Abstractions 3: Pipes
and Sockets

Lecture 5

Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103/

Recall: I/O and Storage Layers

Application / Service

High Level I/O Streams

Low Level I/0 File Descriptors

open(), read(), write(), close(),
Open File Descriptions

Files/Directories/Indexes

I/O Driver Commands and Data Transfers
L]

Disks, Flash, Controllers, DMA

Application

] L

Operating system
- -

Hardware

2/19/2026, Lecture 5

0
+
o)
4
3]
Qo
n
o
(=
(av]
0
b}
¥
.-
oW
=
N
(@)
(o]
o0
o
i
~
oF
n
&)
—
<t
Q
N
(@)

2/19/2026, Lecture 5

C High-Level File API — Streams

- Operates on “streams” — sequence of bytes, either text or data, with a
position

#include <stdio.h>
FILE *fopen(const char *filename, const char|*mode) ;
int fclose(FILE *fp);

Mode Text Descriptions é
r rb Open existing file for reading f
W wb Open for writing; created if does not exist :i
a ab Open for appending; created if does not exist i
r+ rb+ Open existing file for reading & writing. é
w+ wh+ Open for reading & writing; truncated to zero if exists, create otherwise §
a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, -
write as append

Low-Level File /0O

- Operations on file descriptors

 Integer that corresponds to an object in the kernel called an open file
description

* Open file description object in the kernel represents an instance of an open file
- Why not just use a pointer?

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags |[|, mode_t mode])
int creat (const char *filename, mode_t mode) \\

int close (int file

. . \ VAppIicatioril
Bit vector of: Bit vector of Permission Bits: <
« Access modes (Rd, Wr, ...) - User|Group|Other x R|W|X S

« Open Flags (Create, ...)
« Operating modes (Appends, ...)

] [

Hardware

2/19/2026, Lecture 5

w
+
)
L
Q
©)
N
=
=)
(ay]
n
)
o8
-
[a®
-
N
(@)
(o]
o0
=]
=
~
oF
N
-
&)
—
O
n
O

Recall: Key Unix I/O Design
Concepts

Uniformity — everything is a file

. fille operations, device I/0, and interprocess communication through open, read/write,
close

+ Allows simple composition of programs
- find | grep | wc ...

2/19/2026, Lecture 5

Open before use
+ Provides opportunity for access control and arbitration
+ Sets up the underlying machinery, i1.e., data structures

Byte-oriented
- Even if blocks are transferred, addressing is in bytes

Kernel buffered reads
+ Streaming and block devices looks the same, read blocks yielding processor to other task

Kernel buffered writes
+ Completion of out-going transfer decoupled from the application, allowing it to continue

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
—
O
@0
(@)

Application

Explicit close] L

Operating system
] [

Hardware

Recall: Abstract Representation of a
Process

0
Y
~
=

+~
Q
<)

—

@,\

N

S

N

-~

(o))

—

-~

(2]

Process - Suppose that we execute
\ open("foo.txt")
Thread's - and that the resultis 3
Regs Address
Space s
(Memory) E
User Space
- S S S S S i I S S S S S e e .. Q%
rnel Space ; ; <
File Dgescrlptors Open File Description o
Not shown: . JST
Initially contains — Flle.' .fOO..tXt g
0, 1, and 2 (stdin, Position: O %
©)

stdout, stderr) \ j

Recall: What happens on fork()?

User Space

rnel Space

Not shown:
Initially contains
0, 1, and 2 (stdin,
stdout, stderr)

Process 1
Thread’s \
Regs Address
Space
(Memory)

File Descriptors
3

File descriptor 1s
copiled

Open file description

1s aliased

Open File Description

—

File: foo.txt
Position: 100

10
o
=

i
(&}
)

—

e}

N

S

X

~

>

—

~—

N

Process 2
Thread’s \
Regs Address
Space
(Memory)

File Descriptors

<

CSC4103, Spring 2026, Pipes and Sockets

T

I E
Oper.ing system

-~ -

Hardware

0
2
-
=

+~
Q
<)

