
Four Fundamental
OS Concepts
Lecture 2

Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103/

Admistratrivia 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

2

Homework and Early Drop Deadline

• Assignment 0: due January 26th, 11:59pm

• Project 0: due February 9th, 11:59pm

• You should be working on both already!

 Get familiar with all the CSC4103 tools, set up environment, submitting to
autograder via git

• Early drop deadline: January 21st

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

3

Group Projects are Looming

• Group Formation is due Friday January 23rd

 Send email with preferences, each group will consist of four students
(three students in exceptional cases)

 I will assign remaining students arbitrarily

• Start working through Study Guide 0: C/x86

 Answer all questions!

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

4

Four Fundamental
OS Concepts

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

5

Recall: What is an Operating
System?
• Special layer of software that provides application software access to

hardware resources

 Convenient abstraction of complex hardware devices

 Protected access to shared resources

 Security and authentication

 Communication

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

6

Hardware

appln
appln

appln

OS

Recall: What is an Operating
System?
• Referee

 Manage protection, isolation, and sharing of resources

 Resource allocation and communication

• Illusionist
 Provide clean, easy-to-use abstractions of physical resources

 Infinite memory, dedicated machine

 Higher level objects: files, users, messages

 Masking limitations, virtualization

• Glue
 Common services

 Storage, Window system, Networking

 Sharing, Authorization

 Look and feel

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

9

Today: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

10

OS Bottom Line: Run Programs

• OS Loader
 Create “PCB”, address space, stack and heap

 Load instruction and data segments of executable file into memory

 “Transfer control to program”

• OS
 Provide services to program

 While protecting OS and program

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

11

Editor

int main()

{ … ;

}

Program Source

foo.c

OS Loader

M
e
m

o
ry

PC:

Processor

registers

0x000…

0xFFF…

instructions

data

heap

stack

OS

Compiler and

Linker

Executable

a.out

data

instructions

0xC00…

Compiler

and

Linker

Editor

int main()

{ … ;

}

Program Source

foo.c

OS Bottom Line: Run Programs

• Create OS “PCB”, address space, stack and heap

• Load instruction and data segments of executable file into memory

• “Transfer control to program”

• Provide services to program

• While protecting OS and program

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

12

OS Loader

M
e
m

o
ry

PC:

Processor

registers

0x000…

0xFFF…

instructions

data

heap

stack

OSExecutable

a.out

data

instructions

Creates a

process from a

program

0xC00…

Recall: CPU Instruction Cycle

PC:

Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

13

Review: How Programs Execute 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

14

Fetch

Exec

R0

…

R31

F0

…

F30

PC

…

Data1

Data0

Inst237

Inst236

…

Inst4

Inst3

Inst2

Inst1

Inst0

Addr 0

Addr 232-1 • Execution sequence:
• Fetch Instruction at PC

• Decode

• Execute (possibly using registers)

• Write results to registers/mem

• PC = Next Instruction(PC)

• Repeat

PC

PC

PC

PC

Today: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

15

Key OS Concept: Thread
• Definition: A single, unique execution context

 Program counter, registers, stack, execution state

• A thread is the OS abstraction for a CPU core

 A “virtual CPU” of sorts

• Registers hold the root state of the thread:

 Including program counter – pointer to the currently executing instruction

 The rest is “in memory”

• Registers point to thread state in memory:

 Stack pointer to the top of the thread’s (own) stack

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

16

Illusion of Multiple Processors
• Threads are virtual cores

• Multiple threads: Multiplex hardware in time

• A thread is executing on a processor when it is
resident in that processor's registers

• Each virtual core (thread) has PC, SP, Registers

• Where is it?

 On the real (physical) core, or

 Saved in memory – called the Thread Control
Block (TCB)

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

17

vCPU3vCPU2vCPU1

Shared Memory

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

On a single physical CPU:

OS Object Representing a Thread
• Traditional term: Thread Control Block (TCB)

• Holds contents of registers when thread is not running…

• … And other information the kernel needs to keep track of the thread
and its state.

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

18

Registers: x86 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

19Complex memory architecture with specialized registers and “segments”

Illusion of Multiple Processors
• At T1: vCPU1 on real core

• At T2: vCPU2 on real core

• What happened?

 OS ran [how?]

 Saved PC, SP, … in vCPU1’s thread control
block

 Loaded PC, SP, … from vCPU2’s thread control
block

• This is called context switch

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

20

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

On a single physical CPU:
T1T2

vCPU3vCPU2vCPU1

Shared Memory

Very Simple Multiprogramming
• All vCPUs share non-CPU resources

 Memory, I/O Devices

• Each thread can read/write memory

 Including data of others

 And the OS!

