread state in memory:
- Stack pointer to the top of the thread’s (own) stack

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
)

n
+~
[oR
)
Q
g
©
O

Application

-~ -

Operating system
] [

Hardware

Lecture 2

1/15/2026, 1/27/2026

Illusion of Multiple Processors

- Threads are virtual cores
- Multiple threads: Multiplex hardware in time

- A thread is executing on a processor when it is
resident in that processor's registers

- Each virtual core (thread) has PC, SP, Registers

- Where 1s it?
- On the real (physical) core, or

On a single physical CPU:

- Saved in memory — called the Thread Control

Block (TCB)

AN
o
—
<
+~
(=}
2
S
<
=
=}
=
=
=)
=)
(@]
~
F\Qﬁ
N
S
N
i)
=}
=
~
o,
N
CYQ"
)
—
O
2
o

)

+~
[oR
)
Q
=
Q

O

Application

Lecture 2

1/15/2026, 1/27/2026

OS Object Representing a Thread

- Traditional term: Thread Control Block (TCB)
- Holds contents of registers when thread is not running...

- ... And other information the kernel needs to keep track of the thread
and 1ts state.

N
—
<
=
a
<
S|
<
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
+~
o
jo
)
Q
g
©
O

&N
~
=)

+
Q
[eb]

—

Registers: x86

Basic Program Execution Registers Memory Management Registers s
[GDIR___| 2732-
Eight 32-bit -
General-Purpose Registers
T TR
Six 16-bt Control Registers
Registers | Se0ment Registers E’E‘: "
CR2 O
(32-bits | EFLAGS Reglister CR3 <
=]
{ 32-bits] € (Instruction Pointer Register) g
. E
PV Roghters MMX Registers é
Eight B0-bit Floating-Point y
Reghsters Data Regsters - MMXRegisters O 2
:T,\;'
Control Reglster %
[CTEBRS] Tag Register 2
wn
(] Opcode Register (11-bits) €Nt 128-00t o -
| 48 bity | FPU instruction Pointer Register E‘G’m é
| 48 bits | FPU Data (Operand) Polnter Register — <
[3e-bits | MXCSR Register Application =
Debug Registers 1 [
Extended Control Register |
Operating system

{1 -

Hardware

Complex memory architecture with specialized registers and “segments”

Lecture 2

1/15/2026, 1/27/2026

Illusion of Multiple Processors

- At T1: vCPU1 on real core

@ - At T2: vCPU2 on real core

- What happened?
- OS ran [how?]

« Saved PC, SP, ... in vCPU1’s thread control
block

» Loaded PC, SP, ... from vCPU2’s thread control
block

On a single physical CPU:
T1T2

AN
o
—
<
+~
(=}
2
S
<
=
=}
=
=
=)
=)
(@]
~
F\Qﬁ
N
S
N
i)
=}
=
~
o,
N
CYQ"
)
—
O
2
o

)

+~
[oR
)
Q
=
Q

O

« This 1s called context switch

Lecture 2

1/15/2026, 1/27/2026

Very Simple Multiprogramming
- All vCPUs share non-CPU resources
« Memory, I/0 Devices

- Each thread can read/write memory
* Including data of others

+ And the OS!

- Unusable?

- This approach is used in:
« Very early days of computing

- Embedded applications
- MacOS 1-9/Windows 3.1 (switch only with voluntary yield)
* Windows 95-ME . vAppIication

1 L°

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
+~
[oR
)
Q
g
@]
O

Operating system
] [

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

1 L°

Operating system
] [

Hardware

1/15/2026, 1/27/2026

N
o
r—
<
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
-
[oR
D)
Q
=
@]
O

Lecture 2

Lecture 2

1/15/2026, 1/27/2026

Key OS Concept: Address Space

- Program operates in an address space that is distinct from the
physical memory space of the machine

0x000...

Registers

Processor { Translator} Memory

OxFFF...

