Abstractions 1:
Threads and

Processes

Lecture 3

Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103/

Recall: Four Fundamental OS
Concepts

- Thread: Execution Context
* Program Counter, Registers, Execution Flags, Stack

. Address Space (with Translation)
* Program’s view of memory is distinct from physical machine

-« Process: Instance of a Running Program
« Address space + one or more threads + ...

- Dual-Mode Operation and Protection
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Application

1 L°

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

)
Q
wm
b}
)
o
o

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Recall: Thread

- Definition: A single, unique execution context
- Program counter, registers, stack

- A thread is the OS abstraction for a CPU core
« A “virtual CPU” of sorts

- Registers hold the root state of the thread:
* Including program counter — pointer to the currently executing instruction
* The rest is “in memory”

- Registers point to thread state in memory:
- Stack pointer to the top of the thread’s (own) stack

Application

1 L°

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

O

@0

©)

Lecture 3

Recall: Illusion of Multiple
Processors

1/29/2026, 2/5/2026

- Threads are virtual cores

@ - Multiple threads: Multiplex hardware in time

- A thread is executing on a processor when it is
resident in that processor's registers

- Each virtual core (thread) has PC, SP, Registers

- Where 1s it?
- On the real (physical) core, or

On a single physical CPU:

- Saved in memory — called the Thread Control

Block (TCB)

0
)
92}
0
D]
Q
e
£
A
b
=
<
92}
RS
@
o
~
<
&
S
N
S
N
on
=
g
~
2,
n
o
—
QO
)
(@)

Lecture 3

1/29/2026, 2/5/2026

Recall: Address Space

- Program operates in an address space that is distinct from the
physical memory space of the machine

0x000...

Processor W
Translator J

Vv

Memory

Registers

wn
]
4]
wn
o8]
Q
o
il
&
e
<
(av]
2}
3
<
o
~
oo
S
<
N
(@)
(o]
o0
<
-
~
2,
n
&)
—
O
)
O

OXFFF. .o . Applicatior;
] L

Operating system
- -

Hardware

Lecture 3

1/29/2026, 2/5/2026

Recall: Process

Definition: execution environment with restricted rights
* One or more threads executing in a single address space

* Owns file descriptors, network connections

Instance of a running program
* When you run an executable, it runs in its own process
- Application: one or more processes working together

Protected from each other; OS protected from them

In modern OSes, anything that runs outside of the kernel runs in a
process

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Application

1 L°

Operating system
] [

Hardware

Recall: Dual-Mode Operation

. Processes (i.e., programs you run) execute in user mode

+ To perform privileged actions, processes request services from the OS
kernel

* Carefully controlled transition from user to kernel mode

- Kernel executes in kernel mode
« Performs privileged actions to support running processes

- ... and configures hardware to properly protect them (e.g., address
translation)

- Together, address translation and dual-mode operation allow the
kernel to protect processes from each other and itself from processes

Application

1 L°

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

O

@0

©)

Lecture 3

1/29/2026, 2/5/2026

Today: The Thread Abstraction

- What threads are
« And what they are not

- Why threads are useful (motivation)
- How to write a program using threads

- Alternatives to using threads

Application

-~ -

Operating system
{1 -

Hardware

Q
wm
b}
)
o
&
)
=]
fay]
)
xe}
<
o)
=
=
Ne)
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
O
@0
©)

€ 9IN309
930¢/9/G "9306/6¢/1

59001 PUR SpBaIY], ‘9G0g SULL

2
O
S
L
o
O
e

Lecture 3

1/29/2026, 2/5/2026

What Threads Are

Definition from before: A single unique execution context
* Describes its representation

It provides the abstraction of: A single execution sequence that
represents a separately schedulable task

« Also a valid definition!

