Abstractions 2: Files

Lecture 4
Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103/

Lecture 4

Recall: Threads

- Independently schedulable execution sequence that runs
concurrently with other threads

* It can block waiting for something while others progress

2/10/2026, 2/12/2026

* It can work in parallel with others

- Has local state (its stack, registers) and shares static data and heap
with other threads in the same process

- In the absence of synchronization operations, arbitrary interleaving
of threads may occur

Application

1 L°

Operating system
] [

Hardware

4]
5}
9
.-
=
N
(@)
(o]
o0
2
-
~
2,
n
o
&)
—
~
O
n
O

Recall: Synchronization

- Mutual Exclusion: Ensuring only one thread does a particular thing
at a time (one thread excludes the others)

- Critical Section: Code exactly one thread can execute at once
« Result of mutual exclusion

- Lock: An object only one thread can hold at a time
* Provides mutual exclusion
+ Offers two atomic operations:

- Lock.Acquire() — wait until lock is free; then grab
- Lock.Release() — Unlock, wake up waiters

- Need other tools for “cooperation”
* e.g., semaphores

Application

-~ -

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

4]
[
2
o=
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Lecture 4

2/10/2026, 2/12/2026

Recall: Processes

Definition: execution environment with restricted rights
* One or more threads executing in a single address space

* Owns file descriptors, network connections

Instance of a running program
* When you run an executable, it runs in its own process
- Application: one or more processes working together

Protected from each other; OS protected from them

In modern OSes, anything that runs outside of the kernel runs in a
process

Application

1 L°

Operating system
] [

Hardware

n
o)
=
-
=
N
S
N
on
=
g3
~
2,
n
o
S
—
<t
O
w0
O

Recall: System Calls (“Syscalls”)

_ Word ProcessingW
Compilers eb Browsers

“But, I've never seen a syscall!” Email

* OS library issues system Web Servers

call Databases Application / Service
- Language runtime uses OS

library... Portable OS Library oS

User System Call

Interface
System
Portable OS Kernel
Software Platform support, Device Drive

Hardware x86 PowerPC ARM

Application

Ethernet (1Gbs/10Gbs)802.11 a/g/n/ac SCSI Graphics Thunderbolt SRR
T

Hardware

Lecture 4

2/10/2026, 2/12/2026

0
<)
—
-
3
<
N
S
N
on
=
g
~
2,
n
o
—
QO
)
(@)

Recall: OS Library Issues Syscalls

Proc
2 oo e
OS

0
)
—
o=
3
o
AN
(@)
(o]
o0

OS library

i3l OS library M

0S

CSC4103, Sprin

Lecture 4

Nej
(]
S
N
S~
N
—
S~
N
Ne)
N
=
2\
~~
e}
—
~~
(o]

: Web Server

9. forma\ reply

Putting it all

4. parse request

Server
request reply
buffer buffer
A A
1. network 3. kernel 10. network 5 fi 3 k 1
socket copy socket s ed . kerne
syscall read ® write syscall. rea 4 copy
Kernel i RTU /11. kernel copy RTU
from user buffer v
to network buffer
E
: S
interrupt . . 6 interrupt S
2. copy arriving |12. format outgoing 5 dlalk 7 disk data %
packet (DMA) packet and DMA re e -(DM A) ;)
N
5
Hardware Application %
Network '- <
interface Disk interface SO
¢ ’7
v

Reque st Reply Hardware

Lecture 4

2/10/2026, 2/12/2026

What does pthread stand for?

- pthread library: POSIX thread library

. POSIX: Portable Operating System Interface (X?)
- Interface for application programmers (mostly)
* Defines the term “Unix,” derived from AT&T Unix

* Created to bring order to many Unix-derived OSes, so applications are
portable

* Requires standard system call interface

Application

n
o)
=
-
=
N
S
N
on
=
g3
~
2,
n
o
S
—
<t
O
w0
O

¥ 9IN309r]
9203/81/3 '920%/01/3

oYL ‘9303 SuLt

()]
D
—
o puui
=

Lecture 4

Unix/POSIX Idea:
Everything is a “File”

- Identical interface for:
* Files on disk
- Devices (terminals, printers, etc.)

2/10/2026, 2/12/2026

- Networking (sockets)
- Local inter-process communication (pipes, sockets)

- Based on the system calls open(), read(), write(), and close()

Application

-~ -

Operating system

T -

Hardware

4]
[
2
o=
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Lecture 4

2/10/2026, 2/12/2026

The File System Abstraction

- File
- Named collection of data in a file system
- POSIX File data: sequence of bytes
* Could be text, binary, serialized objects, ...
- File Metadata: information about the file (in addition to its name)
+ Size, Modification Time, Owner, Security info, Access control

 Directory
« “Folder” containing files & directories
- Hierarchical (graphical) naming
+ Path through the directory graph

+ Uniquely identifies a file or directory
+ /home/ff/csc4103/public_html/fal4/index.html

