
Abstractions 3: Pipes
and Sockets
Lecture 5

Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103/

Recall: I/O and Storage Layers 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

2

High Level I/O

Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Open File Descriptions

C High-Level File API – Streams
• Operates on “streams” – sequence of bytes, either text or data, with a

position

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

3

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
int fclose(FILE *fp);

Mode Text Binary Descriptions

r rb Open existing file for reading

w wb Open for writing; created if does not exist

a ab Open for appending; created if does not exist

r+ rb+ Open existing file for reading & writing.

w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise

a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning,

write as append

Low-Level File I/O
• Operations on file descriptors

 Integer that corresponds to an object in the kernel called an open file
description

 Open file description object in the kernel represents an instance of an open file

 Why not just use a pointer?

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

4

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int creat (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:

• Access modes (Rd, Wr, …)

• Open Flags (Create, …)

• Operating modes (Appends, …)

Bit vector of Permission Bits:

• User|Group|Other x R|W|X

Recall: Key Unix I/O Design
Concepts
• Uniformity – everything is a file

 file operations, device I/O, and interprocess communication through open, read/write,
close

 Allows simple composition of programs

 find | grep | wc …

• Open before use
 Provides opportunity for access control and arbitration

 Sets up the underlying machinery, i.e., data structures

• Byte-oriented
 Even if blocks are transferred, addressing is in bytes

• Kernel buffered reads
 Streaming and block devices looks the same, read blocks yielding processor to other task

• Kernel buffered writes
 Completion of out-going transfer decoupled from the application, allowing it to continue

• Explicit close

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

5

Recall: Abstract Representation of a
Process

• Suppose that we execute

open("foo.txt")

• and that the result is 3

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

6

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

…

File Descriptors

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

3
File: foo.txt

Position: 0

Open File Description

Process

Recall: What happens on fork()? 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

7

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

• File descriptor is

copied

• Open file description

is aliased

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Recall: Open File Description is Aliased 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

8

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Recall: Open File Description is Aliased 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

9

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 200

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Recall: Open File Description is Aliased 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

10

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 200

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

read(3, buf, 100)

Open File Description is Aliased 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

11

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 300

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

read(3, buf, 100)

Recall: File Descriptor is Copied 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

12

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3
File: foo.txt

Position: 300

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)read(3, buf, 100)
close(3)

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Recall: In POSIX,
Everything is a “File”
• Identical interface for:

 Files on disk

 Devices (terminals, printers, etc.)

 Regular files on disk

 Networking (sockets)

 Local interprocess communication (pipes, sockets)

• Based on the system calls open(), read(), write(), and close()

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

13

Recall: Shared Terminal Emulator 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

14

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 2

… …

Terminal Emulator

Other Syscalls: dup and dup2
• They allow you to duplicate the file descriptor

• But the open file description remains aliased

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

15

Other Syscalls: dup and dup2
• Suppose that we execute

open("foo.txt")

• and that the result is 3

• Next, suppose that we execute

read(3, buf, 100)

• and that the result is 100

• Next, suppose that we execute

dup(3)

• And that the result is 4

• Finally, suppose that we execute

dup2(3, 162)

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

16

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

162

File: foo.txt

Position: 100

Open File Description

Process

…

Not shown:

Initially contains

0, 1, and 2 (stdin,

stdout, stderr)

Pipes

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

17

Communication Between Processes

• Producer (writer) and consumer (reader) may be distinct processes

• Potentially separated in time

• Why might it be wasteful to use a file in this way?

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

18

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process A Process B

Persistent

Storage

Communication Between Processes

• Data written by A is held in memory until B reads it

• What if A generates data faster than B can process it?