Threads are a mechanism for concurrency

Protection is an orthogonal concept
« A protection domain can contain one thread or many

Application

1 L°

Operating system
] [

Hardware

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

O

@0

©)

Motivation for Threads

. Operating systems must handle multiple things at once (MTAO)
* Processes, interrupts, background system maintenance

- Networked servers must handle MTAO
« Multiple connections handled simultaneously

- Parallel programs must handle MTAO

+ To achieve better performance

- Programs with user interface often must handle MTAO
 To achieve user responsiveness while doing computation

- Network and disk bound programs must handle MTAO
+ To hide network/disk latency

Application

* Sequence steps In access or communication -~

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Lecture 3

1/29/2026, 2/5/2026

Threads Allow Handling MTAO

- Threads are a unit of concurrency provided by the OS

- Each thread can represent one thing or one task

Application

-~ -

Operating system
{1 -

Hardware

wm
Q
0
(95}
b}
)
o
&
)
=]
fay]
)
xe}
<
o)
=
=
Ne)
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
@0
©)

Multiprocessing vs.
Multiprogramming

- Multiprocessing: Multiple cores
- Multiprogramming: Multiple jobs/processes
- Multithreading: Multiple threads/processes

- What does it mean to run two threads concurrently?
* Scheduler is free to run threads in any order and interleaving

Aﬁ
Multi i B —
ulriprocessing C
A B
) : C ;

Multiprogramming A,B,C, A, B, 6 C B

Lecture 3

1/29/2026, 2/5/2026

wn
)
wn
wn
5
3
o
-]
Ay
xe)
a
o
wn
o)
b
D
=
<
e
N
(@)
N
a0
a
o=
5
(o
N
o
(@)
—
(@)
)
(@)

Lecture 3

1/29/2026, 2/5/2026

Silly Example for Threads

- Imagine the following program:

int main() {
compute pi("pi.txt");
print_class_list("classlist.txt");

- What is the behavior here?
- Program would never print out class list

- Why? compute_pi would never finish

Application

-~ -

Operating system
{1 -

Hardware

wm
o5}
n
(95}
b}
O
o
&
)
(=
fay]
0
xe}
<
o)
=
S
©
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
@0
(@)

Lecture 3

1/29/2026, 2/5/2026

Adding Threads

- Version of program with threads (loose syntax):

int main() {
create_thread(compute pi, "pi.txt");
create_thread(print_class list, "classlist.txt");

- create _thread: Spawns a new thread running the given procedure
* Should behave as if another CPU is running the given procedure

- Now, you would actually see the
class list

[0))
o5}
wm
(95}
)
O
o

=

A

)
(=
fay]
0

xe}
<
)
=

=

Ne)

AN

(@)

(o]
o0
o

o=
&
oF

N

o

S

()

—

<t

y

©)

@0

©)

Operating system
{1 -

Hardware

More Practical Motivation

Handle I/0 1n
separate thread,
avold blocking
other progress

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns

Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

] L

Operating system
- -

Hardware

Lecture 3

1/29/2026, 2/5/2026

wn
[¢D]
wn
wn
o]
D)
o
-]
A
<
o
(]
wn
e
(]
o
~
<
Sy
<
AN
S
(o]
on
o
=
~
o,
)
S
—
~
(@)
R
(@)

Lecture 3

1/29/2026, 2/5/2026

Threads Mask I/0 Latency

- A thread 1s in one of the following three states:
* RUNNING — running

* READY — eligible to run, but not currently running
* BLOCKED — 1neligible to run

- If a thread is waiting for an I/O to finish, the OS marks it as BLOCKED

- Once the I/0 finally finishes, the OS marks it as READY

Time

wm
o5}
n
(95}
)
O
o
=
A
)
(=
fay]
0
xe}
<
)
=
=
Ne)
AN
(@)
(o]
o0
o
o=
&
oF
N
o
oy
()
—
<t
y
©)
@0
©)

Lecture 3

1/29/2026, 2/5/2026

Threads Mask I/0 Latency

. If no thread performs I/0:

Time

- If thread 1 performs a blocking I/0O operation:

vCPUI1 starts I/0 operation I/O operation completes
Tlme . VprIication

1 L

)
a5}
0
1))
o5}
)
o

e

A~

el
=]
fay]
)

o)
<
5}
=

<

=

Ne)

AN

(a»)

)

(o]
on
=]

o=
~
(o}

wn

o

[a»)

)

—

<t

o

N

Operating system
1 L

Hardware

Lecture 3

Little Better Example for Threads

- Version of program with threads (loose syntax):

main() {
create_thread(read_large file, "pi.txt");
create_thread(render_user_interface);

}

- What is the behavior here?
- Still respond to user input
* While reading file in the background

[0))
o5}
wm
[4))
b}
O
o

s

)
(=
fay]
0

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
o

o=
&
oF

N

o

(@)

—
<

O

@0

(@)

Application

-~ -

Operating system
{1 -

Hardware

Multithreaded Programs

- You know how to compile a C program and run the executable
« This creates a process that is executing that program

- Initially, this new process has one thread in its own address space
- With code, globals, etc. as specified in the executable
* This thread runs main()

- Q: How can we make a multithreaded process?