AN
@)
—
<
<5
(=}
=
(<]
<
'T.j
=}
=}
=
~
=}
(@)
=
r\g"
N
=
N
i)
=}
=
~
o,
N
5
©
—
O
N
©

)
+~

[oN

)

Application)
S

] L

Operating system
- -

Hardware

Lecture 2

©
N
S
N
~
L\
N
~
—
©
N
S
N
~—~
Yo
—
~—~
—

Address Space

- Definition: Set of accessible addresses and the state associated with

OxFFF...

them
+ 232 = ~4 billion on a 32-bit machine 0x000...
Code

- What happens when you read or write to an address? . Z
- Perhaps acts like regular memory Static Data £
* Perhaps causes I/0 operation Heap —é
- (Memory-mapped 1/0) =
- Causes program to abort (segfault)? N é
+ Communicate with another program Stack 9}

Concepts

Application

-~ -

Operating system
- -

Hardware

Typical Address Space Structure

0x000...
> Code

PC: -
SP: Static Data

Heap

Processor

registers

Stack

OxFFF...

1/15/2026, 1/27/2026

N
—
<
+~
(o]
<
S|
<
TS
(=]
5]
e
~
5
o
=
o)
N
o
N
o0
(=]
o
~
Q
0]
o
o
—
<t
O
N
O

n
+~
[oR
)
Q
=
@]
o

Lecture 2

Lecture 2

1/15/2026, 1/27/2026

Address Space

- What can the hardware do to help the OS protect itself from
programs? And programs from each other?

* Prevent processes from reading or writing to physical addresses 1t should
not have access to!

- Allow processes to read and write to physical addresses it should have
access to!

N
—
<
=
a
<
S|
<
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
+~
o
jo
)
Q
g
@]
O

Application

-~ -

Operating system
{1 -

Hardware

Lecture 2

1/15/2026, 1/27/2026

Base and Bound (no Translation)

e (Can the program touch OS? Can it touch other 0000...
programs? Code
* Requires relocation, causes fragmentation Static Data Original Program
* Stack and heap have unknown sizes Heap
 Memory sharing impossible 0000... 2
Base Address 1000... code “
1000 Static Data ’C‘é
0010... Code =
Program 1010... Static Data heap | :
address o A 5
i stack g
Bound 1100 " 11 00 o V Application % g)
‘.- o O
FFFF o Operating system

-~ -

Hardware

Issues with Simple Base and Bound

©
(o]
S
(&l
~
=
(&
~
—
o
N
S
N
N
Yo
—
~
—

process 6 process 6 process 6 process 6
process 5 process 5 process 5
process 9 process 9 process 11
process 2 —> —> "> | process 10
OS OS 0S 0S

Lecture 2

- Fragmentation problem over time

- Hard to do interprocess sharing
- E.g., to share code

Application

CSC4103, Spring 2026, Four Fundamental

n
)
[
)
Q
=
©
(@)

Lecture 2

©
(o]
S
(&l
~
L\
(&
~
—
©
N
S
N
~—~
e
—
~
—

Base and Bound (with Translation)

0000...
* (Can the program touch OS? Can it touch other Code
programs?
« Fragmentation still an issue! Static Data
» Still no sharing! Heap
* Stack and heaps are of variable size! 0000... S
code %
Base Address . E
1000. .. Static Data 2
0010... 1000... Code - <
Program 0010... . Static Data P iy -
address e A 2
= stack S
Bound 1100 =¥
0100 A o V Application C%J §
1 b
FFFF o Operating system

-~ -

Hardware

Lecture 2

1/15/2026, 1/27/2026

Paged Virtual Address Space

- What if we break the entire virtual address space into equally sized
chunks (.e., pages) and have a base and bound for each?

- All pages are of the same size, so it’s easy to place each page in
memory!

- Hardware translates addresses using a page table
- Each page has a separate base
* The “bound” 1s the page size
* Special hardware register stores pointer to page table

N
o
r—
<
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
-
[oR
D)
Q
=
@]
O

Application

1 L°

Operating system
] [

Hardware

Lecture 2

1/15/2026, 1/27/2026

Paged Virtual Address Space

Memory
Processor
<4

Registers <Page #f?f'[Page Table R
[instructi |/

Instruction P <Page Offset> Page

<Virtual Address>= - (eg, 4 kb)
<Page #><Page Offset>

[PTAddr

- Instructions operate on virtual addresses

. Vi]]gilzual addresses translated at runtime to physical addresses via a page
table

° Spbelcial register holds page table base address of current process’ page
table

N

o

r—

oo

+~

o

3

e}

oot

'Tj

o

=

=

=~

=

o

=

.

