
Abstractions 2: Files
Lecture 4

Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103/

Recall: Threads
• Independently schedulable execution sequence that runs

concurrently with other threads

 It can block waiting for something while others progress

 It can work in parallel with others

• Has local state (its stack, registers) and shares static data and heap
with other threads in the same process

• In the absence of synchronization operations, arbitrary interleaving
of threads may occur

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

2

Recall: Synchronization
• Mutual Exclusion: Ensuring only one thread does a particular thing

at a time (one thread excludes the others)

• Critical Section: Code exactly one thread can execute at once

 Result of mutual exclusion

• Lock: An object only one thread can hold at a time

 Provides mutual exclusion

 Offers two atomic operations:

 Lock.Acquire() – wait until lock is free; then grab

 Lock.Release() – Unlock, wake up waiters

• Need other tools for “cooperation”

 e.g., semaphores

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

3

Recall: Processes
• Definition: execution environment with restricted rights

 One or more threads executing in a single address space

 Owns file descriptors, network connections

• Instance of a running program

 When you run an executable, it runs in its own process

 Application: one or more processes working together

• Protected from each other; OS protected from them

• In modern OSes, anything that runs outside of the kernel runs in a
process

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

4

Recall: System Calls (“Syscalls”) 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

5

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call

Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs)802.11 a/g/n/acSCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

“But, I’ve never seen a syscall!”

• OS library issues system

call

• Language runtime uses OS

library…

Recall: OS Library Issues Syscalls 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

6

OS

Proc

1

Proc

2

Proc

n…

OS

App login Window

Manager

…

OS library OS library OS librarylibc:

Putting it all Together: Web Server 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

7

Server

Kernel

Hardware

request

buffer

reply

buffer

11. kernel copy
from user buffer
to network buffer

Network

interface Disk interface

12. format outgoing
packet and DMA

6. disk
request

10. network
socket
write

1. network
socket
read

2. copy arriving
packet (DMA)

syscall

wait

interrupt

3. kernel
copy

RTU

5. file
read

syscall

8. kernel
copy

RTU

7. disk data
(DMA)

interrupt

4. parse request 9. format reply

Request Reply

What does pthread stand for?
• pthread library: POSIX thread library

• POSIX: Portable Operating System Interface (X?)

 Interface for application programmers (mostly)

 Defines the term “Unix,” derived from AT&T Unix

 Created to bring order to many Unix-derived OSes, so applications are
portable

 Requires standard system call interface

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

8

Files

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

9

Unix/POSIX Idea:
Everything is a “File”
• Identical interface for:

 Files on disk

 Devices (terminals, printers, etc.)

 Networking (sockets)

 Local inter-process communication (pipes, sockets)

• Based on the system calls open(), read(), write(), and close()

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

10

The File System Abstraction
• File

 Named collection of data in a file system

 POSIX File data: sequence of bytes

 Could be text, binary, serialized objects, …

 File Metadata: information about the file (in addition to its name)

 Size, Modification Time, Owner, Security info, Access control

• Directory
 “Folder” containing files & directories

 Hierarchical (graphical) naming

 Path through the directory graph

 Uniquely identifies a file or directory

 /home/ff/csc4103/public_html/fa14/index.html

• Links and Volumes (later)

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

11

Connecting Processes, File Systems,
and Users
• Every process has a current working directory

 Stored in the process control block (PCB)

• Absolute paths

 /home/csc4103

• Relative paths

 index.html, ./index.html

 Refers to index.html in current working directory

 ../index.html

 Refers to index.html in parent of current working directory

 ~/index.html, ~csc4103/index.html

 Refers to index.html in the home directory

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

12

I/O and Storage Layers 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

13

High Level I/O

Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Focus of today’s lecture

Open File Descriptions

Today: The File Abstraction
• High-Level File I/O: Streams

• Low-Level File I/O: File Descriptors

• How and Why of High-Level File I/O

• Process State for File Descriptors

• Common Pitfalls with OS Abstractions

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

14

C High-Level File API – Streams
• Operates on “streams” – sequence of bytes, either text or data, with a

position

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

15

#include <stdio.h>
FILE* fopen(char const* filename, char const* mode);
int fclose(FILE* fp);

Mode Text Binary Descriptions

"r" "rb" Open existing file for reading; fails if file doesn’t exist

"w" "wb" Open for writing; created if does not exist

"a" "ab" Open for appending; created if does not exist

"r+" "rb+" Open existing file for reading & writing; fails if file doesn’t exist

"w+" "wb+" Open for reading & writing; truncated to zero if exists, create otherwise