- A Once the process starts, it issues system calls to create new threads
* These new threads are part of the process: they share its address space

Application

1 L°

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

)
Q
0
(95}
b}
)
o
o

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<

O

@0

©)

Lecture 3

1/29/2026, 2/5/2026

System Calls (“Syscalls”)

_ Word ProcessingW
Compilers eb Browsers

“But, I’ve never seen a syscall!” Email

« OS library issues system call

« Language runtime uses OS
library...

Web Servers

Databases Application / Service

Portable OS Library OS
System Call

User

Interface
Portable OS Kernel

System

Software Platform support, Device Drive

Hardware x86 PowerPC ARM

V Applicatior;

Ethernet (1Gbs/10Gbs) 802.11 a/g/nfac SCSI Graphics Thunderbolt Sl s
{ -

0
)
92}
0
o)
Q
o
S
[a®
e
=i
<
92}
e
<
o
~
<
B
S
N
S
N
on
=i
=
~
[
n
o
—
<t
QO
N
(@)

Hardware

Lecture 3

1/29/2026, 2/5/2026

OS Library Issues Syscalls

Proc
2 oo e
OS

n
]
n
n
o8]
Q
o
o
A
e
c
(o]
0
o
(v]
QL
~
<
S
<
N
=)
(o]
o0

OS library

i3l OS library M

0S

CSC4103, Sprin

Lecture 3

OS Library API for Threads:
pthreads

- int pthread create(pthread t* thread,
pthread attr_t const* attr,
void* (*start_routine)(void*), void* arg);
« thread is created executing start_routine with arg as its sole argument.
« Attributes attr are often NULL

1/29/2026, 2/5/2026

- int pthread join(pthread t thread, void** value ptr);
* suspends execution of the calling thread until the target thread terminates.

* On return with a non-NULL value ptr the value passed to pthread exit
by the terminating thread is made available in the location referenced
by value_ ptr.

- void pthread _exit(void* value ptr);
* terminates the thread and makes value ptr available to any successful join
* Return of start_routine is implicit call to pthread _exit m—
« Calling pthread_exit from main will implicitly join will all spawned threads -~

Operating system
] [

Hardware

"
%
w0
w0
O
O
o
-]

&

o
=i
@
wn

xe}
(v}
o
~

<
=

AN

(@)

x
a0
o

e
~
(o

N

o

(@)

—

<t

(@)

R

(@)

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Lecture 3

Peeking Ahead: System Call
Example

- What happens when pthread create(..) is called in a process?

©
N
©
N
~
Yo
~
N
©
N
©
X
=~
S
N
~
—

Library:
int pthread create(..) {
Do some work like a normal function..

asm code ..
syscall # into %eax
put args into registers %ebx,
special trap instruction Kernel:
get args from registers
Dispatch to system function
Do the work to spawn the new thread
Store return value in %eax

CSC4103, Spring 2026, Threads and Processes

get return values from registers e

Do some more work like a normal fn.. -

. Operating system
}s

1.

Hardware

_Iinclude <s5tdio. h>

#include =stdlib. h>
#include =pthread.h>
#include =string.h>

ThreadS Example int common = 162;