(]

S

(A

on

o

i

o

Q

)]

o3

(@)

—

- ~
— QO
Application wn
@)

n
+~
[oR
)
Q
=
@]
o

-~ -

Operating system
- -

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

1 L°

Operating system
] [

Hardware

1/15/2026, 1/27/2026

N
o
r—
<
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
-
[oR
D)
Q
=
@]
O

Lecture 2

Key OS Concept: Process

Definition: execution environment with restricted rights
- One or more threads executing in a single virtual address space (own page table)

- Owns file descriptors, network connections, etc.

Instance of a running program
* When you run an executable, it runs in its own process
- Application: one or more processes working together

Protected from each other; OS protected from them

In modern OSes, anything that runs outside of the kernel runs in a process
- Even many of the OS services run in separate processes

Application

1 L°

Operating system
] [

Hardware

1/15/2026, 1/27/2026

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
+~
[oR
)
Q
g
@]
O

Lecture 2

Single and Multithreaded Processes

- Threads encapsulate
concurrency

« “Active” component

- Address space encapsulate
protection:

« “Passive” component

- Keeps bugs from crashing the
entire system

- Why have multiple threads per
address space?

code

data

files

registers

stack

thread ———» g

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
ey

— thread

multithreaded process

App

lication

] L

Operating system

] [

Har

dware

1/15/2026, 1/27/2026

AN
o
—
<
+~
(=}
2
S
<
=
=}
=
=
=)
=)
(@]
~
F\Qﬁ
N
S
N
i)
=}
=
~
o,
N
CYQ"
)
—
O
2
o

)

+~
[oR
)
Q
=
Q

O

Lecture 2

Lecture 2

1/15/2026, 1/27/2026

Protection and Isolation

« Why?
« Reliability: bugs can only overwrite memory of process they are in

* Security and privacy: malicious or compromised process can’t read or write
other process’ data

- (to some degree) Fairness: enforce shares of disk, CPU

- Mechanisms:
« Address translation: address space only contains its own data

- BUT: why can’t a process change the page table pointer?
* Or use I/O instructions to bypass the system?

N
o
r—
<
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

@

2

[oN

v

]

Application)
o

1 L°

- Hardware must support privilege levels!

Operating system
] [

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

1 L°

Operating system
] [

Hardware

1/15/2026, 1/27/2026

N
o
r—
<
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
-
[oR
D)
Q
=
@]
O

Lecture 2

Lecture 2

1/15/2026, 1/27/2026

Dual-Mode Operation

- One bit of state: processor 1s either in user mode or kernel mode
- x86 has four privilege levels: rank 0 (kernel) ... rank 3 (user)

. Certain actions are only permitted in kernel mode (privileged
instructions), e.g.

- Changing the page table pointer (memory protection)
+ Certain entries in the page table

« Hardware I/0 instructions

- Disable interrupts (timers)

- State bit can’t be changed directly, 1s flipped only during execution of
special transfer operations

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
)

n
+~
o
jon
D)
Q
=
©
<

Application

-~ -

Operating system
] [

Hardware

Lecture 2

1/15/2026, 1/27/2026

Dual-Mode Operation

What hardware i1s needed to protect applications and users from one
another?

Privileged instructions
- All potentially unsafe instructions are prohibited in user mode

Memory protection

- All memory accesses outside of a process’s valid memory region are
prohibited when executing in user mode

Timer interrupts

- Regardless of what a process does, the kernel must have a way to
potentially regain control from the current process

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
+~
[oR
)
Q
g
@]
O

Application

1 L°

Operating system
] [

Hardware

Lecture 2

1/15/2026, 1/27/2026

Dual-Mode Operation

- Processes (i.e., programs you run) execute in user mode

+ To perform privileged actions, processes request services from the OS
kernel

* Carefully controlled transition from user to kernel mode

- Kernel executes in kernel mode
« Performs privileged actions to support running processes