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

. Links and Volumes (later) ——
-~

Operating system
] [

Hardware

Lecture 4

Connecting Processes, File Systems,
and Users

- Every process has a current working directory
- Stored in the process control block (PCB)

2/10/2026, 2/12/2026

- Absolute paths
* /home/csc4103

- Relative paths
* index.html, ./index.html
« Refers to index.html in current working directory
* ../index.html
* Refers to index.html in parent of current working directory
« ~/index.html, ~csc4103/index.html

* Refers to index.html in the home directory

Application

1 L°

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

I/0 and Storage Layers

b
Application / Service Focus of today’s lecture

High Level I/O Streams
File Descriptors

open(), read(), write(), close(, ...
Open File Descriptions

Files/Directories/Indexes

I/O Driver Commands and Data Transfers
L]

Disks, Flash, Controllers, DMA

wn
]
—
.-
[
<
(o]
S
(]
an
o
=
~
o,
wn
S
—
(@)
n
(@)

| Application

] L

Operating system
- -

Hardware

2/12/2026
Lecture 4

2/10/2026,

Today: The File Abstraction

‘. High-Level File /O: Streams ‘

- Low-Level File I/0: File Descriptors
- How and Why of High-Level File I/0
- Process State for File Descriptors

- Common Pitfalls with OS Abstractions

wn

@]
2
o=
S
I}
S
o}

o0

CSC4103, Sprin

Lecture 4

2/10/2026, 2/12/2026

C High-Level File API — Streams

- Operates on “streams” — sequence of bytes, either text or data, with a
position

#include <stdio.h>
FILE* fopen(char const* filename, char const*|mode);
int fclose(FILE* fp);

Mode Text Descriptions E
"p" "rb" Open existing file for reading; fails if file doesn’t exist f
"w" "wb" Open for writing; created if does not exist :i
"a" "ab" Open for appending; created if does not exist i
"p+" "rb+" Open existing file for reading & writing; fails if file doesn’t exist é
"wt" "wb+" Open for reading & writing; truncated to zero if exists, create otherwise §
"a+" "ab+" Open for reading & writing. Created if does not exist. Read from beginning, =
write as append

C API Standard Streams — stdio.h

- Three predefined streams are opened implicitly when the program is
executed (by C standard library)
* FILE* stdin — normal source of input, can be redirected
* FILE* stdout — normal source of output, can be redirected too
* FILE* stderr — diagnostics and errors

- STDIN/ STDOUT enable composition in Unix

- All can be redirected
- cat hello.txt | grep "World!"
+ cat’s stdout goes to grep’s stdin

Application

1 L°

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Lecture 4

2/10/2026, 2/12/2026

C High-Level File API

// character oriented
int fputc(int c, FILE* fp); // rtn c or EOF on err
int fputs(char const* s, FILE* fp); // rtn > @ or EOF

int fgetc(FILE* fp);
char *fgets(char* buf, int n, FILE* fp);

// block oriented
size t fread(void* ptr, size t size of elements,
size t number_of elements, FILE* a file);
size t fwrite(const void* ptr, size t size of _elements,
size t number_of elements, FILE* a file);

// formatted
int fprintf(FILE* stream, char const* format, ...);

Application

1 L°

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

int fscanf(FILE* stream, char const* format, ...);

Operating system
] [

Hardware

Lecture 4

©
N
S
X
S~
N
—
S~
N
©
N
S
N
~
S
—
~—
N

C Streams: Char-by-Char I/O

int main(void) {
FILE* input = fopen("input.txt", "r");
FILE* output = fopen("output.txt", "w");
int c;

c = fgetc(input);
while (c != EOF) {

fputc(output, c); é

c = fgetc(input); 5
fclose(input); @
fclose(output); M— %

} Application Z

-~ -

Operating system
{1 -

Hardware

Lecture 4

2/10/2026, 2/12/2026

C High-Level File API

// character oriented
int fputc(int c, FILE* fp); // returns c or EOF on err
int fputs(const char* s, FILE* fp); // returns > @ or EOF

int fgetc(FILE* fp);
char *fgets(char* buf, int n, FILE* fp);

// block oriented
size t fread(void* ptr, size t size of elements,
size t number_of elements, FILE* a file);
size t fwrite(const void* ptr, size t size of _elements,
size t number_of elements, FILE* a file);

// formatted
int fprintf(FILE* stream, const char* format, ...);

Application

1 L°

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

int fscanf(FILE* stream, const char* format, ...);

Operating system
] [

Hardware

Lecture 4

©
N
S
X
S~
N
—
S~
N
©
N
S
N
~
S
—
~—
N

C Streams: Block-by-Block I/0

#define BUFFER _SIZE 1024
int main(void) {
FILE* input = fopen("input.txt", "r");
FILE* output = fopen("output.txt", "w");
char buffer[BUFFER_SIZE];
size t length;
length = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (length > @) {

fwrite(buffer, length, sizeof(char), output); é
length = fread(buffer, BUFFER_SIZE, sizeof(char), input); é
fclose(input); &
fclose(output); _ %