Lecture 3

)
|
)
|
)
|
)
|
)
|
)
|
[

void *threadfun(void *threadid)
{
long tid = {long)threadid;
[{base) CullerMacld:codedd culler$./pthread 4 printf{"Thread #%1x stack: %lx common: %lx Aot tid
Main stack: ?ffEEEEEbEbB, common: 18cfo5048 (162) {unsigned long) &tid, {unsigned Lgngr&_;':nmmnn' common++) ;
Thread #1 stack: 70080d83bef8 common: 1@cfI5048 (162) pthread_exit{NULL);
Thread #3 stack: 70800d941ef8 common: 1@8ct95848 (16 }
Thread #2 stack: 70000dBbeef8 common: 1@cf25048 (165)
Thread #@ stack: 70808d7bBef8 comman: 18cf95048 f163) int main {int argc, char *argv[]}
E i L . B . { §
long t; %
int nthreads = 2; é
if {(argc = 1} { -
. . nthreads = ateifargv[1]); £
« How many threads are in this } P
D) pthread_t *threads = malloc{nthreads*sizecof(pthread_t)); =
program: Mttt ME T s taTR T T, oMo Tt 2
° DOeS the main thread jOil’l Wlth {unsigned long) &t,{unsigned long) &common, common); :O
for{t=08; t= s t++1d &
the threads in the same Order int rc % pthread_create(&threads [t], WULL, threadfun, (void *)t); B
it {re) £
that they were Created? printf{"ERROR; return code from pthread_create() is %dw.n", rc); %
L exit(-1); o3
* Do the threads exit in the same } -
}
order they were created? 2
o If tll . for{t=0; tenthreads; t++){
we run € program again, pthread_join({threads[t], MNULL);

‘)
WOUld the I'eSU.It Change' pthread_exit(NULL); f#+ last thing in the main thread =/

Lecture 3

1/29/2026, 2/5/2026

Fork-Join Pattern

- Main thread creates (forks) collection of sub-threads passing them
arguments to work on...

- ... and then joins with them, collecting results. Applcatn
=

wm
o5}
n
(95}
b}
O
o
&
)
(=
fay]
0
xe}
<
o)
=
S
©
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
O
@0
(@)

Operating system

T -

Hardware

Lecture 3

Memory Layout with Two Threads

: OxFFF...
- Two sets of CPU registers)

- Two stacks

- Issues:

- How do we position stacks relative to
each other?

- What maximum size should we choose
for the stacks?

« What happens if threads violate this?
« How might you catch violations?

o0rdg SSaIppVy

wm
o5}
n
(95}
b}
O
o
&
)
(=
fay]
0
xe}
<
o)
=
S
©
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
@0
(@)

Application

Code -~

Operating system
{1 -

Hardware

Lecture 3

Announcements

 Project 0 1s due Monday, February 9
- Attend next lecture for a walk through
* Work through Study Guide: x86

- Assignment 1 has been posted
* Due Monday, February 23

-« Project 1 will be posted soon as well
* Groups have been assigned

[0))
o5}
n
(95}
b}
O
o
s
)
(=
fay]
0
xe}
<
o)
=
=
Ne)
AN
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
@0
(@)

Application

-~ -

Operating system
"=

Hardware

€ 9IN309
930¢/9/G "9306/6¢/1

S900IJ pUB SpeaIy], ‘9303 SuLidg ‘e0T#)SD

11N1SIN

o
-
v
o

Cm
(v
D

—]
=
D

<+
-

]

Nondeterm

Lecture 3

©
A
=)
N
~
0
S~
A
Nej
(o]
©
N
=~
(o))
N
~
—

Thread Abstraction

- Illusion: Infinite number of processors

- Reality: Threads execute with variable “speed”
* Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality £
o Bt el it sl E
Threads|S S S St § 1 IS|SIS S S L
:1:2:3:4:5: 112 13 4 s =
Processors | k| frm | drd| k| e | B | d
..1__LE_I_3_I_L1|_§_| |._1_|_2_.| %
Running Ready | 7 =
Threads Threads Appcatin 7

=

Operating system
- -

Hardware

Programmer vs. Processor View

Programmer’s Possible
View Execution
#1
X=x+1; X=X+1;
y=y+X; y=Yy+X;
Z =X +5y; Z=X+ 5y,

Possible
Execution
#2

thread is suspended
other thread(s) run
thread is resumed

Possible
Execution
#3

X=X+ 1
y=Yy+X
thread is suspended
other thread(s) run
thread is resumed

Application

] L

Operating system

T T -

Hardware

Lecture 3

1/29/2026, 2/5/2026

wn
[¢D]
wn
wn
o]
D)
o
-]
A
<
o
(]
wn
e
(]
o
~
<
Sy
<
AN
S
(o]
on
o
=
~
o,
)
S
—
~
(@)
R
(@)