—

@,\

N

S

N

-~

(o))

—

-~

(2]

Recall: Open File Description 1s Aliasec

read(3, buf, 100) Process 1 Process 2
Thread’s \ Gﬂread’s \

Regs Address Regs Address
Space Space s
(Memory) (Memory) E
User Space
19 Sl e B e — ~
rnel Space ; ; ; ; <
File D3escr1ptors Open File Description File Dgescrlptors -
Not shown: 1 - JJ %
Initially contains — Flle,' .fOO..tXt <= §
0, 1, and 2 (stdin, Position: 100 S
(@)

stdout, stderr) \ / \

0
2
-
=

+~
Q
<)

—

@,\

N

S

N

-~

(o))

—

-~

(2]

Recall: Open File Description 1s Aliasec

read(3, buf, 100) Process 1 Process 2
Thread’s \ Gﬂread’s \

Regs Address Regs Address
Space Space s
(Memory) (Memory) E
User Space
19 Sl e B e — ~
rnel Space ; ; ; ; <
File D3escr1ptors Open File Description File Dgescrlptors -
Not shown: 1 - JJ %
Initially contains — Flle,' .fOO..tXt <= §
0,1, and 2 (stdin, Position: 200 g
(@)

stdout, stderr) \ / \

0
2
-
=

+~
Q
<)

—

@,\

N

S

N

-~

(o))

—

-~

(2]

Recall: Open File Description 1s Aliasec

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
Thread’s \ Gﬂread’s \

Regs Address Regs Address
Space Space s
(Memory) (Memory) F
User Space
1S S e e = ~ S
rnel Space ; ; ; ; <
File D3escr1ptors Open File Description File Dgescrlptors -
Not shown: 1 - JJ %
Initially contains — Flle,' .fOO..tXt <= §
0, 1, and 2 (stdin, Position: 200 S
(@)

stdout, stderr) \ / \

0
2
-
=

+~
Q
<)

—

@,\

N

S

N

-~

(o))

—

-~

(2]

Open File Description 1s Aliased

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
Thread’s \ Gﬂread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

CSC4103, Spring 2026, Pipes and Sockets

rnel Space ; ; : :
File Dgescrlptors Open File Description File Dgescrlptors
Not shown: oo JJ
Initially contains — Flle.' .fOO..tXt wa
0, 1, and 2 (stdin, Position: 300

stdout, stderr) L]
\ / \ Oper.dng system

-~ -

Hardware

0
2
-
=

+~
Q
<)

—

@,\

N

S

N

-~

(o))

—

-~

(2]

Recall: File Descriptor 1s Copied

read(3, buf, 100) Process 1 read(3, buf, 100) Process 2
close(3)
Gu‘ead’s \ Gﬂread’s \
Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

rnel Space ; ; : :
File Dgescrlptors Open File Description File Dgescrlptors
Not shown: oo JJ
Initially contains — Flle.' .fOO..tXt wa
0, 1, and 2 (stdin, Position: 300

CSC4103, Spring 2026, Pipes and Sockets

stdout, stderr) L]
\ / \ Oper.dng system

-~ -

Hardware

Recall: In POSIX,
Everything is a “File”

- Identical interface for:
* Files on disk
- Devices (terminals, printers, etc.)

2/19/2026, Lecture 5

« Regular files on disk
- Networking (sockets)
- Local interprocess communication (pipes, sockets)

- Based on the system calls open(), read(), write(), and close()

-~
|5}
4
3}
Qo
N
o)
<
fay]
wm
o}
3,
o=
o
Ne)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
—
O
@0
(@)

Application

-~ -

Operating system
"=

Hardware

Recall: Shared Terminal Emulator

User Space

rnel Space

Process 1
Thread’s \
Regs Address
Space
(Memory)

Terminal Emulator

Process 2
Thread’s \
Regs Address
Space
(Memory)

&

File Descriptors

L |

A
2

_

Ie]
<
5

5
Q
(D)

—

=

N

(@)

N

=

(o))