} Application é

1 L°

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

Aside: System Programming

- Systems programmers are paranoid

- We should really be writing things like:

FILE* input = fopen("input.txt", "r");
if (input == NULL) {
// Prints our string and error msg.
perror("Failed to open input file");

}

- Be thorough about checking return values
« Want failures to be systematically caught and dealt with

4]
[
2
o=
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Application

-~ -

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

C High-Level File API: Positioning

- int fseek(FILE* stream, long int offset, int whence);
- long int ftell (FILE* stream)

- void rewind (FILE* stream)

offset (SEEK_SET) offset (SEEK_END)

whence H

offset (SEEK_CUR)

()
)

—~

-

=

N

()

(o]

o0

=]

=

~

o8

wn

o

)

—

<t

w— QO
Application wn
©)

- Preserves high level abstraction of a uniform stream of objects

2/12/2026
Lecture 4

2/10/2026,

Today: The File Abstraction

- High-Level File I/0: Streams
‘ - Low-Level File I/0: File Descriptors ‘
- How and Why of High-Level File I/0

- Process State for File Descriptors

- Common Pitfalls with OS Abstractions [if time]

n

)
=
-
3
N
S
N

on

CSC4103, Sprin

Low-Level File /0O

- Operations on file descriptors

 Integer that corresponds to an object in the kernel called an open file
description

* Open file description object in the kernel represents an instance of an open file
- Why not just use a pointer?

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char* filename, int flags |[|, mode_t mode])
int creat (const char* filename, mode_t mode)
int close (int file

. . \ VAppIicatioril
Bit vector of: Bit vector of Permission Bits: -~
* Access modes (Rd, WI‘, ..) . User | Group | Other x R | W | X —

« Open Flags (Create, ...)
« Operating modes (Appends, ...)

] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

0
)
—
.-
3
S
AN
(@)
(o]
o0
o
e
~
)
n
(@)
—
<t
Q
(92
(@)

Lecture 4

2/10/2026, 2/12/2026

C Low-Level Standard Descriptors

#include <unistd.h>

STDIN FILENO - macro has value O
STDOUT_FILENO - macro has value 1
STDERR_FILENO - macro has value 2

int fileno (FILE* stream);

FILE* fdopen (int fileno, const char* opentype);

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Application

-~ -

Operating system
{1 -

Hardware

Low-Level File API

- ssize t read (int filedesc, void* buffer, size t maxsize)
* Reads up to maxsize bytes — might actually read less!
- Returns bytes read, O => EOF, -1 => error

- ssize t write (int filedesc, const void* buffer, size t size)
- Returns bytes written

- off_t lseek (int filedesc, off_t offset, int whence)

« Moves current position

Application

1 L°

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Example: lowio.c

int main() {
char buf[1000];

int fd = open("lowio.c", O RDONLY | O CREAT, S IRUSR | S IWUSR);

ssize t rd = read(fd, buf, sizeof(buf));
int err = close(fd);
ssize_t wr = write(STDOUT_FILENO, buf, rd);

- How many bytes does this program read?

Application

-~ -

Operating system
{1 -

Hardware

Lecture 4

2/10/2026, 2/12/2026

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Lecture 4

2/10/2026, 2/12/2026

POSIX 1I/0: Design Patterns

- Open before use
+ Access control check, setup happens here

- Byte-oriented
« Least common denominator

* OS responsible for hiding the fact that real devices may not work this way
(e.g. hard drive stores data in blocks)

- Explicit close

4]
[
2
o=
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Application

-~ -

Operating system
"=

Hardware

Lecture 4

2/10/2026, 2/12/2026

POSIX I/0: Kernel Buffering

- Reads are buffered
« Part of making everything byte-oriented

* Process 1s blocked while waiting for device
* Let other processes run while gathering result

- Writes are buffered
- Complete in background (more later on)
« Return to user when data 1s “handed off” to kernel

4]
[
2
o=
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Application

-~ -

Operating system
"=

Hardware

Key Unix I/0 Design Concepts

Uniformity — everything is a file
- file operations, device I/O, and interprocess communication through open, read/write, close
+ Allows simple composition of programs
« find | grep | we ...

Open before use
+ Provides opportunity for access control and arbitration
+ Sets up the underlying machinery, 1.e., data structures

Byte-oriented
- Even if blocks are transferred, addressing is in bytes

Kernel buffered reads
+ Streaming and block devices look the same, reading blocks yields processor to other task

Kernel buffered writes
+ Completion of out-going transfer decoupled from the application, allowing it to continue

Explicit close Application
-~ -

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Lecture 4

2/10/2026, 2/12/2026

Low-Level I/0O: Other Operations

- Operations specific to terminals, devices, networking, ...
- e.g., loctl

- Duplicating descriptors
* int dup2(int old, int new);
* int dup(int old);

- Pipes — channel
- int pipe(int pipefd[2]);
- Writes to pipefd[1] can be read from pipefd[0]

- File Locking
- Memory-Mapping Files

4]
)
&
o=
3
N
(@)
N
o0
=)
e
~
o8
n
o
(@)
—
@)
N0
(@)

- Asynchronous I/0 R

Lecture 4

Announcements

- Project O deadline 1s next Monday

2/10/2026, 2/12/2026

- Assignment 1 out, deadline February 24
* You should be working on this!