Lecture 3

1/29/2026, 2/5/2026

Possible Executions

Thread 1] Thread 1 | |
Thread 2 1 Thread 2 | |
Thread 3 1 Thread3 | |
a) One execution b) Another execution m
Thread 1 ?25
Thread2 3 D0 O3 £
Thread 3] O] .

c) Another execution

Lecture 3

1/29/2026, 2/5/2026

Correctness with Concurrent Threads

- Non-determinism:
* Scheduler can run threads in any order
* Scheduler can switch threads at any time
* This can make testing very difficult

- Independent Threads
« No state shared with other threads

* Deterministic, reproducible conditions

- Cooperating Threads
« Shared state between multiple threads

- Goal: Correctness by Design

)
Q
0
(95}
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Application

-~ -

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

Race Conditions

- What are the possible values of x below after all threads finish?

- Initially x == @ andy ==

Thread A Thread B
X = 1; y = 2;

- Must be 1. Thread B does not interfere.

14)]
O
wn
wn
O
O
o
-]
&
o
@}
fav]
wn
xe}
(v}
o
~
<
=
AN
(@)
(o]
a0
o
e
~
(o
N
o
(@)
—
(@)
R
(@)

Lecture 3

1/29/2026, 2/5/2026

Race Conditions

- What are the possible values of x below?

- Initially x == @ andy ==
Thread A Thread B
X =y +1; y = 2;
y =y * 2;

- 1 or 3 or 5 (non-deterministic)

"
%
w0
w0
O
O
o
-]

&

o
=i
@
wn

xe}
(v}
o
~

<
=

AN

(@)

x
a0
o

e
~
(o

N

o

(@)

—

<t

(@)

R

(@)

- Race Condition: Thread A races against Thread B

Lecture 3

1/29/2026, 2/5/2026

Relevant Definitions

- Synchronization: Coordination among threads, usually regarding
shared data

- Mutual Exclusion: Ensuring only one thread does a particular thing
at a time (one thread excludes the others)

* Type of synchronization

- Critical Section: Code exactly one thread can execute at once
« Result of mutual exclusion

- Lock: An object only one thread can hold at a time
* Provides mutual exclusion

« Also called Mutex

Application

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Lecture 3

1/29/2026, 2/5/2026

Locks (Mutexes)

- Locks provide two atomic operations:
* Lock.acquire() — wait until lock is free; then mark it as busy
- After this returns, we say the calling thread holds the lock
* Lock.release() — mark lock as free
* Should only be called by a thread that currently holds the lock
- After this returns, the calling thread no longer holds the lock

- For now, don’t worry about how to implement locks!
« We'll cover that in substantial depth later on in the class

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Application

1 L°

Operating system
] [

Hardware

3

1/29/2026, 2/5/2026
Lecture

Example: Shared Data Structure

- Thread A -« Thread B

13
Insert(4)

- Get(6)

Tree-Based Set Data Structure

. Insert(3)

0
o8]
n
n
o8]
Q
o
o
A
e
=
(o]
0
2
(v]
QL
~
<
S
<
N
=)
(o]
o0

CSC4103, Sprin

Example: Shared Data Structure

- Thread A -« Thread B
. Insert(3): . Insert(4):
- Lock.acquire() - Lock.acquire()
« Insert 3 into the data « Insert 4 into the
structure data structure

- Lock.release()

. Get(6):
- Lock.acquire()

* Check for
membership

- Lock.release()

« Lock.release()

Tree-Based Set Data Structure

Lecture 3

1/29/2026, 2/5/2026

wn
]
92}
0
O]
Q
e
o
A
.
=
<
92}
2
<
o
~
<
)
<
N
=)
(2]
o0
=
=
~
2,
n
=
—
O
0
(@)

OS Library Locks: pthreads

- int pthread mutex_init(
pthread mutex_ t* mutex,
pthread mutexattr_t const* attr)

« Attributes are most of the time NULL

- int pthread_mutex_lock(pthread_mutex_t* mutex);

- int pthread mutex unlock(pthread mutex_ t* mutex);