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

19

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process A Process B

Intermediate

Storage

Communication Between Processes

• Data written by A is held in memory until B reads it

• Queue has a fixed capacity
 Writing to the queue blocks if the queue if full

 Reading from the queue blocks if the queue is empty

• POSIX provides this abstraction in the form of pipes

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

20

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process A Process B

Intermediate

Storage

Pipes
• int pipe(int fileds[2]);

 Allocates two new file descriptors in the process

 Writes to fileds[1] read from fileds[0]

 Implemented as a fixed-size queue

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

21

Single-Process Pipe Example
#include <unistd.h>

int main(int argc, char *argv[]) {

char *msg = "Message in a pipe.\n";

char buf[BUFSIZE] = { '\0' };

int pipe_fd[2];

if (pipe(pipe_fd) == -1) {

fprintf (stderr, "Pipe creation failed.\n"); return EXIT_FAILURE;

}

ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);

printf("Sent: %s [%ld, %ld]\n", msg, strlen(msg)+1, writelen);

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);

printf("Rcvd: %s [%ld]\n", buf, readlen);

close(pipe_fd[1]); close(pipe_fd[0]);

}

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

22

Inter-Process Communication (IPC)
pid_t pid = fork();

if (pid < 0) {

fprintf (stderr, "Fork failed.\n");

return EXIT_FAILURE;

}

if (pid != 0) {

ssize_t writelen = write(pipe_fd[1], msg, msglen);

printf("Parent: %s [%ld, %ld]\n", msg, msglen, writelen);

close(pipe_fd[0]);

close(pipe_fd[1]);

} else {

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);

printf("Child Rcvd: %s [%ld]\n", msg, readlen);

close(pipe_fd[0]);

close(pipe_fd[1]);

}

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

23

Pipes Between Processes 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

24

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4
In

Out

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

Process 2

… …

Pipe

pipe(…)
fork()

Channel from Child to Parent 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

25

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4
In

Out

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

Process 2

… …

Pipe

pipe(…)
fork()
close(4) close(3)

Channel from Parent to Child 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

26

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4
In

Out

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

Process 2

… …

Pipe

pipe(…)
fork()
close(3) close(4)

When do we get EOF on a pipe?
• When there a no more open file descriptors for the “write” end of the

pipe

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

27

EOF on a Pipe 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

28

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

4
In

Out

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Pipe

pipe(…)
fork()
close(3)
close(4) close(4)

EOF on a Pipe 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

29

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4
In

Out

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

Process 2

… …

Pipe

pipe(…)
fork()
close(3)
close(4)

Announcements
• Assignment 1 due next Monday

 You should be finishing work on this

• Project 0 was due early this week

 If you need an extension, please get in contact

• Project 1 will be posted soon

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

30

Sockets

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

31

Today: The Socket Abstraction
• Key Idea: Communication across the world looks like File I/O

• Sockets: Connected queues over the Internet

 How to open()? Filenames?

 How are the endpoints connected in time?

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

32

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Sockets
• Socket: An abstraction for one endpoint of a network connection

 Mechanism for inter-process communication

• First introduced in 4.2 BSD Unix

 Most operating systems (Linux, Mac OS X, Windows) provide this, even if
they don’t copy rest of UNIX I/O

 Standardized by POSIX

• Same abstraction for any kind of network

 Local (within same machine)

 The Internet (TCP/IP, UDP/IP)

 Things “no one” uses anymore (OSI, Appletalk, IPX, …)

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

33

What is a Network Connection?
• In this class we will study so-called “TCP Connections”

• Bidirectional stream of bytes between two processes on possibly
different machines

• Abstractly, a connection between two endpoints A and B consists of:

 A queue (bounded buffer) for data sent from A to B

 A queue (bounded buffer) for data sent from B to A

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

34

Sockets
• Looks just like a file with a file descriptor

 Corresponds to a network connection (two queues)

 write adds to output queue (queue of data destined for other side)

 read removes from it input queue (queue of data destined for this side)

 Some operations do not work, e.g. lseek

• How can we use sockets to support real applications?