"a+" "ab+" Open for reading & writing. Created if does not exist. Read from beginning,

write as append

C API Standard Streams – stdio.h
• Three predefined streams are opened implicitly when the program is

executed (by C standard library)

 FILE* stdin – normal source of input, can be redirected

 FILE* stdout – normal source of output, can be redirected too

 FILE* stderr – diagnostics and errors

• STDIN / STDOUT enable composition in Unix

• All can be redirected

 cat hello.txt | grep "World!"

 cat’s stdout goes to grep’s stdin

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

16

C High-Level File API
// character oriented

int fputc(int c, FILE* fp); // rtn c or EOF on err

int fputs(char const* s, FILE* fp); // rtn > 0 or EOF

int fgetc(FILE* fp);

char *fgets(char* buf, int n, FILE* fp);

// block oriented

size_t fread(void* ptr, size_t size_of_elements,

size_t number_of_elements, FILE* a_file);

size_t fwrite(const void* ptr, size_t size_of_elements,

size_t number_of_elements, FILE* a_file);

// formatted

int fprintf(FILE* stream, char const* format, ...);

int fscanf(FILE* stream, char const* format, ...);

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

17

C Streams: Char-by-Char I/O
int main(void) {

FILE* input = fopen("input.txt", "r");

FILE* output = fopen("output.txt", "w");

int c;

c = fgetc(input);

while (c != EOF) {

fputc(output, c);

c = fgetc(input);

}

fclose(input);

fclose(output);

}

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

18

C High-Level File API
// character oriented

int fputc(int c, FILE* fp); // returns c or EOF on err

int fputs(const char* s, FILE* fp); // returns > 0 or EOF

int fgetc(FILE* fp);

char *fgets(char* buf, int n, FILE* fp);

// block oriented

size_t fread(void* ptr, size_t size_of_elements,

size_t number_of_elements, FILE* a_file);

size_t fwrite(const void* ptr, size_t size_of_elements,

size_t number_of_elements, FILE* a_file);

// formatted

int fprintf(FILE* stream, const char* format, ...);

int fscanf(FILE* stream, const char* format, ...);

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

19

C Streams: Block-by-Block I/O
#define BUFFER_SIZE 1024

int main(void) {

FILE* input = fopen("input.txt", "r");

FILE* output = fopen("output.txt", "w");

char buffer[BUFFER_SIZE];

size_t length;

length = fread(buffer, BUFFER_SIZE, sizeof(char), input);

while (length > 0) {

fwrite(buffer, length, sizeof(char), output);

length = fread(buffer, BUFFER_SIZE, sizeof(char), input);

}

fclose(input);

fclose(output);

}

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

20

Aside: System Programming
• Systems programmers are paranoid

• We should really be writing things like:

FILE* input = fopen("input.txt", "r");

if (input == NULL) {

// Prints our string and error msg.

perror("Failed to open input file");

}

• Be thorough about checking return values

 Want failures to be systematically caught and dealt with

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

21

C High-Level File API: Positioning
• int fseek(FILE* stream, long int offset, int whence);

• long int ftell (FILE* stream)

• void rewind (FILE* stream)

• Preserves high level abstraction of a uniform stream of objects

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

22

offset (SEEK_CUR)

offset (SEEK_SET) offset (SEEK_END)

whence

Today: The File Abstraction
• High-Level File I/O: Streams

• Low-Level File I/O: File Descriptors

• How and Why of High-Level File I/O

• Process State for File Descriptors

• Common Pitfalls with OS Abstractions [if time]

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

23

Low-Level File I/O
• Operations on file descriptors

 Integer that corresponds to an object in the kernel called an open file
description

 Open file description object in the kernel represents an instance of an open file

 Why not just use a pointer?

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

24

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char* filename, int flags [, mode_t mode])
int creat (const char* filename, mode_t mode)
int close (int filedes)

Bit vector of:

• Access modes (Rd, Wr, …)

• Open Flags (Create, …)

• Operating modes (Appends, …)

Bit vector of Permission Bits:

• User|Group|Other x R|W|X

C Low-Level Standard Descriptors

#include <unistd.h>

STDIN_FILENO - macro has value 0

STDOUT_FILENO - macro has value 1

STDERR_FILENO - macro has value 2

int fileno (FILE* stream);

FILE* fdopen (int fileno, const char* opentype);

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

25

Low-Level File API
• ssize_t read (int filedesc, void* buffer, size_t maxsize)

 Reads up to maxsize bytes – might actually read less!