- You'll get a chance to use these in Assignment 1

Application

Lecture 3

1/29/2026, 2/5/2026

)
Q
0
[4))
b}
)
o
o

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Lecture 3

1/29/2026, 2/5/2026

Our Example

int common = 162;
pthread_mutex_t commen_lock = PTHREAD MUTEX_INITIALIZER;

void #threadfun(void *threadid)
{
long tid = (leng)threadid;
.) pthread_mutex_lock{&common_lock);
Critical SGCthIl«{: int my_common = common++;
pthread_mutex_unlock{&common_lock);

printf("Thread #%1lx stack: %lx common: %lx (%d)\n", tid,
{unsigned long) &tid,
I {unsigned long) &common, my_common);
pthread_exit(NULL);

"
%
w0
w0
O
O
o
-]

&

o
=i
@
wn

xe}
(v}
o
~

<
=

AN

(@)

x
a0
o

e
~
(o

N

o

(@)

—
<t

(@)

R

(@)

Note: pthread mutex_init was called once in main thread | :: "

Operating system
- -

Hardware

Lecture 3

1/29/2026, 2/5/2026

Semaphore

- Semaphores are a kind of generalized lock
 First defined by Dijkstra in late 60s
- Main synchronization primitive used in original UNIX (& Pintos)

- Definition: a Semaphore has an integer value and supports the
following two operations:

* P() or down(): atomic operation that waits for semaphore to become
positive, then decrements it by 1

* V() or up(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any

. P() stands for “proberen” (to test) and V() stands for “verhogen” (to
increment) in Dutch

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

O

@0

©)

Application

1 L°

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

Two Important Semaphore Patterns

. Mutual Exclusion: (Like lock)

+ Called a "binary semaphore®

initial value of semaphore = 1;

semaphore.down();
// Critical section goes here
semaphore.up();

- Signaling other threads, e.g. ThreaddJoin

initial value of semaphore = © ThreadFinish {

ThreadJoin { semaphore.up();
semaphore.down(); "”/”,,,//” }
} W—Tpplication

wm
o5}
n
(95}
b}
O
o
&
)
(=
fay]
0
xe}
<
o)
=
S
©
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
@0
(@)

-~ -

Operating system
{1 -

Hardware

€ 9IN309
930¢/9/G "9306/6¢/1

9559001 J pUe SpeaIy], ‘9g0g SULL

0
D
0
0
D
QO
©
==

al

Lecture 3

1/29/2026, 2/5/2026

Recall: Process

Definition: execution environment with restricted rights
* One or more threads executing in a single address space

* Owns file descriptors, network connections

Instance of a running program
* When you run an executable, it runs in its own process
- Application: one or more processes working together

Protected from each other; OS protected from them

In modern OSes, anything that runs outside of the kernel runs in a
process

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Application

1 L°

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

Recall: Life of a Process

0
o8]
n
n
o8]
Q
o
o
A
e
=
(o]
0
2
(v]
QL
~
<
S
<
N
=)
(o]
o0

CSC4103, Sprin

Limited HW access Full HW access

Lecture 3

1/29/2026, 2/5/2026

Processes

- How to manage process state?
- How to create a process?
- How to exit from a process?

- Remember: Everything outside of the kernel is running in a process!
- Including the shell! (Assignment 2)

- Processes are created and managed... by processes!

wm
o5}
n
(95}
b}
O
o
&
)
(=
fay]
0
xe}
<
o)
=
S
©
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
@0
(@)

Application
] L

Operating system

T -

Hardware

Lecture 3

1/29/2026, 2/5/2026

Bootstrapping

- If processes are created by other processes, how does the first process
start?

- First process 1s started by the kernel
« Often configured as an argument to the kernel before the kernel boots

- After this, all processes on the system are created by other processes

Application

-~ -

Operating system
{1 -

Hardware

[0))
o5}
wm
b}
O
o

s

)
(=
fay]
0

xe}
<
o)
=

S

©

AN

(@)

(o]
o0
o

o=
&
oF

N

o

(@)

—

<t

Q

@0

(@)

Lecture 3

1/29/2026, 2/5/2026

Process Management API

exit — terminate a process

fork — copy the current process

wait — wait for a process to finish

exec — change the program being run by the current process

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

Application

1 L°

Operating system
] [

Hardware

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

O

@0

©)