• Unusable?

• This approach is used in:

 Very early days of computing

 Embedded applications

 MacOS 1-9/Windows 3.1 (switch only with voluntary yield)

 Windows 95-ME

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

21

Today: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

22

Key OS Concept: Address Space
• Program operates in an address space that is distinct from the

physical memory space of the machine

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

23

0x000…

0xFFF…

Processor
MemoryTranslator

Registers

Address Space
• Definition: Set of accessible addresses and the state associated with

them

 232 = ~4 billion on a 32-bit machine

• What happens when you read or write to an address?

 Perhaps acts like regular memory

 Perhaps causes I/O operation

 (Memory-mapped I/O)

 Causes program to abort (segfault)?

 Communicate with another program

 …

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

24

0x000…

0xFFF…

Code

Static Data

Heap

Stack

Typical Address Space Structure 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

25

Processor

registers

PC:

SP:

0x000…

0xFFF…

Code

Static Data

Heap

Stack

Address Space
• What can the hardware do to help the OS protect itself from

programs? And programs from each other?

 Prevent processes from reading or writing to physical addresses it should
not have access to!

 Allow processes to read and write to physical addresses it should have
access to!

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

26

Base and Bound (no Translation) 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

27

Code

Static Data

Heap

Stack

Code

Static Data

Heap

Stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program

address

Base Address

Bound

<

1000…

1100…
1100…

• Can the program touch OS? Can it touch other
programs?

• Requires relocation, causes fragmentation

• Stack and heap have unknown sizes

• Memory sharing impossible

0010…
1010…

0100…

≥

Original Program

Issues with Simple Base and Bound

• Fragmentation problem over time

• Hard to do interprocess sharing

 E.g., to share code

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

28

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10
process 11

Base and Bound (with Translation) 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

29

Code

Static Data

Heap

Stack

Code

Static Data

Heap

Stack

0000…

FFFF…

1000…

Program

address

Base Address

Bound <

1000…

1100…
0100…

0010…
0010…

1010…

• Can the program touch OS? Can it touch other
programs?

• Fragmentation still an issue!

• Still no sharing!

• Stack and heaps are of variable size!

code

Static Data

heap

stack

0000…

0100…

Paged Virtual Address Space
• What if we break the entire virtual address space into equally sized

chunks (i.e., pages) and have a base and bound for each?

• All pages are of the same size, so it’s easy to place each page in
memory!

• Hardware translates addresses using a page table

 Each page has a separate base

 The “bound” is the page size

 Special hardware register stores pointer to page table

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

30

Paged Virtual Address Space

• Instructions operate on virtual addresses

• Virtual addresses translated at runtime to physical addresses via a page
table

• Special register holds page table base address of current process’ page
table

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

31

Processor

Registers Page Table

Memory

<Virtual Address> =

<Page #> <Page Offset>

Page
(eg, 4 kb)

<Page #>

<Page Offset>
instruction

PT Addr

<Page Addr>

Today: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

32

Key OS Concept: Process
• Definition: execution environment with restricted rights

 One or more threads executing in a single virtual address space (own page table)

 Owns file descriptors, network connections, etc.

• Instance of a running program

 When you run an executable, it runs in its own process

 Application: one or more processes working together

• Protected from each other; OS protected from them

• In modern OSes, anything that runs outside of the kernel runs in a process

 Even many of the OS services run in separate processes

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

33

Single and Multithreaded Processes
• Threads encapsulate

concurrency

 “Active” component

• Address space encapsulate
protection:

 “Passive” component

 Keeps bugs from crashing the
entire system

• Why have multiple threads per
address space?

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

34

Protection and Isolation
• Why?

 Reliability: bugs can only overwrite memory of process they are in

 Security and privacy: malicious or compromised process can’t read or write
other process’ data

 (to some degree) Fairness: enforce shares of disk, CPU

• Mechanisms:

 Address translation: address space only contains its own data

• BUT: why can’t a process change the page table pointer?

 Or use I/O instructions to bypass the system?

 Hardware must support privilege levels!

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

35

Today: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

36

Dual-Mode Operation
• One bit of state: processor is either in user mode or kernel mode

 x86 has four privilege levels: rank 0 (kernel) … rank 3 (user)

• Certain actions are only permitted in kernel mode (privileged
instructions), e.g.

