
Abstractions 1:
Threads and
Processes
Lecture 3

Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103/

Recall: Four Fundamental OS
Concepts
• Thread: Execution Context

 Program Counter, Registers, Execution Flags, Stack

• Address Space (with Translation)

 Program’s view of memory is distinct from physical machine

• Process: Instance of a Running Program

 Address space + one or more threads + …

• Dual-Mode Operation and Protection

 Only the “system” can access certain resources

 Combined with translation, isolates programs from each other

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

2

Recall: Thread
• Definition: A single, unique execution context

 Program counter, registers, stack

• A thread is the OS abstraction for a CPU core

 A “virtual CPU” of sorts

• Registers hold the root state of the thread:

 Including program counter – pointer to the currently executing instruction

 The rest is “in memory”

• Registers point to thread state in memory:

 Stack pointer to the top of the thread’s (own) stack

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

3

Recall: Illusion of Multiple
Processors

• Threads are virtual cores

• Multiple threads: Multiplex hardware in time

• A thread is executing on a processor when it is
resident in that processor's registers

• Each virtual core (thread) has PC, SP, Registers

• Where is it?

 On the real (physical) core, or

 Saved in memory – called the Thread Control
Block (TCB)

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

4

vCPU3vCPU2vCPU1

Shared Memory

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

On a single physical CPU:

Recall: Address Space
• Program operates in an address space that is distinct from the

physical memory space of the machine

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

5

Processor
Memory

0x000…

0xFFF…

Translator
Registers

Recall: Process
• Definition: execution environment with restricted rights

 One or more threads executing in a single address space

 Owns file descriptors, network connections

• Instance of a running program

 When you run an executable, it runs in its own process

 Application: one or more processes working together

• Protected from each other; OS protected from them

• In modern OSes, anything that runs outside of the kernel runs in a
process

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

6

Recall: Dual-Mode Operation
• Processes (i.e., programs you run) execute in user mode

 To perform privileged actions, processes request services from the OS
kernel

 Carefully controlled transition from user to kernel mode

• Kernel executes in kernel mode

 Performs privileged actions to support running processes

 … and configures hardware to properly protect them (e.g., address
translation)

• Together, address translation and dual-mode operation allow the
kernel to protect processes from each other and itself from processes

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

7

Today: The Thread Abstraction
• What threads are

 And what they are not

• Why threads are useful (motivation)

• How to write a program using threads

• Alternatives to using threads

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

8

Threads

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

9

What Threads Are
• Definition from before: A single unique execution context

 Describes its representation

• It provides the abstraction of: A single execution sequence that
represents a separately schedulable task

 Also a valid definition!

• Threads are a mechanism for concurrency

• Protection is an orthogonal concept

 A protection domain can contain one thread or many

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

10

Motivation for Threads
• Operating systems must handle multiple things at once (MTAO)

 Processes, interrupts, background system maintenance

• Networked servers must handle MTAO

 Multiple connections handled simultaneously

• Parallel programs must handle MTAO

 To achieve better performance

• Programs with user interface often must handle MTAO

 To achieve user responsiveness while doing computation

• Network and disk bound programs must handle MTAO

 To hide network/disk latency

 Sequence steps in access or communication

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

11

Threads Allow Handling MTAO
• Threads are a unit of concurrency provided by the OS

• Each thread can represent one thing or one task

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

12

Multiprocessing vs.
Multiprogramming
• Multiprocessing: Multiple cores

• Multiprogramming: Multiple jobs/processes

• Multithreading: Multiple threads/processes

• What does it mean to run two threads concurrently?

 Scheduler is free to run threads in any order and interleaving

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

14

A B C

BA ACB C BMultiprogramming

A

B

C
Multiprocessing

Silly Example for Threads
• Imagine the following program:

int main() {

compute_pi("pi.txt");

print_class_list("classlist.txt");

}

• What is the behavior here?