Lecture 3

©
A
=)
N
~
0
S~
A
Nej
(o]
©
N
=~
(o))
N
~
—

pid.c

#include <stdlib.h> Q: What if we let main return
?”Ciuje <S:d?°°h; without ever calling exit?
include <string.n> . .
sinclude <unictd. hs The OS Library calls exit() for
#include <sys/types.h> us! ¢
* The entrypoint of the executable is m
int main(int argc, char *argv[]) in the OS Iibrary —%
/* get current processes PID */ * 05 Ilt?rary calls maln_) é
pid t pid = getpid(); * [f main returns, OS library calls exit g
printf("My pid: %d\n", pid); * You'll see this in Project O:
entry.c ‘
exit(0); _ =
} Application é

-~ -

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

Process Management API

exit — terminate a process

fork — copy the current process

wait — wait for a process to finish

exec — change the program being run by the current process

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

Application

1 L°

Operating system
] [

Hardware

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

O

@0

©)

Lecture 3

1/29/2026, 2/5/2026

Creating Processes

- pid_t fork() — copy the current process
* New process has different pid
* New process contains a single thread

- State of original process duplicated in both Parent and Child!
- Address Space (Memory), File Descriptors (covered later), etc...

- Return value from fork(): pid (like an integer)
* When > 0:
- Running in (original) Parent process
+ return value 1s pid of new child
* When =0:
* Running in new Child process
* When < 0:

« Error! Must handle somehow

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

) . L. Application
+ Running in original process P

Operating system
] [

Hardware

Lecture 3

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {

pid t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid t cpid = fork();

if (cpid > 9) { /* Parent Process */
printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */
printf("[%d] child\n", getpid());

} else {
perror("Fork failed");

} Application

} S T -

Operating system
{1 -

Hardware

wm
o5}
n
(95}
b}
O
o
&
)
(=
fay]
0
xe}
<
o)
=
S
©
N
(@)
(o]
o0
o
o=
&
oF
N
o
(@)
—
<t
Q
@0
(@)

Lecture 3

1/29/2026, 2/5/2026

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {

pid t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid t cpid = fork();

if (cpid > 9) { /* Parent Process */
printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */
printf("[%d] child\n", getpid());

} else {
perror("Fork failed");

} Application
} { T
Operating system
- -

Hardware

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Lecture 3

1/29/2026, 2/5/2026

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {

pid t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid t cpid = fork();

if (cpid > 9) { /* Parent Process */
printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */
printf("[%d] child\n", getpid());

} else {
perror("Fork failed");

} Application
} { T
Operating system
- -

Hardware

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Lecture 3

1/29/2026, 2/5/2026

Process Management API

exit — terminate a process

fork — copy the current process

wait — wait for a process to finish ‘

exec — change the program being run by the current process

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

Application

1 L°

Operating system
] [

Hardware

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

O

@0

©)

Lecture 3

fork2.c — parent waits for child to
finish

int status;
pid t tcpid;

1/29/2026, 2/5/2026

cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

ses

b}
)
o
=
A
)
=]
fay]
)
xe}
<
o)
=
=
Ne)
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
@0
©)

Lecture 3

1/29/2026, 2/5/2026

Process Management API

exit — terminate a process

fork — copy the current process

wait — wait for a process to finish

exec — change the program being run by the current process

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

Application

1 L°

Operating system
] [

Hardware

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

O

@0

©)

Lecture 3

Running Another Program

- With threads, we could call pthread_create to create a new thread
executing a separate function

- With processes, the equivalent would be spawning a new process
executing a different program (i.e. fork and exec)

- How can we do this?