—

~

N

g 2026, Pipes and Sockets

CSC4103, Sprin

2/19/2026, Lecture 5

Other Syscalls: dup and dup2

- They allow you to duplicate the file descriptor

- But the open file description remains aliased

Application

-~ -

Operating system
{1 -

Hardware

-~
|5}
4
3}
Qo
N
o)
<
fay]
wm
o}
(o}
.-
o
Ne)
N
>
(o]
o0
=)
o=
o
)
N
o
(@)
—
<t
Q
@0
(@)

2/19/2026, Lecture 5

Other Syscalls: dup and dup2

Process . Suppose that we execute
\ open("foo.txt")
Thread’s - and that the result 1s 3
Regs Address
Space - Next, suppose that we execute
(Memory) read(3, buf, 100)
- and that the result 1s 100

User Space

- Next, suppose that we execute

CSC4103, Spring 2026, Pipes and Sockets

rnel Space ; .
File Descriptors Open File Description dup(3)
3 :
: : - And that th It 1s 4
Initially contains 1| N f File: oot .
0, 1, and 2 (stdin, 162 =1 Position: 100 - Finally, suppose that gepexes

stdout, stderr) \ j dup2(3, 162) Tt
Operating system

] [

Hardware

G 2N ‘9Z0G/61/3 193208 pue sadid ‘9g0g SuLt

).

D

Q
=
al

2/19/2026, Lecture 5

Communication Between Processes

write(wfd, wbuf, wlen);

Process A Process B

Persistent " n = pead(rfd, rbuf, rmax);
Storage

- Producer (writer) and consumer (reader) may be distinct processes

- Potentially separated in time

w
+
5
M
Q
S
N
el
=)
<
n
O
g
-
[a®
S
N
o
N
oD
=]
=
~
oF
N
o
—
<t
O
R
o

- Why might it be wasteful to use a file in this way?

2/19/2026, Lecture 5

Communication Between Processes

write(wfd, wbuf, wlen);

Process A Process B

Intermediate

n = read(rfd, rbuf, rmax);
Storage

w
+
)
L
Q
©)
N
]
=)
(ay]
n
)
o8
-
[a®
-
N
(@)
(o]
o0

- Data written by A is held in memory until B reads it

CSC4103, Sprin

- What if A generates data faster than B can process it?

2/19/2026, Lecture 5

Communication Between Processes

write(wfd, wbuf, wlen);

Process A Process B

Intermediate
Storage

= read(rfd, rbuf, rmax);

- Data written by A is held in memory until B reads it

- Queue has a fixed capacity
- Writing to the queue blocks if the queue if full
* Reading from the queue blocks if the queue is empty

0
+
o)
4
3]
Qo
n
e
=
(av]
(0]
e8]
¥
.-
oW
=
AN
(@)
(o]
o0
o
i
~
oF
0)]
(@)
—
<t
Q
N
(@)

- POSIX provides this abstraction in the form of pipes

2/19/2026, Lecture 5

Pipes

- int pipe(int fileds[2]);
+ Allocates two new file descriptors in the process
* Writes to fileds[1] read from fileds[9]
- Implemented as a fixed-size queue

Application

-~ -

Operating system
"=

Hardware

-~
|5}
4
3}
Qo
N
o)
<
fay]
wm
o}
(o}
o=
o
Ne)
N
>
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

2/19/2026, Lecture 5

Single-Process Pipe Example

#include <unistd.h>
int main(int argc, char *argv[]) {
char *msg = "Message in a pipe.\n";
char buf[BUFSIZE] = { '\@' };
int pipe_fd[2];
if (pipe(pipe_fd) == -1) {
fprintf (stderr, "Pipe creation failed.\n"); return EXIT_FAILURE;

ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1l);
printf("Sent: %s [%1d, %1d]\n", msg, strlen(msg)+l, writelen);

ssize t readlen = read(pipe_fd[@], buf, BUFSIZE);

printf("Rcvd: %s [%1d]\n", buf, readlen);