- ... and configures hardware to properly protect them (e.g., address
translation)

« Return to user mode through special instructions

* Return from interrupt

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
+~
[oR
)
Q
g
@]
O

Application

1 L°

Operating system
] [

Hardware

Lecture 2

Three Types of User — Kernel Mode
Transfer

System Call (“syscalls”)
- Process requests a system service (e.g., open a file)
+ Like a function call, but “outside” the process

1/15/2026, 1/27/2026

Interrupt
+ External asynchronous event, independent of the process
+ e.g., Timer, I/O device

Trap (exception)
+ Internal synchronous event in process triggers context switch
- E.g., Divide by zero, bad memory access (segmentation fault)

CONTROL TRANSFER User -> Kernel mode
« System calls constitute PROGRAMMED control transfer
 Interrupts and traps are UNPROGRAMMED control transfer mechanisms

User process can’t jump to arbitrary instruction address in kernel!

N
—
<
=
a
<
S|
<
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
+~
o
jon
D)
Q
=
©
<

Why nOt‘) Application
] L

Operating system
"=

Hardware

interrupt number ()

Where do User — Kernel Mode
Transfers Go?

Interrupt vector

_ handler
]

O\

_ Address and properties

of each interrupt

- Cannot let user programs specify
the exact address!

- Solution: Interrupt Vector

* OS kernel specifies a set of
functions that are entry points to
kernel mode

« Appropriate function is chosen
depending on the type of transition

- Interrupt Number ()

intrpHandler_i () {

}...

* Type of interrupt

* Type of trap
* OS may do additional dispatch

Application

-~ -

Operating system
- -

Hardware

1/15/2026, 1/27/2026

N
—
<
+~
(o]
<
S|
<
TS
(=]
5]
e
~
5
o
=
o)
N
o
N
o0
(=]
o=
~
Q
0]
o
o
—
O
N
O

n
+~
[oR
)
Q
=
©
o

Lecture 2

Lecture 2

©
N
S
X
~
L\
N
~
—
©
N
S
N
~—~
e
—
~—~
—

Example: Before Exception

User-level Registers Kernel
Process
code: SS: ESP code:
- CS:EIP "
foo () { EFLAGS handler() { %
while(...) { other pusha E
X=x+1; registers: =
y=y-2 EAX, EBX, } z
% -
Exception p
stack: Stack g
VAppIicatioril (;})S %
o O

] L

Operating system
] [

Hardware

Lecture 2

©
N
S
X
~
L\
N
~
—
©
N
S
N
~—~
e
—
~—~
—

Example: After Exception

User-level Registers Kernel
Process
code: SS: ESP code:
CS: EIP .
foo () { EFLAGS handler() { S
while(...) { other pusha g
x=x+l; _ . registers: :
y=y-2 el EAX, EBX, }
} ."'~.,' ;T:
} <
Exception X
stacki N Stack
____ . ,‘ SS f ,
: e ESP 22
T EFLAGS 3 &
Why don’t we just use CS —— 53
the user StaCk? EIP Operating system
error S

Hardware

/2026, 1/27/2026
Lecture 2

5)

Life of a Process

11

w0
o
r—
<
=
o
2
&
<
=
o
=
=
~
=
S
=
<
N
=)
o]
o0
o
-
g
o,
wn
=)
—
~
Q
D)
(@)

n
)
[
)
Q
=
©
(@)

Application

] L

Operating system

-~ -

Hardware

Limited HW access Full HW access

Lecture 2

Implementing Safe User — Kernel
Mode Transfers

- Carefully constructed kernel code packs up the user process state
and sets it aside

1/15/2026, 1/27/2026

- Must handle weird/buggy/malicious user state
+ Syscalls with null pointers, or otherwise invalid arguments
+ Return instruction out of bounds
+ User stack pointer out of bounds

- Should be 1impossible for buggy or malicious user program to cause
the kernel to corrupt itself

- User program should not know that an interrupt has occurred
(transparency)

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<t
o
N
)

n
+~
[oR
)
Q
g
©
O

Application

Lecture 2

1/15/2026, 1/27/2026

Kernel System Call Handler

- Vector through well-defined syscall entry points!
« Table mapping system call number to handler