 Returns bytes read, 0 => EOF, -1 => error

• ssize_t write (int filedesc, const void* buffer, size_t size)

 Returns bytes written

• off_t lseek (int filedesc, off_t offset, int whence)

 Moves current position

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

26

Example: lowio.c

int main() {

char buf[1000];

int fd = open("lowio.c", O_RDONLY | O_CREAT, S_IRUSR | S_IWUSR);

ssize_t rd = read(fd, buf, sizeof(buf));

int err = close(fd);

ssize_t wr = write(STDOUT_FILENO, buf, rd);

}

• How many bytes does this program read?

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

27

POSIX I/O: Design Patterns
• Open before use

 Access control check, setup happens here

• Byte-oriented

 Least common denominator

 OS responsible for hiding the fact that real devices may not work this way
(e.g. hard drive stores data in blocks)

• Explicit close

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

28

POSIX I/O: Kernel Buffering
• Reads are buffered

 Part of making everything byte-oriented

 Process is blocked while waiting for device

 Let other processes run while gathering result

• Writes are buffered

 Complete in background (more later on)

 Return to user when data is “handed off” to kernel

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

29

Key Unix I/O Design Concepts
• Uniformity – everything is a file

 file operations, device I/O, and interprocess communication through open, read/write, close

 Allows simple composition of programs

 find | grep | wc …

• Open before use
 Provides opportunity for access control and arbitration

 Sets up the underlying machinery, i.e., data structures

• Byte-oriented
 Even if blocks are transferred, addressing is in bytes

• Kernel buffered reads
 Streaming and block devices look the same, reading blocks yields processor to other task

• Kernel buffered writes
 Completion of out-going transfer decoupled from the application, allowing it to continue

• Explicit close

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

30

Low-Level I/O: Other Operations
• Operations specific to terminals, devices, networking, …

 e.g., ioctl

• Duplicating descriptors
 int dup2(int old, int new);

 int dup(int old);

• Pipes – channel
 int pipe(int pipefd[2]);

 Writes to pipefd[1] can be read from pipefd[0]

• File Locking

• Memory-Mapping Files

• Asynchronous I/O

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

31

Announcements
• Project 0 deadline is next Monday

• Assignment 1 out, deadline February 24

 You should be working on this!

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

32

Today: The File Abstraction
• High-Level File I/O: Streams

• Low-Level File I/O: File Descriptors

• How and Why of High-Level File I/O

• Process State for File Descriptors

• Some Pitfalls with OS Abstractions [if time]

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

33

High-Level vs. Low-Level File API 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

34

High-Level Operation:
size_t fread(…) {

Do some work like a normal fn…

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs
Do some more work like a normal fn…

};

Kernel:
get args from regs
dispatch to system func
Do the work to read from the file
Store return value in %eax

Low-Level Operation:
ssize_t read(…) {

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs

};

Kernel:
get args from regs
dispatch to system func
Do the work to read from the file
Store return value in %eax

High-Level vs. Low-Level File API
• Streams are buffered in user memory:

printf("Beginning of line ");

sleep(10); // sleep for 10 seconds

printf("and end of line\n");

• Prints out everything at once

• Operations on file descriptors are visible immediately

write(STDOUT_FILENO, "Beginning of line ", 18);

sleep(10);

write(STDOUT_FILENO, "and end of line \n", 16);

• Outputs "Beginning of line" 10 seconds earlier

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

35

What’s in a FILE*?
• FILE instance lives in user space, fopen returns pointer to it

• What’s in the FILE* returned by fopen?

 File descriptor (from call to open)

 Buffer (array)

 Lock (in case multiple threads use the FILE concurrently)

• Of course there’s other stuff in a FILE too…

• … but this is useful model to have

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

36

FILE Buffering
• When you call fwrite, what happens to the data you provided?