 A bidirectional byte stream isn’t useful on its own…

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

35

What is a Protocol?
• A protocol is an agreement on how to communicate

• Includes

 Syntax: how a communication is specified & structured

 Format and order of messages that are sent and received

 Semantics: what a communication means

 Actions taken when transmitting, receiving, or when a timer expires

• Described formally by a state machine

 Often represented as a message transaction diagram

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

36

Examples of Protocols in Human
Interaction
1. Telephone

2. (Pick up / open up the phone)

3. Listen for a dial tone / see that you have service

4. Dial

5. Should hear ringing …

6. Callee: “Hello?”

7. Caller: “Hi, it’s John….”
Or: “Hi, it’s me” (what’s that about?)

8. Caller: “Hey, do you think … blah blah blah …” pause

9. Callee: “Yeah, blah blah blah …” pause

10. Caller: Bye

11. Callee: Bye

12. Hang up

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

37

Web Server 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

38

Client Web Server

Request

Reply

Client-Server Protocols

• Many clients accessing a common server

• File servers, www, FTP, databases

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

39

Server

Client 1

Client 2

Client n

Client-Server Communication
• Client is “sometimes on”

 Sends the server requests for
services when interested

 E.g., Web browser on laptop/phone

 Doesn’t communicate directly with
other clients

 Needs to know server’s address

• Server is “always on”

 Services requests from many clients

 E.g., Web server for www.lsu.edu

 Doesn’t initiate contact with clients

 Needs a fixed, well-known address

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

40

GET /index.html

“Site under construction”

Simple Example: Echo Server 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

41

Client Web Server

“hello, world”

“hello, world”

Simple Example: Echo Server 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

42

write(fd, buf,len);
n = read(fd,buf,…);

Client (issues requests) Server (services requests)

requests

responses
write(fd, buf,…);

n = read(fd,rcvbuf, …);

printwait

print

Echo Server (One Request) 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

43

client
char buf[BUF_SIZE];
fgets(buf, BUF_SIZE, stdin); // prompt
write(sockfd, buf, strlen(sndbuf)); // send request
memset(buf, 0, BUF_SIZE); // clear
read(sockfd, buf, BUF_SIZE-1); // receive response
printf("%s\n", buf); // echo

server
char buf[BUF_SIZE];
memset(buf, 0, BUF_SIZE);
read(consockfd, reqbuf, MAXREQ-1); // receive
printf("%s\n", buf); // echo
write(consockfd, buf, strlen(reqbuf)); // send response

What Assumptions are we Making?
• Reliable

 Write to a file => Read it back. Nothing is lost.

 Write to a (TCP) socket => Read from the other side, same.

 Like pipes

• In order (sequential stream)

 Write X then write Y => read gets X then read gets Y

• When ready?

 File read gets whatever is there at the time. Assumes writing already took
place.

 Like pipes!

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

44

Socket Creation
• Files: permanent objects

 Files exist independently of processes

 Easy to name what file to open()

• Pipes: descriptors inherited from parent process

• Sockets are transient, tied to particular processes (the two
endpoints!)

 Processes are on separate machines: no common ancestor

 How do we name the objects we are opening?

 How do these completely independent programs know that the other wants
to “talk” to them?

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

45

Namespaces for Communication
over IP
• Hostname

 www.lsu.edu

• IP address

 130.39.6.220 (IPv4, 32-bit Integer)

 2600:1702:4930:cb0::1(IPv6, 128-bit Integer)

• Port Number

 0 – 1023 are “well known” or “system” ports

 Superuser privileges to bind to one

 1024 – 49151 are “registered” ports (registry)

 Assigned by IANA for specific services

 49152 – 65535 (215+214 to 216−1) are “dynamic” or “private”

 Automatically allocated as “ephemeral ports”

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

46

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Connection Setup

• Special kind of socket: server socket
 Has file descriptor

 Can’t read or write

• Two operations:
 listen(): Start allowing clients to connect

 accept(): Create a new socket for a particular client

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

47

socket

ServerClient

Server

Socket

connection

new
socket

Connection

socket
connection

Connection Setup

• 5-Tuple identifies each connection:
 Source IP Address

 Destination IP Address

 Source Port Number

 Destination Port Number

 Protocol (always TCP here)

• Often, Client Port “randomly” assigned
 Done by OS during client socket setup

• Server Port often “well known”
 80 (web), 443 (secure web), 25 (sendmail), etc.