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Application

-~ -

Operating system
{1 -

Hardware

2/12/2026
Lecture 4

2/10/2026,

Today: The File Abstraction

- High-Level File I/0: Streams
- Low-Level File I/0: File Descriptors
‘ - How and Why of High-Level File I/0 ‘

- Process State for File Descriptors

- Some Pitfalls with OS Abstractions [if time]

n

)
=
-
3
N
S
N

on

CSC4103, Sprin

Lecture 4

©
N
S
X
S~
N
—
S~
N
©
N
S
N
~
S
—
~—
N

High-Level vs. Low-Level File API

High-Level Operation: Low-Level Operation:
size t fread(..) { ssize t read(..) {
Do some work Like a normal fn..

asm code .. syscall # into %eax asm code .. syscall # into %eax
put args into registers %ebx, .. put args into registers %ebx, ..
special trap instruction special trap instruction
Kernel: Kernel:
get args from regs get args from regs 3
dispatch to system func dispatch to system func -
Do the work to read from the file Do the work to read from the file %
Store return value in %eax Store return value in %eax g
get return values from regs get return values from regs g
Do some more work Like a normal fn.. R—— Z

¥ }; ~-=

Operating system

T T -

Hardware

Lecture 4

2/10/2026, 2/12/2026

High-Level vs. Low-Level File API

- Streams are buffered in user memory:
printf("Beginning of line ");
sleep(10); // sleep for 10 seconds
printf("and end of line\n");

- Prints out everything at once

- Operations on file descriptors are visible immediately
write(STDOUT _FILENO, "Beginning of line ", 18);
sleep(10);
write(STDOUT_FILENO, "and end of line \n", 16);

4]
5}
9
.-
=
N
(@)
(o]
o0
<
-
~
2,
n
o
&)
—
O
n
O

Application

- Outputs "Beginning of line" 10 seconds earlier -~

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

What'’s in a FILE*?

- FILE instance lives in user space, fopen returns pointer to it

- What’s in the FILE* returned by fopen?
- File descriptor (from call to open)
- Buffer (array)
- Lock (in case multiple threads use the FILE concurrently)

- Of course there’s other stuff in a FILE too...

* ... but this 1s useful model to have

Application

1 L°

Operating system
] [

Hardware

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

FILE Buffering

- When you call fwrite, what happens to the data you provided?
- It gets written to the FILE’s buffer (in user space)
« If the FILE’s buffer 1s full, then 1t 1s flushed
* Which means it’s written to the underlying file descriptor
* The C standard library may flush the FILE more frequently

* e.g., 1f it sees a certain character in the stream

- When you write code, make the weakest possible assumptions about
how data 1s flushed from FILE buffers

Application

-~ -

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

4]
[
2
o=
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Lecture 4

2/10/2026, 2/12/2026

Example

- What will x be after the following code execution?

char x = 'c';
FILE* f1 = fopen("file.txt", "w");
fwrite("b", sizeof(char), 1, f1);

FILE* f2 = fopen("file.txt", "r");
fread(&x, sizeof(char), 1, f2);

- The call to fread might see the latest write 'b'

- Or it might miss it, seeing the end of file (in which case x will
remain 'c')

Application

1 L°

4]
5}
9
.-
=
N
(@)
(o]
o0
<
-
~
2,
n
o
&)
—
O
n
O

Operating system
] [

Hardware

Lecture 4

2/10/2026, 2/12/2026

Example

* What will x be after the following code execution?

char x = 'c';
FILE* f1 = fopen("file.txt", "wb");
fwrite("b", sizeof(char), 1, f1);

fflush(f1l);

FILE* f2 = fopen("file.txt", "rb");
fread(&x, sizeof(char), 1, f2);

- Now, the call to fread will see the latest write 'b" iy
OTUF\:ystem

Hardware

4]
5}
9
.-
=
N
(@)
(o]
o0
<
-
~
2,
n
o
&)
—
O
n
O

Lecture 4

2/10/2026, 2/12/2026

Writing Correct Code with FILE

- Your code should behave correctly regardless of when/if C Standard
Library flushes its buffer

« Add your own calls to fflush so that data is written when you need to

+ Calls to fclose flush the buffer before deallocating memory and closing
the file descriptor

- With the low-level file API, we don’t have this problem
- After write completes, data 1s visible to any subsequent reads

Application

n
5}
=
o=
=
N
S
N
op
=
g3
~
2,
n
o
S
—
&)
w0
©)

Why Buffer in Userspace?
Overhead!