- Locate arguments
- In registers or on user (!) stack

- Copy arguments
* From user memory into kernel memory — carefully checking locations!
* Protect kernel from malicious code evading checks

- Validate arguments
- Protect kernel from errors in user code

N
o
r—
<
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
-
[oR
D)
Q
=
@]
O

- Copy results back
* Into user memory — carefully checking locations! -~

Application

Operating system
] [

Hardware

Lecture 2

1/15/2026, 1/27/2026

Kernel Stacks

- Interrupt handlers want a stack
- System call handlers want a stack

- Can't just use the user stack [why?]

- More convenient to store execution state of kernel if additional interrupt is
required (i.e. waiting for I/O operation, etc.)

« User-stack 1s 1n user-space

* Other user-threads could maliciously modify entries the kernel put on the stack
of the interrupted thread

* Works regardless of state of user-process

« User data could be corrupt or compromised

Application

1 L°

Operating system
] [

Hardware

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
+~
[oR
)
Q
g
@]
O

(A
v
-
2
o
(]
<]
—

Kernel Stacks

- One Solution: two-stack model
- Each thread has user stack and a kernel stack
+ Kernel stack stores user’s registers during an exception
- Kernel stack used to execute exception handler in the kernel

n
o
running ready to run waiting for I/0 g
b}
. 1 &
main main main g
rocl rocl rocl E
User Stack P P . 2
proc2 proc2 proc2 =
=~
% syscall é
(]
S
(A
?—‘D
N\ i
user CPU user CPU %)
state state 3w
o
Kernel Stack E syscall S8
- -y O
handler Application ;fi g
) OO
I/O driver 1 [
E top half Operating system
] [

Hardware

Hardware Support: Interrupt Control

- Interrupt processing not visible to the user process:
* Occurs between instructions, restarted transparently
* No change to process state

- Happens transparently to the process—user program does not know it was
interrupted

- Interrupt Handler invoked with interrupts ‘disabled’
« Re-enabled upon completion
- Non-blocking (run to completion, no waits)

- Pack up task in a queue and pass off to an OS thread for hard work
- wake up an existing OS thread

Application

1 L°

Operating system
] [

Hardware

1/15/2026, 1/27/2026

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
+~
[oR
)
Q
g
@]
O

Lecture 2

Hardware Support: Interrupt Control

- Interrupt processing not visible to the user process:
* Occurs between instructions, restarted transparently
* No change to process state
« What can be observed even with perfect interrupt processing?

- Execution time!

- Interrupt Handler invoked with interrupts ‘disabled’
« Re-enabled upon completion
- Non-blocking (run to completion, no waits)

« Pack up in a queue and pass off to an OS thread for hard work
- wake up an existing OS thread

Application

-~ -

Operating system
{1 -

Hardware

1/15/2026, 1/27/2026

N
—
<
=
a
<
S|
<
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
+~
o
jo
)
Q
g
@]
O

Lecture 2

Lecture 2

1/15/2026, 1/27/2026

How do we take Interrupts Safely?

Interrupt vector
+ Limited number of entry points into kernel

Kernel interrupt stack
- Handler works regardless of state of user code

Interrupt masking
- Handler is non-blocking

Atomic transfer of control
- “Single instruction”-like to change:
* Program counter
+ Stack pointer
+ Memory protection
+ Kernel/user mode

Transparent restartable execution
« User program does not “know” interrupt occurred

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

®
+~

[oN

v

]

Application)
S

1 L°

Operating system
] [

Hardware

Lecture 2

1/15/2026, 1/27/2026

Kernel — User Mode Transfers

- “Return from interrupt” instruction
* Drops mode from kernel to user privilege
* Restores user PC and stack

- Transfer to user mode happens for:
* Creation of a new process
- Switching to a different process
- User-level upcalls (signal handling, etc.)