Application

-~ -

Operating system
{1 -

Hardware

[0))
o5}
wn
(95}
b}
O
o

&

)
(=
fay]
0

xe}
<
o)
=

S

©

N

(@)

(o]
o0
o

o=
&
oF

N

o

(@)

—

O

@0

(@)

Lecture 3

1/29/2026, 2/5/2026

fork3.c

cpid = fork();

if (cpid > 0) { /* Parent Process */
tcpid = wait(&status);
} else if (cpid == 0) { /* Child Process */

char *args[] = {"1s", "-1", NULL};

execv("/bin/1s", args);

/* execv doesn't return when it works.
So, if we got here, it failed! */

perror("execv failed");

exit(1);

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Application

1 L°

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

Process Management API

exit — terminate a process

fork — copy the current process

wait — wait for a process to finish

exec — change the program being run by the current process

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

Application

-~ -

Operating system
] [

Hardware

"
%
w0
w0
O
O
o
-]

&

o
=i
@
wn

xe}
(v}
o
~

<
=

AN

(@)

x
a0
o

e
~
(o

N

o

(@)

—

<t

(@)

R

(@)

inf_loop.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal callback _handler(int signum) {
printf("Caught signall!\n");
exit(1);

}

int main() {
struct sigaction sa;
sa.sa_flags = 0;
sigemptyset(&sa.sa _mask);
sa.sa_handler = signal callback handler;
sigaction(SIGINT, &sa, NULL);
while (1) {}

- Q: What would happen if the process
receives a SIGINT signal, but does not
register a signal handler?

- A: The process dies!

- For each signal, there is a default
handler defined by the system

Application

1 L°

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

)
Q
wm
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Lecture 3

Common POSIX Signals

« SIGINT — control-C
« SIGTERM — default for kill shell command
- SIGSTP — control-Z (default action: stop process)

« SIGKILL, SIGSTOP — terminate/stop process
+ Can’t be changed with sigaction
* Why?

Application

Q
wm
b}
)
o
&
)
=]
fay]
)
xe}
<
o)
=
S
©
AN
(@)
(o]
o0
=]
o=
&
o8
N
o
(@)
—
<t
&)
@0
©)

Shell

- A shell is a job control system

- Allows programmer to create and manage a set of programs to do some
task

-« You will build your own shell in Assignment 2...
- ... using fork and exec system calls to create new processes...
* ... and the File I/O system calls we’ll see next time to link them together

Application

-~ -

Operating system
{1 -

Hardware

Lecture 3

[0))
o5}
wn
(95}
b}
O
o

s

)
(=
fay]
0

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
o

o=
&
oF

N

o

(@)

—

O

@0

(@)

Lecture 3

1/29/2026, 2/5/2026

Process vs. Thread APlIs

- Why have fork() and exec() system calls for processes, but just a
pthread create() function for threads?

+ Convenient to fork without exec: put code for parent and child in one
executable instead of multiple

- It will allow us to programmatically control child process’ state
- By executing code before calling exec() in the child

« We'll see this in the case of File I/O next time

- Windows uses CreateProcess() instead of fork()
« Also works, but a more complicated interface

)
Q
0
(95}
b}
)
o
=

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<t

&)

@0

©)

Application

-~ -

Operating system
] [

Hardware

Lecture 3

1/29/2026, 2/5/2026

Threads vs. Processes

- If we have two tasks to run concurrently, do we run them in separate
threads, or do we run them in separate processes?

- Depends on how much i1solation we want
- Threads are lighter weight [why?]
* Processes are more strongly isolated

[0))
o5}
wm
b}
O
o

s

)
(=
fay]
0

xe}
<
o)
=

S

©

AN

(@)

(o]
o0
o

o=
&
oF

N

o

(@)

—

<t

Q

@0

(@)

Application
] L

Operating system

T -

Hardware

Lecture 3

1/29/2026, 2/5/2026

Conclusion

- Threads are the OS unit of concurrency
+ Abstraction of a virtual CPU core
« Can use pthread create, etc., to manage threads within a process
* They share data — need synchronization to avoid data races

- Processes consist of one or more threads in an address space
- Abstraction of the machine: execution environment for a program
- Can use fork, exec, etc. to manage threads within a process

- We saw the role of the OS library
* Provide API to programs
* Interface with the OS to request services

)
Q
0
b}
)
o
o

A

)
=]
fay]
)

xe}
<
o)
=

=

Ne)

AN

(@)

(o]
o0
=]

o=
&
o8

N

o

(@)

—

<

O

@0

©)

Application

1 L°

Operating system
] [

Hardware

Lecture 3

CENTER FOR COMPUTATION
& TECHNOLOGY

1/29/2026, 2/5/2026

CSC4103, Spring 2026, Threads and Processes

~J
-