. Syscalls are 25x more expensive than function calls (~100 ns)
- read/write a file byte by byte? Max throughput of ~10MB/second
- With fgetc? Keeps up with your SSD

220 224 223

Intel Intel AMD Intel Intel Intel AMD Intel AMD Intel AMD Intel Intel
Celeron D 341 Pentium 4 660 Athlon 64 X2 4200+ PentumD 820 Core 2 Duo E8400 Core 2 Duo T6600 Phenom Il X2 5556 Xeon X5675 FX-8150 Core i5-4670K A10-7850K Core i7-4790K Core i5-5675C
2004 Q2 2005 Q1 2005 Q2 2005Q2 2008 Q1 2009 Q1 2010Q1 2011 Q1 2011 Q4 2013 Q2 2014 Q1 2014 Q2 2015Q2

[l Unoptimized C function call without parameters
M getpid() system call via syscall instruction
M getpid() system call via vDSO

Application

-~ -

Operating system
] [

Hardware

Lecture 4

wn
&
2
=
=
AN
(@)
(o]
a0
o
e
~
(o
N
o
(@)
—
(@)
R
(@)

http://arkanis.de/weblog/2017-01-05-measurements-of-system-call-performance-and-overhead

2/12/2026
Lecture 4

Why Buffer in Userspace?
Functionality!

- System call operations less capable
+ Simplifies operating system

2/10/2026,

- Example: No “read until new line” operation
« Solution: Make a big read syscall, find first new line in userspace

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

2/12/2026
Lecture 4

2/10/2026,

Today: The File Abstraction

- High-Level File I/0: Streams
- Low-Level File I/0: File Descriptors
- How and Why of High-Level File I/0

- Process State for File Descriptors

- Some Pitfalls with OS Abstractions [if time]

0
5}
=
o=
3
AN
(@)
(o]
o0

CSC4103, Sprin

Lecture 4

2/10/2026, 2/12/2026

I/0 and Storage Layers

b
Application / Service Focus of today’s lecture

High Level I/O Streams

Low Level I/0 File Descriptors

Syscall open(), read(), write(), close(), ...
Open File Descriptions

Files/Directories/Indexes

I/O Driver Commands and Data Transfers
L]

Disks, Flash, Controllers, DMA

wn
]
—
.-
[
<
(o]
S
(]
an
o
=
~
o,
wn
S
—
(@)
n
(@)

| Application

] L

Operating system
- -

Hardware

Lecture 4

2/10/2026, 2/12/2026

Kernel Maintains State

char bufferl[100];
char buffer2[100];

int fd = open("foo.txt", O RDONLY); The kernel remembers that

read(fd, bufferl, 100); <— — the int it receives (stored in
read(fd, buffer2, 100); fd) corresponds to foo.txt
close(fd);
\ The kernel picks up where it
left off in the file

4]

)

—

or—-

€

N

(@)

[N

o0

&

=

~

oF

n

o

(@)

—

w— QO
Application wn
(@)

Lecture 4

2/10/2026, 2/12/2026

State Maintained by the Kernel

« On a successful call to open():
- A file descriptor (int) is returned to the user
+ An open file description is created in the kernel

- For each process, the kernel maintains a mapping from a file
descriptor to an open file description

. On future system calls (e.g., read()), the kernel looks up the open
file description corresponding to the provided file descriptor and uses
1t to service the system call

- A call to close() removes the file descriptor mapping and
deallocates the file description Gf no other processes refer to it)

Application

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

—
L
-
=)
+
Q
5}
—

What’s in an Open File Description?

- For our purposes, the two most important things are:
° Where tO flnd the flle data on dlSk b G 9 Ixr.free-electrons.com/source/include/linux/fs.h#L747

5 BCaI EUCB ECSMZ ﬁcullerma‘yeno W Wikipedia ‘{ahoo! ﬁNews -

* The current position within the file

fu_llist;
fu_rcuhead;
4 f_path;
3 #define f_path.dentry
f_inode; / cac
const struct file_operations *f_op;

.............. e
* Protects f_ep_links, f_flags.
* Must not be taken from IRQ context.