 It gets written to the FILE’s buffer (in user space)

 If the FILE’s buffer is full, then it is flushed

 Which means it’s written to the underlying file descriptor

 The C standard library may flush the FILE more frequently

 e.g., if it sees a certain character in the stream

• When you write code, make the weakest possible assumptions about
how data is flushed from FILE buffers

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

37

Example
 What will x be after the following code execution?

char x = 'c';

FILE* f1 = fopen("file.txt", "w");

fwrite("b", sizeof(char), 1, f1);

FILE* f2 = fopen("file.txt", "r");

fread(&x, sizeof(char), 1, f2);

• The call to fread might see the latest write 'b'

• Or it might miss it, seeing the end of file (in which case x will
remain 'c')

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

38

Example
 What will x be after the following code execution?

char x = 'c';

FILE* f1 = fopen("file.txt", "wb");

fwrite("b", sizeof(char), 1, f1);

fflush(f1);

FILE* f2 = fopen("file.txt", "rb");

fread(&x, sizeof(char), 1, f2);

• Now, the call to fread will see the latest write 'b'

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

39

Writing Correct Code with FILE
• Your code should behave correctly regardless of when/if C Standard

Library flushes its buffer

 Add your own calls to fflush so that data is written when you need to

 Calls to fclose flush the buffer before deallocating memory and closing
the file descriptor

• With the low-level file API, we don’t have this problem

 After write completes, data is visible to any subsequent reads

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

40

Why Buffer in Userspace?
Overhead!
• Syscalls are 25x more expensive than function calls (~100 ns)

• read/write a file byte by byte? Max throughput of ~10MB/second

• With fgetc? Keeps up with your SSD

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

41

http://arkanis.de/weblog/2017-01-05-measurements-of-system-call-performance-and-overhead

Why Buffer in Userspace?
Functionality!
• System call operations less capable

 Simplifies operating system

• Example: No “read until new line” operation

 Solution: Make a big read syscall, find first new line in userspace

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

42

Today: The File Abstraction
• High-Level File I/O: Streams

• Low-Level File I/O: File Descriptors

• How and Why of High-Level File I/O

• Process State for File Descriptors

• Some Pitfalls with OS Abstractions [if time]

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

43

I/O and Storage Layers 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

44

High Level I/O

Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Focus of today’s lecture

Open File Descriptions

Kernel Maintains State
char buffer1[100];

char buffer2[100];

int fd = open("foo.txt", O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

close(fd);

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

45

The kernel remembers that

the int it receives (stored in
fd) corresponds to foo.txt

The kernel picks up where it

left off in the file

State Maintained by the Kernel
• On a successful call to open():

 A file descriptor (int) is returned to the user

 An open file description is created in the kernel

• For each process, the kernel maintains a mapping from a file
descriptor to an open file description

• On future system calls (e.g., read()), the kernel looks up the open

file description corresponding to the provided file descriptor and uses
it to service the system call

• A call to close() removes the file descriptor mapping and
deallocates the file description (if no other processes refer to it)

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

46

What’s in an Open File Description?
• For our purposes, the two most important things are:

 Where to find the file data on disk

 The current position within the file

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

47

Abstract Representation of a Process
• Suppose that we execute

open("foo.txt", ...)

• and that the result is 3

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

48

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

…

File Descriptors

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

3
File: foo.txt

Position: 0

Open File Description

Process

Abstract Representation of a Process
• Suppose that we execute

open("foo.txt", ...)

• and that the result is 3

• Next, suppose that we
execute

read(3, buf, 100)

• and that the result is 100

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

49

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 0

Open File Description

Process

…

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Abstract Representation of a Process 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

50

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 100

Open File Description

Process

…

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

• Suppose that we execute

open("foo.txt", ...)

• and that the result is 3

• Next, suppose that we
execute

read(3, buf, 100)

• and that the result is 100

Abstract Representation of a Process 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

51

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 100

Open File Description

Process

…

• Suppose that we execute
open("foo.txt", ...)

• and that the result is 3

• Next, suppose that we
execute
read(3, buf, 100)

• and that the result is 100

• Finally, suppose that we
execute
close(3)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Now, let’s fork()! 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

52

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

• File descriptor is

copied

• Open file description

is aliased

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Open File Description is Aliased 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

53

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Open File Description is Aliased 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

54

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 200

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Open File Description is Aliased 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

55

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 200

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

read(3, buf, 100)

Open File Description is Aliased 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

56

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 300

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

read(3, buf, 100)

File Descriptor is Copied 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

57

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 300

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)read(3, buf, 100)
close(3)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

File Descriptor is Copied 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

58

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

File: foo.txt

Position: 300

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

Open file description

remains alive until no

file descriptors in any

process refer to it

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

read(3, buf, 100)read(3, buf, 100)
close(3)

Why is Aliasing the
Open File Description
a Good Idea?
It allows for shared resources between processes

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

59

Recall: In POSIX, Everything is a
“File”
• Identical interface for:

 Files on disk

 Devices (terminals, printers, etc.)