ClOSE(pipe_'Fd[l]); Close(plpe_'Fd[G]); V—Tpplication ‘
} T ©__

-~
|5}
4
3}
Qo
N
o)
<
fay]
wm
o}
(o}
.-
o
Ne)
N
>
(o]
o0
=)
o=
o
)
N
o
(@)
—
<t
Q
@0
(@)

Operating system

-

Hardware

2/19/2026, Lecture 5

Inter-Process Communication (IPC)

pid t pid = fork();
if (pid < 9) {
fprintf (stderr, "Fork failed.\n");
return EXIT_FAILURE;
}
if (pid != 0) {
ssize t writelen = write(pipe fd[1l], msg, msglen);
printf("Parent: %s [%1ld, %1d]\n", msg, msglen, writelen);
close(pipe_fd[0]);
close(pipe_fd[1]);
} else {
ssize t readlen = read(pipe_fd[©@], buf, BUFSIZE);
printf("Child Rcvd: %s [%1d]\n", msg, readlen);
close(pipe fd[0]); —
close(pipe_fd[1]); .pp-

} Operating system

1.

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

Hardware

2/19/2026, Lecture 5

Pipes Between Processes

Process 1 Process 2
pipe(..) [\ [\
fork () Thread’s Thread’s
Regs Address Regs Address

Space Space E
(Memory) (Memory) 7
User Space g
rnel Space File Descriptors 9
4 | In é
Pipe 2

o]

2/19/2026, Lecture 5

Channel from Child to Parent

Process 1 Process 2
pipe(..)
fork () Gmead’s \ Glread’s \
Regs Address Regs Address
close(4) Space close(3) Space
(Memory) (Memory)

User Space

g 2026, Pipes and Sockets

rnel Space File Descriptors 3
4 | In é
Pipe 2

N——

2/19/2026, Lecture 5

Channel from Parent to Child

Process 1 Process 2
pipe(..)
fork () Gmead’s \ Glread’s \
Regs Address Regs Address
close(3) Space close(4) Space
(Memory) (Memory)

User Space

g 2026, Pipes and Sockets

rnel Space File Descriptors 3
4 | In é
Pipe 2

N——

2/19/2026, Lecture 5

When do we get EOF on a pipe?

- When there a no more open file descriptors for the “write” end of the
pipe

-~
|5}
4
3}
Qo
N
o)
<
fay]
[0))
o}
(o}
.-
o
Ne)
N
>
(o]
o0
=)
o=
o
)
N
o
(@)
—
<
O
@0
(@)

2/19/2026, Lecture 5

EOF on a Pipe

Process 1 Process 2
pipe(..)
fork () Gmead’s \ Glread’s \
close (3) Regs Address Regs Address
Space Space
close(4) (Memory) close(4) (Memory)

User Space

rnel Space File Descriptors

T
- / o

CSC4103, Spring 2026, Pipes and Sockets

2/19/2026, Lecture 5

EOF on a Pipe

Process 1 Process 2
pipe(..)
fork () Gmead’s \ Glread’s \
close (3) Regs Address Regs Address
Space Space
close(4) (Memory) (Memory)

User Space

CSC4103, Spring 2026, Pipes and Sockets

rnel Space File Descriptors
3 S
In
4 .
Pipe

N——

2/19/2026, Lecture 5

Announcements

- Assignment 1 due next Monday
* You should be finishing work on this

- Project 0 was due early this week
- If you need an extension, please get in contact

-« Project 1 will be posted soon

Application

-~ -

Operating system
"=

Hardware

-~
|5}
4
3}
Qo
N
o)
<
fay]
wm
o}
3,
o=
o
Ne)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
—
O
@0
(@)

G 2N ‘9Z0G/61/3 $19300g pue sadid ‘9g0g SuLt

),
+>
D
0
>
o
).