........ f_lock;
f_count;
f_flags;

.............. f_mode;

.............. f_pos_lock;
f_pos;
f_owner;

const struct *f_cred;
struct file_r f_ra;

.............. u64 f_version;

______________ #ifdef CONFIG_SECURITY

void *f_security;
#endif

/* needed for tty driver, and maybe others */
void *private_data;

#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hook
struct Tist head f en links:

2/12/2026
Lecture 4

©
N
S
N
~~
S
—
~~
N

Abstract Representation of a Process

Process - Suppose that we execute
\ open("foo.txt", ...)
Thread's - and that the result 1s 3
Regs Address
Space
(Memory)

User Space

é’

rnel Space |™ g b eriptor
© LOSCIIpLors Open File Description =

3 g

. . wn

Not shown: File: foo.txt o3

Initially contains — .. -

0, 1, and 2 (stdin, Position: O S

(@]

stdout, stderr) \ j

2/12/2026
Lecture 4

2/10/2026,

Abstract Representation of a Process

Process - Suppose that we execute
\ open("foo.txt", ...)
Thread’s :
- and that the result 1s 3
Regs Address
Space
(Memory)

- Next, suppose that we
User Space execute

_____________________ read(3, buf, 100)

Open File Description, ;1,4 that the result is 100

rnel Space File Descriptors

0
<)
—
-
3
<
N
S
N
on
=
g
~
2,
n
o
—
QO
)
(@)

3
Not shown: File: foo.txt
Initially contains > Cle
0, 1, and 2 (stdin, Position: O

stdout, stderr) \ j

2/12/2026
Lecture 4

2/10/2026,

Abstract Representation of a Process

Process - Suppose that we execute
\ open("foo.txt", ...)
Thread’s :
- and that the result 1s 3
Regs Address
Space
(Memory)

- Next, suppose that we
User Space execute

_____________________ read(3, buf, 100)

Open File Description, ;1,4 that the result is 100

rnel Space File Descriptors

0
<)
—
-
3
<
N
S
N
on
=
g
~
2,
n
o
—
QO
)
(@)

3
Not shown: File: foo.txt
Initially contains > Cle
0, 1, and 2 (stdin, Position: 100

stdout, stderr) \ j

Lecture 4

©
N
S
X
S~
N
—
S~
N
©
N
S
N
~
S
—
~—
N

Abstract Representation of a Process

Process - Suppose that we execute
\ open("foo.txt", ...)
Thread’s - and that the result is 3
Regs Address
Space
(Memory) - Next, suppose that we
User Space execute

b T T T S read(3, buf, 100) 3
[
rnel Space ; ; : <
File D3escr1ptors Open File Description and that the result 1s 100 -
: - Finally, suppose that we &
}\Io.t.ShOWH' : File: foo.txt ty bp o
nitially contains — L execute S
0, 1, and 2 (stdin, Position: 100 close(3) o %

stdout, stderr) \ j

Lecture 4

©
N
©
N
S~
N
—
S~
N
©
N
S
2\
~~
=
—
~
N

Now, let’s fork(!

Process 1 Process 2
Thread’s \ « File descriptor is Glread’s \
Regs Address copied Regs Address
Space * Open file description Space
(Memory) 1s aliased (Memory)

User Space
1S -r- - -~--=-7-T7"7T-~"-""-""="-""="=""=""="-""="-""=-"7°~"“"“"="=""=""=-"==7 = &
rnel Space ; . ; . <
File Dgescrlptors Open File Description File Dgescrlptors 5
Not shown: P JJ %
Initially contains —> Flle,‘ .fOO..tXt e S
0,1, and 2 (stdin, Position: 100 S
(@)

stdout, stderr) K j K

Hardware

Lecture 4

©
(o]
S
(&l
S~
N
—
S~
N
©
N
S
N
~
S
—
~
(]

Open File Description 1s Aliased

read(3, buf, 100) Process 1 Process 2
Thread’s \ Gﬂread’s \
Regs Address Regs Address
Space Space

(Memory) (Memory)
User Space
19 -r-r-—-=-==-=-=-=--7T——""—"="=-""=-""=-"-""-"7T7T°"~"~-"=-""=""=/"====-5 = 5
rnel Space ; ; ; ; <
File D3escr1ptors Open File Description File Dgescrlptors -
Not shown: 1. JJ %
Initially contains — Flle,' .fOO..tXt <= §
0, 1, and 2 (stdin, Position: 100 g
©)

stdout, stderr) \ / \

Hardware

Lecture 4

©
(o]
S
(&l
S~
N
—
S~
N
©
N
S
N
~
S
—
~
(]

Open File Description 1s Aliased

read(3, buf, 100) Process 1 Process 2
Thread’s \ Gﬂread’s \
Regs Address Regs Address
Space Space

(Memory) (Memory)
User Space
19 -r-r-—-=-==-=-=-=--7T——""—"="=-""=-""=-"-""-"7T7T°"~"~-"=-""=""=/"====-5 = 5
rnel Space . ; ; ; <
File D3escr1ptors Open File Description File Dgescrlptors -
Not shown: 1 - JJ %
Initially contains — Flle,' .fOO..tXt <= §
0, 1, and 2 (stdin, Position: 200 5
©)

stdout, stderr) \ / \

Hardware

Lecture 4

©
(o]
S
(&l
S~
N
—
S~
N
©
N
S
N
~
S
—
~
(]