N
—
<
=
a
<
S|
<
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
+~
o
jo
)
Q
g
@]
O

Application

-~ -

Operating system
{1 -

Hardware

Today: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

-~ -

Operating system
{1 -

Hardware

1/15/2026, 1/27/2026

N
—
oo
=
a
<
S|
o
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
-
o
jon
D)
Q
=
@]
O

Lecture 2

G ©IN309r spdeouo))

9603/La/T "9G0G/ST/T SO [eIusWEpUN] INOY ‘9g0g Sul1dg ‘¢OT¥;

]
]
v
<+
o r=i
<+
-
Q
3S
3
D
—
=
o
Z.

together!

Lecture 2

1/15/2026, 1/27/2026

Illusion of Multiple Processors

- At T1: vCPU1 on real core
- At T2: vCPU2 on real core

Scheduling

- How did the OS get to run?

- Earlier, OS configured a hardware timer to
periodically generate an interrupt

* On the interrupt, the hardware switches to
kernel mode and the OS’s timer interrupt
handler runs

On a single physical CPU:
T1T2

* Timer interrupt handler decides whether to
switch threads or not according to a policy

Operating system

Application

N
o
r—
[as]
-~
a
<
-}
[av]
i
o
=
=
~
=)
o
=
<
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<t
o
N
&3

)

+~
[oR
)
Q
g
@]

O

1.

Hardware

Lecture 2

1/15/2026, 1/27/2026

Scheduling

if (readyProcesses (PCBs)) {
nextPCB = selectProcess (PCBs) ;
run(nextPCB) ;

} else {
run idle process();

- Scheduling: Mechanism for deciding which processes/threads receive the

CPU

- Lots of different scheduling policies provide ...
- Fairness or
* Realtime guarantees or

N
—
<
+~
(o]
<
S|
<
TS
(=]
5]
e
~
5
o
=
o)
N
o
N
o0
(=]
o
~
Q
0]
o
o
—
<t
O
N
O

)
+~

[oN

v

:]
Application)
S

- Latency optimization or ... { T
Operating system
-

Hardware

Lecture 2

1/15/2026, 1/27/2026

What'’s 1n a Process?

- Process Control Block (PCB): Kernel representation of each process
* Process ID
Thread control block(s)

- Program pointer, stack pointer, and registers for each thread

Page table (information for address space translation)

Necessary state to process system calls
* Which files are open and which network connections are accessible to the process

All information that pertains to a process and has to be shared between all
threads of said process

* User information

 File path of executable on disk

* Current home directory of the process

* Process privileges

Application

- Etec. -

N
o
r—
P
-
a
<
-}
[av]
i
o
=
=
~
=)
o
=
5
(o]
=
(A
an
o
o
g
Q
0]
o3
(@)
—
<
o
N
&3

n
+~
[oR
)
Q
g
@]
O

Operating system
] [

Hardware

Lecture 2

1/15/2026, 1/27/2026

Mode Transfer and Translation

- Mode transfer should change address translation mapping

- Examples:
 Ignore base and bound in kernel mode

- Page tables:
- Either switch to kernel page table...
* Or mark some pages as only accessible in kernel mode

N
—
<
=
a
<
S|
<
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

n
+~
o
jo
)
Q
g
@]
O

Application

-~ -

Operating system
{1 -

Hardware

Lecture 2

1/15/2026, 1/27/2026

Base and Bound: OS Loads Process

, 0000...
. . III /I\ COde

2 .. /,/'/ / Static Data
‘ 0S ‘

heap

| pstack |

sysmode -

1000...
)/ / code
Base | xxxx ... ,/ 0000... Static Data
Bound | xxxx... / FFFF... heap
Stored User PC | xxxx... / _I
,' stack 1100...
PC

regs /

0
@)
r—
)
~
o
=
g
5
&
o
=
=
%
=
(@)
=
<
N
S
N
op
o
gs!
i
(o}
n
S
—
O
N
O

0

-~
[oN
)
O
=
Q

(@)

Base and Bound: About to Switch

0000...
2). / Static Data
s

heap

sysmode -

1000...
Base [1000 ... Static Data
Bound | 1100 ... heap
Stored User PC | 0011) _I
stack 1100...
PC

* OSruns in privileged yegg

mode, so 1t can set the
special registers
 “Return” to user

Application

] L_s
3080 ce e Operating system

FFFF... sl

Hardware

1/15/2026, 1/27/2026

0
@)
r—
)
~
o
2
g
5
!
o
=
~
~
=
(@)
=
<
N
S
N
op
o
gs!
i
(o}
n
S
—
~
O
N
O

+~
[oN
)
Q
=
Q

O

Lecture 2

Base and Bound: User Code Running

0000...
2). Static Data
OS

heap

| stack |

sysmode | 0 1000...
code
Base | 1000 ... Static Data
Bound | 1100 ... heap
Stored User PC | xxxx ... _l
stack 1100...
PC |

3000...

regs

3080...