• Program would never print out class list

• Why? compute_pi would never finish

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

15

Adding Threads
• Version of program with threads (loose syntax):

int main() {

create_thread(compute_pi, "pi.txt");

create_thread(print_class_list, "classlist.txt");

}

• create_thread: Spawns a new thread running the given procedure
 Should behave as if another CPU is running the given procedure

• Now, you would actually see the
class list

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

16

CPU1 CPU2 CPU1 CPU2

Time

CPU1 CPU2

More Practical Motivation 1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

17

Handle I/O in

separate thread,

avoid blocking

other progress

Threads Mask I/O Latency
• A thread is in one of the following three states:

 RUNNING – running

 READY – eligible to run, but not currently running

 BLOCKED – ineligible to run

• If a thread is waiting for an I/O to finish, the OS marks it as BLOCKED

• Once the I/O finally finishes, the OS marks it as READY

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

18

vCPU1 vCPU2 vCPU1 vCPU2

Time

vCPU1 vCPU2

• If thread 1 performs a blocking I/O operation:

Threads Mask I/O Latency
• If no thread performs I/O:

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

19

vCPU1 vCPU2 vCPU1 vCPU2

Time

vCPU1 vCPU2

vCPU1 vCPU2

Time

vCPU1 vCPU2

vCPU1 starts I/O operation I/O operation completes

Little Better Example for Threads
• Version of program with threads (loose syntax):

main() {

create_thread(read_large_file, "pi.txt");

create_thread(render_user_interface);

}

• What is the behavior here?

 Still respond to user input

 While reading file in the background

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

20

Multithreaded Programs
• You know how to compile a C program and run the executable

 This creates a process that is executing that program

• Initially, this new process has one thread in its own address space

 With code, globals, etc. as specified in the executable

 This thread runs main()

• Q: How can we make a multithreaded process?

• A: Once the process starts, it issues system calls to create new threads

 These new threads are part of the process: they share its address space

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

21

System Calls (“Syscalls”) 1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

22

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call

Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

“But, I’ve never seen a syscall!”

• OS library issues system call

• Language runtime uses OS

library…

OS Library Issues Syscalls 1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

23

OS

Proc

1

Proc

2

Proc

n…

OS

App login Window

Manager

…

OS library OS library OS librarylibc:

OS Library API for Threads:
pthreads
• int pthread_create(pthread_t* thread,

pthread_attr_t const* attr,
void* (*start_routine)(void*), void* arg);

 thread is created executing start_routine with arg as its sole argument.

 Attributes attr are often NULL

• int pthread_join(pthread_t thread, void** value_ptr);
 suspends execution of the calling thread until the target thread terminates.

 On return with a non-NULL value_ptr the value passed to pthread_exit
by the terminating thread is made available in the location referenced
by value_ptr.

• void pthread_exit(void* value_ptr);
 terminates the thread and makes value_ptr available to any successful join

 Return of start_routine is implicit call to pthread_exit

 Calling pthread_exit from main will implicitly join will all spawned threads

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

24https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Peeking Ahead: System Call
Example
• What happens when pthread_create(…) is called in a process?

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

25

Library:
int pthread_create(…) {

Do some work like a normal function…

asm code …
syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from registers
Do some more work like a normal fn…

};

get args from registers
Dispatch to system function
Do the work to spawn the new thread
Store return value in %eax

Kernel:

Threads Example 1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

26

• How many threads are in this

program?

• Does the main thread join with

the threads in the same order

that they were created?

• Do the threads exit in the same

order they were created?

• If we run the program again,

would the result change?

Fork-Join Pattern
• Main thread creates (forks) collection of sub-threads passing them

arguments to work on…

• … and then joins with them, collecting results.

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

27

create

exit

join

Memory Layout with Two Threads
• Two sets of CPU registers

• Two stacks

• Issues:

 How do we position stacks relative to
each other?

 What maximum size should we choose
for the stacks?

 What happens if threads violate this?

 How might you catch violations?

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

28

Code

Global Data

Heap

Stack 1

Stack 2

A
d

d
re

ss S
p

a
ce

0x000…

0xFFF…

Announcements
• Project 0 is due Monday, February 9

 Attend next lecture for a walk through

 Work through Study Guide: x86

• Assignment 1 has been posted

 Due Monday, February 23

• Project 1 will be posted soon as well

 Groups have been assigned

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

29

Interleaving and
Nondeterminism

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

30

Thread Abstraction
• Illusion: Infinite number of processors

• Reality: Threads execute with variable “speed”

 Programs must be designed to work with any schedule

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

31

Programmer vs. Processor View 1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

32

Possible Executions 1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

33

Correctness with Concurrent Threads
• Non-determinism:

 Scheduler can run threads in any order

 Scheduler can switch threads at any time

 This can make testing very difficult

• Independent Threads

 No state shared with other threads

 Deterministic, reproducible conditions

• Cooperating Threads

 Shared state between multiple threads

• Goal: Correctness by Design

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

34

Race Conditions
• What are the possible values of x below after all threads finish?