Today: The Socket Abstraction

- Key Idea: Communication across the world looks like File I/0

write(wfd, wbuf, wlen);

n = read(rfd,

- Sockets: Connected queues over the Internet
- How to open(? Filenames?
+ How are the endpoints connected 1n time?

rbuf, rmax);

Application

-~ -

Operating system
] [

Hardware

2/19/2026, Lecture 5

0
-
15
4
3}
o
[0p)}
o)
(=)
fav]
wn
O
(o
.-
[a ¥
AN
(@)
(o]
a0
o
e
~
(o
N
o
(@)
—
(@)
R
(@)

2/19/2026, Lecture 5

Sockets

- Socket: An abstraction for one endpoint of a network connection
* Mechanism for inter-process communication

- First introduced in 4.2 BSD Unix

- Most operating systems (Linux, Mac OS X, Windows) provide this, even if
they don’t copy rest of UNIX I/O

« Standardized by POSIX

- Same abstraction for any kind of network
- Local (within same machine)
- The Internet (TCP/IP, UDP/IP)

- Things “no one” uses anymore (OSI, Appletalk, IPX, ...)

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

Application
-~ -
Operating system
] [

Hardware

2/19/2026, Lecture 5

What 1s a Network Connection?

- In this class we will study so-called “TCP Connections”

- Bidirectional stream of bytes between two processes on possibly
different machines

- Abstractly, a connection between two endpoints A and B consists of:
- A queue (bounded buffer) for data sent from A to B
- A queue (bounded buffer) for data sent from B to A

Application

-
+
|5}
4
3}
Qo
N
o)
<
fay]
[0))
o}
S,
.-
o
Ne)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

2/19/2026, Lecture 5

Sockets

- Looks just like a file with a file descriptor
- Corresponds to a network connection (two queues)
- write adds to output queue (queue of data destined for other side)
- read removes from it input queue (queue of data destined for this side)
* Some operations do not work, e.g. 1seek

- How can we use sockets to support real applications?
« A bidirectional byte stream isn’t useful on its own...

Application

1 L°

Operating system
] [

Hardware

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

2/19/2026, Lecture 5

What 1s a Protocol?

- A protocol 1s an agreement on how to communicate

- Includes
* Syntax: how a communication is specified & structured
- Format and order of messages that are sent and received

« Semantics: what a communication means

+ Actions taken when transmitting, receiving, or when a timer expires

- Described formally by a state machine
« Often represented as a message transaction diagram

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o)
3,
o=
o
Ne)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

Application

-~ -

Operating system
] [

Hardware

Examples of Protocols in Human
Interaction

2/19/2026, Lecture 5

1. Telephone

2. (Pick up / open up the phone)

3. Listen for a dial tone / see that you have service
4, Dial

5. Should hear ringing ...

 »

6. Callee: “Hello?”

7. Caller: “Hi, it’s John....” 4 /

Or: “Hi, it’s me” (what’s that about?)

8. Caller: “Hey, do you think ... blah blah blah ...” pause

 +

9. ¢ - Callee: “Yeah, blah blah blah ...” pause
10. Caller: Bye »
Callee: Bye fr—

11. b
Application
12. Hang up - -

-~
|5}
4
3}
Qo
N
o)
<
fay]
wm
o}
(o}
.-
o
Ne)
N
>
(o]
o0
=)
o=
o
)
N
o
(@)
—
<t
Q
@0
(@)

Operating system
{1 -

Hardware

2/19/2026, Lecture 5

Web Server

Request

Reply

Web Server

w
+
)
L
Q
©)
N
]
=)
(ay]
n
)
o8
-
[a®
<
N
(@)
(o]
o0
=]
=
~
oF
N
-
&)
—
O
n
O

Application

] L

Operating system

-~ -

Hardware

2/19/2026, Lecture 5

Client-Server Protocols

[Client 2 }

*k%k

[Client n

- Many clients accessing a common server

-~
|5}
4
3}
Qo
N
o)
o
fay]
wn
o}
(o}
.-
o
Ne)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
<fi
O
@0
(@)