1/15/2026, 1/27/2026

w
@)
r—
P
=
o
8
S|
I
=
g
=)
=
~
=)
o
=
<
N
=)
N
an
S|
-
g
o,
n
S
—
~t
Q
xR
(@)

)

+~
[oN
)
Q
=
Q

O

Lecture 2

Base and Bound: Handle Interrupt

Proc
2 ...
L%]

sysmode -

Base
Bound

Stored User PC

Switch to kernel
mode, set up
interrupt handler

PC

regs

0000...

A code

/ Static Data

heap

1000...

| stack |
/

code

1000 ... /

Static Data

1100 ... /

heap

00001234 11

| stax |

IntrpVectorli] | /

[

l

1/15/2026, 1/27/2026

w
O
r—
3
=
S
2
£
<
=
S
=
=
A
=
o
=
<
(]
S
(A
on
o
o
M
(o
07)
(@)
—
O
R
O

0

e
[oN
)
>}
=
Q

(@)

Lecture 2

Lecture 2

1/15/2026, 1/27/2026

Base and Bound: Switch to Process 1

0000...

code | RETI

Static DAta

1000...

Static Data

heap

| st ||

1100...
3000...

Stored User PC | 0000 024? i
PC [0001 01247

* Save registers of

0
@)
r—
)
~
o
=
g
5
&
o
=
=
%
=
(@)
=
<
N
S
N
op
o
gs!
i
(o}
n
S
—
O
N
O

Process 2 rees =
* Restore registers of 5
Process 1 3080...

e Then execute RETI FFFF...

Lecture 2

1/15/2026, 1/27/2026

Base and Bound: Switch to Process 1

0000...
2). Static Data
OS

heap

| stack |

code
Static Data

1000...

sysmode | 1

Base (000N
Bound | HOS0REINN

Stored User PC | xxxx ... _I
stack 1100...

PC [0000 0248 —
3000...

regs

heap

w
@)
r—
P
=
o
8
S|
I
=
g
=)
=
~
=)
o
=
<
N
=)
N
an
S|
-
g
o,
n
S
—
~t
Q
xR
(@)

)

+~
[oN
)
Q
=
Q

O

3080...

Lecture 2

©
N
S
N
~
=
N
~
—
o
N
S
N
~—~
Yo
—
~—~
—

: Web Server

9. forma\ reply

Putting it all

4. parse request

Server
request reply
buffer buffer
A A
1. network 3. kernel 10. network 5 fi 3. k 1
socket copy SOC.ket .11 ed . Kerne -
syscall read ® write syscall. rea 4 copy %
Kernel i RTU /11. kernel copy RTU %
from user buffer v <
to network buffer E
=
Iinterrupt o) 6 Interrupt S
2. copy arriving |12. format outgoing 6. disk 7 disk data >
packet (DMA) packet and DMA .r equest -(DM A) é
N
Hardware Application ;J %
Network ~ OO
interface Disk interface S —
- 6 5
v

Reque st Reply Hardware

Lecture 2

Conclusion: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

1/15/2026, 1/27/2026

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

.« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

N
—
oo
=
a
<
S|
o
TS
o
=
~
5
o
=
©
N
o
N
oY)
o
or
~
Q,
0]
o3
o
—
~t
O
N
O

)
2

[oR

v

a

Application)
o

-~ -

Operating system
{1 -

Hardware

CENTER FOR COMPUTATION
& TECHNOLOGY

CSC4103, Spring 2026, Four Fundamental OS

Concepts

Q)
-7

1/15/2026, 1/27/2026

Lecture 2