• Initially x == 0 and y == 0

• Must be 1. Thread B does not interfere.

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

35

Thread A

x = 1;

Thread B

y = 2;

Race Conditions
• What are the possible values of x below?

• Initially x == 0 and y == 0

• 1 or 3 or 5 (non-deterministic)

• Race Condition: Thread A races against Thread B

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

36

Thread A

x = y + 1;

Thread B

y = 2;

y = y * 2;

Relevant Definitions
• Synchronization: Coordination among threads, usually regarding

shared data

• Mutual Exclusion: Ensuring only one thread does a particular thing
at a time (one thread excludes the others)

 Type of synchronization

• Critical Section: Code exactly one thread can execute at once

 Result of mutual exclusion

• Lock: An object only one thread can hold at a time

 Provides mutual exclusion

 Also called Mutex

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

37

Locks (Mutexes)
• Locks provide two atomic operations:

 Lock.acquire() – wait until lock is free; then mark it as busy

 After this returns, we say the calling thread holds the lock

 Lock.release() – mark lock as free

 Should only be called by a thread that currently holds the lock

 After this returns, the calling thread no longer holds the lock

• For now, don’t worry about how to implement locks!

 We’ll cover that in substantial depth later on in the class

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

38

Example: Shared Data Structure
• Thread A

• Insert(3)

• Thread B

• Insert(4)

• Get(6)

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

39

Tree-Based Set Data Structure

Example: Shared Data Structure
• Thread A

• Insert(3):

 Lock.acquire()

 Insert 3 into the data
structure

 Lock.release()

• Thread B

• Insert(4):

 Lock.acquire()

 Insert 4 into the
data structure

 Lock.release()

• Get(6):

 Lock.acquire()

 Check for
membership

 Lock.release()

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

40Tree-Based Set Data Structure

OS Library Locks: pthreads
• int pthread_mutex_init(

pthread_mutex_t* mutex,
pthread_mutexattr_t const* attr)

 Attributes are most of the time NULL

• int pthread_mutex_lock(pthread_mutex_t* mutex);

• int pthread_mutex_unlock(pthread_mutex_t* mutex);

• You’ll get a chance to use these in Assignment 1

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

41

Our Example 1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

42

Critical section

Note: pthread_mutex_init was called once in main thread

Semaphore
• Semaphores are a kind of generalized lock

 First defined by Dijkstra in late 60s

 Main synchronization primitive used in original UNIX (& Pintos)

• Definition: a Semaphore has an integer value and supports the
following two operations:

 P() or down(): atomic operation that waits for semaphore to become
positive, then decrements it by 1

 V() or up(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any

• P() stands for “proberen” (to test) and V() stands for “verhogen” (to

increment) in Dutch

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

43

Two Important Semaphore Patterns
• Mutual Exclusion: (Like lock)

 Called a "binary semaphore“

initial value of semaphore = 1;

semaphore.down();
// Critical section goes here

semaphore.up();

• Signaling other threads, e.g. ThreadJoin

initial value of semaphore = 0

ThreadJoin {

semaphore.down();
}

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

44

ThreadFinish {
semaphore.up();

}

Processes

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

45

Recall: Process
• Definition: execution environment with restricted rights

 One or more threads executing in a single address space

 Owns file descriptors, network connections

• Instance of a running program

 When you run an executable, it runs in its own process

 Application: one or more processes working together

• Protected from each other; OS protected from them

• In modern OSes, anything that runs outside of the kernel runs in a
process

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

46

Recall: Life of a Process 1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

47

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit

rtn

interrupt

rfi

exception

Processes
• How to manage process state?

 How to create a process?

 How to exit from a process?

• Remember: Everything outside of the kernel is running in a process!

 Including the shell! (Assignment 2)

• Processes are created and managed… by processes!

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

48

Bootstrapping
• If processes are created by other processes, how does the first process

start?