Open File Description 1s Aliased

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
Thread’s \ Gﬂread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

s

rnel Space ; . . . <
File D3escr1ptors Open File Description File Dgescrlptors -

Not shown: o ‘ ' %
Initially contains — Flle.' .fOO..tXt wa 3
0, 1, and 2 (stdin, Position: 200 5
©)

stdout, stderr) \ / \

Hardware

Lecture 4

©
(o]
S
(&l
S~
N
—
S~
N
©
N
S
N
~
S
—
~
(]

Open File Description 1s Aliased

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
Thread’s \ Gﬂread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

s

rnel Space ; . . . <
File D3escr1ptors Open File Description File Dgescrlptors -

Not shown: o ‘ ' %
Initially contains — Flle.' .fOO..tXt wa 3
0, 1, and 2 (stdin, Position: 300 5
©)

stdout, stderr) \ / \

Hardware

Lecture 4

©
(o]
S
(&l
S~
N
—
S~
N
©
N
S
N
~
S
—
~
(]

File Descriptor is Copied

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
close(3)
Gu‘ead’s \ Gﬂread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

rnel Space ; ; ; ; ,
File D3escr1ptors Open File Description File Dgescrlptors g

Not shown: PR ‘J §
Initially contains — Flle,' .fOO..tXt <+ ?5‘
0, 1, and 2 (stdin, Position: 300 2
£

stdout, stderr) \ / \

Hardware

Lecture 4

©
(o]
S
(&l
S~
N
—
S~
N
©
N
S
N
~
S
—
~
(]

File Descriptor is Copied

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
close(3) / \ / \
Thread’s . o Thread’s
Regs Address Open file description Regs Address
Space remains alive until no Space
file descriptors in any
(Memory) . (Memory)
process refer to it
User Space
1S S e e = 5
rnel Space ; ; ; ; <
File Descriptors Open File Description File Dgescrlptors -
Not shown: 1. JJ %
Initially contains Flle.' .fOO..tXt < S
0, 1, and 2 (stdin, Position: 300 S
©)

stdout, stderr) \ / \

Hardware

Why 1s Aliasing the
Open File Description
a Good Idea?

It allows for shared resources between processes

Lecture 4

Recall: In POSIX, Everything is a
“File”

- Identical interface for:
* Files on disk
- Devices (terminals, printers, etc.)

2/10/2026, 2/12/2026

« Regular files on disk
- Networking (sockets)
- Local interprocess communication (pipes, sockets)

- Based on the system calls open(), read(), write(), and close()

Application

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

2/12/2026
Lecture 4

2/10/2026,

Example: Shared Terminal Emulator

- When you fork() a process, the parent’s and child’s printf outputs
g0 to the same terminal

wn

@]
2
o=
S
I}
S
o}

o0

CSC4103, Sprin

Example: Shared Terminal Emulator

User Space

rnel Space

Process 1
Thread’s \
Regs Address
Space
(Memory)

Terminal Emulator

Process 2
Thread’s \
Regs Address
Space
(Memory)

&

L |

A
2

Lecture 4

2/10/2026, 2/12/2026

g 2026, Files

=
i

~

(=3
n
=
—
~t
©)
0
O

Example: Shared Terminal Emulator

close(9)

User Space

rnel Space

Process 1
Thread’s \
Regs Address
Space
(Memory)

Terminal Emulator

Process 2
Thread’s \
Regs Address
Space
(Memory)

&

L |

A
2

Lecture 4

2/10/2026, 2/12/2026

g 2026, Files

=
i

~

(=3
n
=
—
~t
©)
0
O

Lecture 4

2/10/2026, 2/12/2026

Example: Shared Terminal Emulator

Process 1 Process 2
close(9) [\ [\
Thread’s Thread’s
Regs Address If one process closes Regs Address
Space stdin (0), it remains Space
(Memory) open 1n other processes (Memory)

User Space

rnel Sp ace Terminal Emulator

File Descriptors File Descriptors

CSC4103, Spring 2026, Files

0 }_
1 I S 14‘
2 yar

Lecture 4

2/10/2026, 2/12/2026

Other Examples

- Shared network connections after fork()
+ Allows handling each connection in a separate process
- We'll explore this next time

- Shared access to pipes
+ Useful for interprocess communication
- And in writing a shell (Assignment 2)

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Application

-~ -

Operating system
{1 -

Hardware

2/12/2026
Lecture 4

2/10/2026,

Other Syscalls: dup and dup2

- They allow you to duplicate the file descriptor

- But the open file description remains aliased

0
5}
=
.-
3
AN
(@)
(o]
o0

CSC4103, Sprin

Lecture 4

©
N
S
X
S~
N
—
S~
N
©
N
S
N
~
S
—
~—
N

Other Syscalls: dup and dup2

Process - Suppose that we execute
\ open("foo.txt")
Thread’s - and that the result 1s 3
Regs Address
Space - Next, suppose that we execute
(Memory) read(3, buf, 100)
User Space - and that the result 1s 100
rnel Space_ _____________________ - Next, suppose that we execute E
File Descriptors Open File Description dup(3) i
3 . £
izzizlllgfvzr;;tains 4 \: — File: foo.txt - And that the result 1s 4 g
0, 1, and 2 (stdin, 4103 | Position: 100 - Finally, suppose that s S
stdout, stderr) we execute i 2
\ j dup2(3) 41@3) Operating system