 Changing the page table pointer (memory protection)

 Certain entries in the page table

 Hardware I/O instructions

 Disable interrupts (timers)

• State bit can’t be changed directly, is flipped only during execution of
special transfer operations

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

37

Dual-Mode Operation
• What hardware is needed to protect applications and users from one

another?

• Privileged instructions

 All potentially unsafe instructions are prohibited in user mode

• Memory protection

 All memory accesses outside of a process’s valid memory region are
prohibited when executing in user mode

• Timer interrupts

 Regardless of what a process does, the kernel must have a way to
potentially regain control from the current process

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

38

Dual-Mode Operation
• Processes (i.e., programs you run) execute in user mode

 To perform privileged actions, processes request services from the OS
kernel

 Carefully controlled transition from user to kernel mode

• Kernel executes in kernel mode

 Performs privileged actions to support running processes

 … and configures hardware to properly protect them (e.g., address
translation)

 Return to user mode through special instructions

 Return from interrupt

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

39

Three Types of User → Kernel Mode
Transfer
• System Call (“syscalls”)

 Process requests a system service (e.g., open a file)

 Like a function call, but “outside” the process

• Interrupt
 External asynchronous event, independent of the process

 e.g., Timer, I/O device

• Trap (exception)
 Internal synchronous event in process triggers context switch

 E.g., Divide by zero, bad memory access (segmentation fault)

• CONTROL TRANSFER User -> Kernel mode
 System calls constitute PROGRAMMED control transfer

 Interrupts and traps are UNPROGRAMMED control transfer mechanisms

• User process can’t jump to arbitrary instruction address in kernel!
 Why not?

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

40

Where do User → Kernel Mode
Transfers Go?

• Cannot let user programs specify
the exact address!

• Solution: Interrupt Vector

 OS kernel specifies a set of
functions that are entry points to
kernel mode

 Appropriate function is chosen
depending on the type of transition

 Interrupt Number (i)

 Type of interrupt

 Type of trap

 OS may do additional dispatch

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

41

in
te

rr
u

p
t

n
u

m
b
e
r

(i
)

intrpHandler_i () {
…
}

Address and properties

of each interrupt

handler

Interrupt vector

Example: Before Exception 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

42

Example: After Exception 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

43

Why don’t we just use

the user stack?

Life of a Process 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

44

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit

retn
interrupt

rfi

exception

Implementing Safe User → Kernel
Mode Transfers
• Carefully constructed kernel code packs up the user process state

and sets it aside

• Must handle weird/buggy/malicious user state

 Syscalls with null pointers, or otherwise invalid arguments

 Return instruction out of bounds

 User stack pointer out of bounds

• Should be impossible for buggy or malicious user program to cause
the kernel to corrupt itself

• User program should not know that an interrupt has occurred
(transparency)

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

45

Kernel System Call Handler
• Vector through well-defined syscall entry points!

 Table mapping system call number to handler

• Locate arguments

 In registers or on user (!) stack

• Copy arguments

 From user memory into kernel memory – carefully checking locations!

 Protect kernel from malicious code evading checks

• Validate arguments

 Protect kernel from errors in user code

• Copy results back

 Into user memory – carefully checking locations!

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

46

Kernel Stacks
• Interrupt handlers want a stack

• System call handlers want a stack

• Can't just use the user stack [why?]

 More convenient to store execution state of kernel if additional interrupt is
required (i.e. waiting for I/O operation, etc.)

 User-stack is in user-space

 Other user-threads could maliciously modify entries the kernel put on the stack
of the interrupted thread

 Works regardless of state of user-process

 User data could be corrupt or compromised

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

47

Kernel Stacks
• One Solution: two-stack model

 Each thread has user stack and a kernel stack

 Kernel stack stores user’s registers during an exception

 Kernel stack used to execute exception handler in the kernel

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

48

Hardware Support: Interrupt Control
• Interrupt processing not visible to the user process:

 Occurs between instructions, restarted transparently

 No change to process state

 Happens transparently to the process—user program does not know it was
interrupted

• Interrupt Handler invoked with interrupts ‘disabled’

 Re-enabled upon completion

 Non-blocking (run to completion, no waits)

 Pack up task in a queue and pass off to an OS thread for hard work

 wake up an existing OS thread

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

49

Hardware Support: Interrupt Control
• Interrupt processing not visible to the user process:

 Occurs between instructions, restarted transparently

 No change to process state

 What can be observed even with perfect interrupt processing?

 Execution time!