• First process is started by the kernel

 Often configured as an argument to the kernel before the kernel boots

• After this, all processes on the system are created by other processes

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

49

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

50

pid.c
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[])

{

/* get current processes PID */

pid_t pid = getpid();

printf("My pid: %d\n", pid);

exit(0);

}

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

51

Q: What if we let main return

without ever calling exit?
• The OS Library calls exit() for

us!
• The entrypoint of the executable is

in the OS library
• OS library calls main
• If main returns, OS library calls exit
• You’ll see this in Project 0:
entry.c

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

52

Creating Processes
• pid_t fork() – copy the current process

 New process has different pid

 New process contains a single thread

• State of original process duplicated in both Parent and Child!
 Address Space (Memory), File Descriptors (covered later), etc…

• Return value from fork(): pid (like an integer)

 When > 0:

 Running in (original) Parent process

 return value is pid of new child

 When = 0:

 Running in new Child process

 When < 0:

 Error! Must handle somehow

 Running in original process

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

53

fork1.c
#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

pid_t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid_t cpid = fork();

if (cpid > 0) { /* Parent Process */

printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */

printf("[%d] child\n", getpid());

} else {

perror("Fork failed");

}

}

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

54

fork1.c
#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

pid_t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid_t cpid = fork();

if (cpid > 0) { /* Parent Process */

printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */

printf("[%d] child\n", getpid());

} else {

perror("Fork failed");

}

}

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

55

p

fork1.c
#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

pid_t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

pid_t cpid = fork();

if (cpid > 0) { /* Parent Process */

printf("[%d] parent of [%d]\n", getpid(), cpid);

} else if (cpid == 0) { /* Child Process */

printf("[%d] child\n", getpid());

} else {

perror("Fork failed");

}

}

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

56

p

c

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

58

fork2.c – parent waits for child to
finish
int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) { /* Parent Process */

mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

}
…

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

59

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

60

Running Another Program
• With threads, we could call pthread_create to create a new thread

executing a separate function

• With processes, the equivalent would be spawning a new process
executing a different program (i.e. fork and exec)

• How can we do this?

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

61

fork3.c
…

cpid = fork();

if (cpid > 0) { /* Parent Process */

tcpid = wait(&status);

} else if (cpid == 0) { /* Child Process */

char *args[] = {"ls", "-l", NULL};

execv("/bin/ls", args);

/* execv doesn't return when it works.

So, if we got here, it failed! */

perror("execv failed");

exit(1);

}

…

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

62

Process Management API
• exit – terminate a process

• fork – copy the current process

• wait – wait for a process to finish

• exec – change the program being run by the current process

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

63

inf_loop.c
#include <stdlib.h>
#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
printf("Caught signal!\n");

exit(1);

}

int main() {

struct sigaction sa;
sa.sa_flags = 0;

sigemptyset(&sa.sa_mask);

sa.sa_handler = signal_callback_handler;
sigaction(SIGINT, &sa, NULL);

while (1) {}

}

• Q: What would happen if the process
receives a SIGINT signal, but does not
register a signal handler?

• A: The process dies!

• For each signal, there is a default
handler defined by the system

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

64

Common POSIX Signals
• SIGINT – control-C

• SIGTERM – default for kill shell command

• SIGSTP – control-Z (default action: stop process)

• SIGKILL, SIGSTOP – terminate/stop process

 Can’t be changed with sigaction

 Why?

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

65

Shell
• A shell is a job control system

 Allows programmer to create and manage a set of programs to do some
task

• You will build your own shell in Assignment 2…

 … using fork and exec system calls to create new processes…

 … and the File I/O system calls we’ll see next time to link them together

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

66

Process vs. Thread APIs
• Why have fork() and exec() system calls for processes, but just a
pthread_create() function for threads?

 Convenient to fork without exec: put code for parent and child in one
executable instead of multiple

 It will allow us to programmatically control child process’ state

 By executing code before calling exec() in the child

 We’ll see this in the case of File I/O next time

• Windows uses CreateProcess() instead of fork()

 Also works, but a more complicated interface

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

67

Threads vs. Processes
• If we have two tasks to run concurrently, do we run them in separate

threads, or do we run them in separate processes?

• Depends on how much isolation we want

 Threads are lighter weight [why?]

 Processes are more strongly isolated

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

68

Conclusion
• Threads are the OS unit of concurrency

 Abstraction of a virtual CPU core

 Can use pthread_create, etc., to manage threads within a process

 They share data → need synchronization to avoid data races

• Processes consist of one or more threads in an address space

 Abstraction of the machine: execution environment for a program

 Can use fork, exec, etc. to manage threads within a process

• We saw the role of the OS library

 Provide API to programs

 Interface with the OS to request services

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

69

1
/2

9
/2

0
2
6
,
2
/5

/2
0
2
6

L
e
ct

u
re

 3
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
T

h
re

a
d

s
a

n
d

 P
ro

ce
ss

e
s

70