-

Hardware

2/12/2026
Lecture 4

2/10/2026,

Today: The File Abstraction

- High-Level File I/0: Streams
- Low-Level File I/0: File Descriptors
- How and Why of High-Level File I/0

- Process State for File Descriptors

- Some Pitfalls with OS Abstractions [if time]

0
5}
=
o=
3
AN
(@)
(o]
o0

CSC4103, Sprin

Don’t fork() 1n a

process that already
has mu1t1ple threads

Unless you plan to call exec() in the child pro

2/12/2026
Lecture 4

2/10/2026,

fork() in Multithreaded Processes

- The child process always has just a single thread
* The thread in which fork() returns

- The other threads just vanish

n

)
=
-
3
N
S
N

on

CSC4103, Sprin

fork() in a Multithreaded Processes

User Space

rnel Space

Not shown:
Initially contains
0, 1, and 2 (stdin,
stdout, stderr)

Process 1
Thread 1 \
Regs Address
Thread 2 Space
Regs (Memory)

File Descriptors
3

* Only the thread

that called fork()
exists 1n the new

process

Open File Description

—

File: foo.txt
Position: 100

Process 2
Thread 1 \
Regs Address
Space
(Memory)

File Descriptors

<

Lecture 4

2/10/2026, 2/12/2026

T

CSC4103, Spring 2026, Files

2/12/2026
Lecture 4

Possible Problems with
Multithreaded fork()

- When you call fork() in a multithreaded process, the other threads
(the ones that didn’t call fork()) just vanish

« What if one of these threads was holding a lock?

- What if one of these threads was in the middle of modifying a data
structure?

2/10/2026,

* No cleanup happens!

- It’s safe if you call exec () in the child
- Replacing the entire address space

4]
)
&
o=
3
N
(@)
N
o0
=)
e
~
o8
n
o
(@)
—
@)
N0
(@)

Don’t carelessly mix

low-level and high-
level file I/O

Lecture 4

Avoid Mixing FILE* and File
Descriptors

- What is the value has y after executing the following code?

2/10/2026, 2/12/2026

char x[10];

char y[10];

FILE* £ = fopen("foo.txt", "rb");

int fd = fileno(f);

fread(x, 10, 1, f); // read 10 bytes from f
read(fd, y, 10); // assumes that this returns 10

- Bytes0to 9
- Bytes 10 to 19

° NOIle Of these? . vAppIication

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Be careful with fork()
and FILE*

Lecture 4

2/10/2026, 2/12/2026

Be Careful Using fork() with FILE*

FILE* f = fopen("foo.txt", "w");

-er\ite("a"’ 1’ 1’ -F); \
fork();

fclose(f);

Depends on whether this
fwrite call flushes...

- After all processes exit, what is in foo.txt?
* Could be either a or aa

- Usually aa based on what I've observed in Linux...

()
)

—~

or—-

=

N

()

(o]

o0

o

e

~

o8

wn

o

)

—

<t

w— QO
Application wn
©)

Be Careful Using fork() with FILE*

User Space

rnel Space

Not shown:
Initially contains
0, 1, and 2 (stdin,
stdout, stderr)

Process 1
Thread’s N \
Regs

FILE* Buffer

File Descriptors
3

Open File Description

1s aliased

But the FILE* buffer

1s copied!

Open File Description

—

File: foo.txt
Position: 0

Process 2
Thread’s \
Regs 4

FILE* Buffer

File Descriptors

<

T

Hardware

Lecture 4

2/10/2026, 2/12/2026

CSC4103, Spring 2026, Files

Lecture 4

Conclusion

Application / Service

2/10/2026, 2/12/2026

Focus of today’s lecture

High Level 1/O Streams

File Descriptors

open(), read(), write(), close(),
Open File Descriptions

Files/Directories/Indexes

I/O Driver Commands and Data Transfers
L]

Disks, Flash, Controllers, DMA

Application

4]
)
—
.-
=
<
N
(@)
(o]
o0
<
-
~
2,
n
&)
—
O
)
O

] L

Operating system
- -

Hardware

Lecture 4

2/10/2026, 2/12/2026

Conclusion

- POSIX 1dea: “everything is a file”
- All sorts of I/O managed by open/read/write/close

- We added two new elements to the PCB:
« Mapping from file descriptor to open file description
* Current working directory

4]
[
2
.-
3
N
o
N
o0
s
o
~
(o
N
o
o
—
<
Q
N0
(@)

Application

-~ -

Operating system
{1 -

Hardware

CENTER FOR COMPUTATION
& TECHNOLOGY

Lecture 4

2/10/2026, 2/12/2026

CSC4103, Spring 2026, Files

Q0
-