 Regular files on disk

 Networking (sockets)

 Local interprocess communication (pipes, sockets)

• Based on the system calls open(), read(), write(), and close()

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

60

Example: Shared Terminal Emulator
• When you fork() a process, the parent’s and child’s printf outputs

go to the same terminal

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

61

Example: Shared Terminal Emulator 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

62

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 2

… …

Terminal Emulator

Example: Shared Terminal Emulator 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

63

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 2

… …

Terminal Emulator

close(0)

Example: Shared Terminal Emulator 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

64

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 2

… …

Terminal Emulator

close(0)

If one process closes

stdin (0), it remains

open in other processes

Other Examples
• Shared network connections after fork()

 Allows handling each connection in a separate process

 We’ll explore this next time

• Shared access to pipes

 Useful for interprocess communication

 And in writing a shell (Assignment 2)

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

65

Other Syscalls: dup and dup2
• They allow you to duplicate the file descriptor

• But the open file description remains aliased

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

66

Other Syscalls: dup and dup2
• Suppose that we execute

open("foo.txt")

• and that the result is 3

• Next, suppose that we execute

read(3, buf, 100)

• and that the result is 100

• Next, suppose that we execute

dup(3)

• And that the result is 4

• Finally, suppose that
we execute

dup2(3, 4103)

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

67

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

4103

File: foo.txt

Position: 100

Open File Description

Process

…

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Today: The File Abstraction
• High-Level File I/O: Streams

• Low-Level File I/O: File Descriptors

• How and Why of High-Level File I/O

• Process State for File Descriptors

• Some Pitfalls with OS Abstractions [if time]

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

68

Don’t fork() in a
process that already
has multiple threads
Unless you plan to call exec() in the child process

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

69

fork() in Multithreaded Processes
• The child process always has just a single thread

 The thread in which fork() returns

• The other threads just vanish

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

70

fork() in a Multithreaded Processes 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

71

User Space

Kernel Space

Address

Space

(Memory)

Thread 1

Regs

File Descriptors

3
File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread 1

Regs

File Descriptors

3

Process 2

…

…

Open File Description

• Only the thread
that called fork()
exists in the new

process

Thread 2

Regs

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Possible Problems with
Multithreaded fork()
• When you call fork() in a multithreaded process, the other threads

(the ones that didn’t call fork()) just vanish

 What if one of these threads was holding a lock?

 What if one of these threads was in the middle of modifying a data
structure?

 No cleanup happens!

• It’s safe if you call exec() in the child

 Replacing the entire address space

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

72

Don’t carelessly mix
low-level and high-
level file I/O

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

73

Avoid Mixing FILE* and File
Descriptors
 What is the value has y after executing the following code?

char x[10];

char y[10];

FILE* f = fopen("foo.txt", "rb");

int fd = fileno(f);

fread(x, 10, 1, f); // read 10 bytes from f

read(fd, y, 10); // assumes that this returns 10

• Bytes 0 to 9

• Bytes 10 to 19

• None of these?

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

74

Be careful with fork()
and FILE*

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

75

Be Careful Using fork() with FILE*
FILE* f = fopen("foo.txt", "w");

fwrite("a", 1, 1, f);

fork();

fclose(f);

• After all processes exit, what is in foo.txt?

 Could be either a or aa

• Usually aa based on what I’ve observed in Linux…

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

76

Depends on whether this
fwrite call flushes…

Be Careful Using fork() with FILE* 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

77

User Space

Kernel Space

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 0

Process 1

Thread’s

Regs

File Descriptors

3

Process 2

Open File Description

• Open File Description

is aliased
• But the FILE* buffer

is copied!

a

FILE* Buffer

a

FILE* Buffer

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Conclusion 2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

78

High Level I/O

Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Focus of today’s lecture

Open File Descriptions

Conclusion
• POSIX idea: “everything is a file”

• All sorts of I/O managed by open/read/write/close

• We added two new elements to the PCB:

 Mapping from file descriptor to open file description

 Current working directory

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

79

2
/1

0
/2

0
2
6
,
2
/1

2
/2

0
2
6

L
e
ct

u
re

 4
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
F

il
e
s

80