• Interrupt Handler invoked with interrupts ‘disabled’

 Re-enabled upon completion

 Non-blocking (run to completion, no waits)

 Pack up in a queue and pass off to an OS thread for hard work

 wake up an existing OS thread

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

50

How do we take Interrupts Safely?
• Interrupt vector

 Limited number of entry points into kernel

• Kernel interrupt stack
 Handler works regardless of state of user code

• Interrupt masking
 Handler is non-blocking

• Atomic transfer of control
 “Single instruction”-like to change:

 Program counter

 Stack pointer

 Memory protection

 Kernel/user mode

• Transparent restartable execution
 User program does not “know” interrupt occurred

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

51

Kernel → User Mode Transfers
• “Return from interrupt” instruction

 Drops mode from kernel to user privilege

 Restores user PC and stack

• Transfer to user mode happens for:

 Creation of a new process

 Switching to a different process

 User-level upcalls (signal handling, etc.)

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

52

Today: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

53

Now, let’s put it all
together!

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

54

vCPU3vCPU2vCPU1

Shared Memory

Illusion of Multiple Processors
• At T1: vCPU1 on real core

• At T2: vCPU2 on real core

• How did the OS get to run?

 Earlier, OS configured a hardware timer to
periodically generate an interrupt

 On the interrupt, the hardware switches to
kernel mode and the OS’s timer interrupt
handler runs

 Timer interrupt handler decides whether to
switch threads or not according to a policy

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

55

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

On a single physical CPU:

T1 T2

Scheduling

Scheduling

• Scheduling: Mechanism for deciding which processes/threads receive the
CPU

• Lots of different scheduling policies provide …
 Fairness or

 Realtime guarantees or

 Latency optimization or …

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

56

if (readyProcesses(PCBs)) {

nextPCB = selectProcess(PCBs);

run(nextPCB);

} else {

run_idle_process();

}

What’s in a Process?
• Process Control Block (PCB): Kernel representation of each process

 Process ID

 Thread control block(s)

 Program pointer, stack pointer, and registers for each thread

 Page table (information for address space translation)

 Necessary state to process system calls

 Which files are open and which network connections are accessible to the process

 All information that pertains to a process and has to be shared between all
threads of said process

 User information

 File path of executable on disk

 Current home directory of the process

 Process privileges

 Etc.

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

57

Mode Transfer and Translation
• Mode transfer should change address translation mapping

• Examples:

 Ignore base and bound in kernel mode

 Page tables:

 Either switch to kernel page table…

 Or mark some pages as only accessible in kernel mode

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

58

Base and Bound: OS Loads Process 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

59

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…Stored User PC

regs

sysmode

…

1

PC

0000…

FFFF…

Base and Bound: About to Switch 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

60

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0011 …Stored User PC

regs

sysmode

…

1

PC

0000…

FFFF…

• OS runs in privileged

mode, so it can set the

special registers

• “Return” to user

Base and Bound: User Code Running 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

61

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

xxxx …Stored User PC

regs

sysmode

…

0

PC

Base and Bound: Handle Interrupt 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

62

• Switch to kernel

mode, set up

interrupt handler

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234Stored User PC

regs

sysmode

…

1

IntrpVector[i]PC

0000…

FFFF…

Base and Bound: Switch to Process 1 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

63

• Save registers of

Process 2

• Restore registers of

Process 1

• Then execute RETI

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248Stored User PC

regs

sysmode

…

1

0001 0124PC

0000…

FFFF…

RETI

Base and Bound: Switch to Process 1 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

64

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx …Stored User PC

regs

sysmode

…

1

0000 0248PC

Putting it all Together: Web Server 1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

65

Server

Kernel

Hardware

request

buffer

reply

buffer

11. kernel copy
from user buffer
to network buffer

Network

interface Disk interface

12. format outgoing
packet and DMA

6. disk
request

10. network
socket
write

1. network
socket
read

2. copy arriving
packet (DMA)

syscall

wait

interrupt

3. kernel
copy

RTU

5. file
read

syscall

8. kernel
copy

RTU

7. disk data
(DMA)

interrupt

4. parse request 9. format reply

Request Reply

Conclusion: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

66

1
/1

5
/2

0
2
6
,
1
/2

7
/2

0
2
6

L
e
ct

u
re

 2

C
S

C
4
1
0
3
,
S

p
ri

n
g
 2

0
2
6
,
F

o
u

r
F

u
n

d
a
m

e
n

ta
l
O

S

C
o
n

ce
p

ts

67