 Well-known ports from 0…1023

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

48

socket

ServerClient

Server

Socket

connection

new
socket

Connection

socket
connection

Sockets in Schematic 2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

49

Client

Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()

Connection SocketConnection Socket

read request

Client Protocol
char* host_name = "www.lsu.edu";

char* port = "80";

// Create a socket

struct addrinfo *server = lookup_host(host_name, port);

int sock_fd = socket(server->ai_family, server->ai_socktype,

server->ai_protocol);

// Connect to specified host and port

connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol

run_client(sock_fd);

// Clean up on termination

close(sock_fd);

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

50

Server Protocol (v1)
// Create socket to listen for client connections

char *port = "80";

struct addrinfo *server = setup_address(port);

int server_socket = socket(server->ai_family, server->ai_socktype, server->ai_protocol);

// Bind socket to specific port

bind(server_socket, server->ai_addr, server->ai_addrlen);

// Start listening for new client connections

listen(server_socket, MAX_QUEUE);

while (1) { // Accept a new client connection, obtaining a new socket

int conn_socket = accept(server_socket, NULL, NULL);

serve_client(conn_socket);

close(conn_socket);

}

close(server_socket);

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

51

How Does the Server Protect Itself?
• Handle each connection in a separate process

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

52

Sockets with Protection

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

53

Client

Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket

Close Server Socket

Child

Close Connection

Socket

Close Listen Socket

Parent

Wait for child

Server Protocol (v2)
// Socket setup code elided…

while (1) {

// Accept a new client connection, obtaining a new socket

int conn_socket = accept(server_socket, NULL, NULL);

pid_t pid = fork();

if (pid == 0) { // child

close(server_socket);

serve_client(conn_socket);

close(conn_socket);

exit(0);

} else { // parent

close(conn_socket);

wait(NULL);

}

}

close(server_socket);

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

54

Concurrent Server
• So far, in the server:

 Listen will queue requests

 Buffering present elsewhere

 But server waits for each connection to terminate before servicing the next

• A concurrent server can handle and service a new connection before
the previous client disconnects

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

55

Sockets with Protection and Concurrency

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

56

Client
Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket Close Server Socket

Child

Close Connection

Socket

Close Listen Socket

Parent

Server Protocol (v3)
// Socket setup code elided…

while (1) {

// Accept a new client connection, obtaining a new socket

int conn_socket = accept(server_socket, NULL, NULL);

pid_t pid = fork();

if (pid == 0) { // child

close(server_socket);

serve_client(conn_socket);

close(conn_socket);

exit(0);

} else { // parent

close(conn_socket);

//wait(NULL);

}

}

close(server_socket);

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

57

Concurrent Server without
Protection
• Spawn a new thread to handle each connection

• Main thread initiates new client connections without waiting for
previously spawned threads

• Why give up the protection of separate processes?

 More efficient to create new threads

 More efficient to switch between threads

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

58

Sockets with Concurrency, without
Protection

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

59

Client

Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket

Close Server Socket

Spawned Thread Main Threadpthread_create

Server Address: Itself
struct addrinfo *setup_address(char *port) {

struct addrinfo *server;

struct addrinfo hints;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE;

getaddrinfo(NULL, port, &hints, &server);

return server;

}

• Accepts any connections on the specified port

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

60

Client: Getting the Server Address
struct addrinfo *lookup_host(char *host_name, char *port) {

struct addrinfo *server;

struct addrinfo hints;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

// hints.ai_flags = AI_PASSIVE;

int rv = getaddrinfo(host_name, port, &hints, &server);

if (rv != 0) {

printf("getaddrinfo failed: %s\n", gai_strerror(rv));

return NULL;

}

return server;

}

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

61

Conclusion
• Pipes are an abstraction of a single queue

 One end write-only, another end read-only

 Used for communication between multiple processes on one machine

 File descriptors obtained via inheritance

• Sockets are an abstraction of two queues, one in each direction

 Can read or write to either end

 Used for communication between multiple processes on different machines

 File descriptors obtained via socket/bind/connect/listen/accept

 Inheritance of file descriptors on fork() facilitates handling each connection
in a separate process

• Both support read/write system calls, just like File I/O

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

62

2
/1

9
/2

0
2

6
,
L

e
ct

u
re

 5
C

S
C

4
1

0
3

,
S

p
ri

n
g
 2

0
2

6
,
P

ip
e
s

a
n

d
 S

o
ck

e
ts

63