- File servers, www, FTP, databases

2/19/2026, Lecture 5

Client-Server Communication

- Client is “sometimes on” - Server 1s “always on”
* Sends the server requests for * Services requests from many clients
services when interested - E.g., Web server for www.lsu.edu
* E.g., Web browser on laptop/phone - Doesn’t initiate contact with clients
* Doesn’t communicate directly with - Needs a fixed, well-known address

other clients
« Needs to know server’s address

GET /index.html

@
Oi ? >
W, |
T > .
C~_T

“Site under construction’

n
+
)
)
o
o
[0p)}
o)
(=)
<
wn
)
(o
b=
[a ¥
AN
(@)
(]
a0
o
=
5
(o
wn
o
(@)
—
(@)
P!
(@)

-~ -

Operating system
- -

Hardware

2/19/2026, Lecture 5

Simple Example: Echo Server

“hello, world”

“hello, world”

w
+
)
L
Q
©)
N
]
=)
(ay]
n
)
o8
-
[a®
-
N
(@)
(o]
o0

Web Server

CSC4103, Sprin

2/19/2026, Lecture 5

Simple Example: Echo Server

Client (issues requests) Server (services requests)

0
-
15
4
3}
o
[0p)}
o)
(=)
fav]
wn
O
(o
.-
[a ¥
AN
(@)
(o]
a0
o
e
~
(o
N
o
(@)
—
<t
QO
R
Q,

2/19/2026, Lecture 5

Echo Server (One Request)

client
char buf[BUF_SIZE];
fgets(buf, BUF_SIZE, stdin); // prompt
write(sockfd, buf, strlen(sndbuf));&// send request
memset(buf, ©, BUF_SIZE); / ear
read(sockfd, buf, §UF_SIZE-1);| // redeive response
printt(%»s\n", but); cho

server

char buf[BUF_SIZE];
memset(buf, 0, BUF SIZE);

®
S5
(]
<
O
]
N
e
=)
o]
0
D)
on
-
A
o
N
S
A\
o0
g
~
[
N
-
S
—
<t
©)
)
(@)

read(consockfd, regbuf, MAXREQ-l);l / receive
printf("%s\n", buf); // echo —
write(consockfd, buf, strlen(regbuf)); // send response i ¢ -

Operating system

-~ -

Hardware

2/19/2026, Lecture 5

What Assumptions are we Making?

- Reliable
« Write to a file => Read 1t back. Nothing is lost.
- Write to a (TCP) socket => Read from the other side, same.
- Like pipes

. In order (sequential stream)
* Write X then write Y => read gets X then read gets Y

- When ready?

 File read gets whatever is there at the time. Assumes writing already took
place.

- Like pipes!

-~
|5}
4
3}
Qo
N
o)
<
fay]
[0))
o}
(o}
.-
o
Ne)
N
>
(o]
o0
=)
o=
o
)
N
o
(@)
—
<
O
@0
(@)

Application

-~ -

Operating system
{1 -

Hardware

2/19/2026, Lecture 5

Socket Creation

- Files: permanent objects
* Files exist independently of processes
- Easy to name what file to open()

- Pipes: descriptors inherited from parent process

. Sockets are transient, tied to particular processes (the two
endpoints!)
* Processes are on separate machines: no common ancestor
- How do we name the objects we are opening?

* How do these completely independent programs know that the other wants
to “talk” to them?

-
+
|5}
4
3}
Qo
N
o)
<
fay]
wm
o}
(o}
.-
o
Ne)
N
>
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

Application

1 L°

Operating system
] [

Hardware

Namespaces for Communication
over IP

- Hostname
- www.lsu.edu

- IP address
- 130.39.6.220 (IPv4, 32-bit Integer)
+ 2600:1702:4930:cb0::1(IPv6, 128-bit Integer)

2/19/2026, Lecture 5

- Port Number
* 00— 1023 are “well known” or “system” ports

* Superuser privileges to bind to one
- 1024 — 49151 are “registered” ports (registry)
- Assigned by IANA for specific services
- 49152 — 65535 (215+214 to 216—1) are “dynamic” or “private”

- Automatically allocated as “ephemeral ports”

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

Application

1 L°

Operating system
] [

Hardware

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

2/19/2026, Lecture 5

Connection Setur

I accept

new
socket

Client Server

- Special kind of socket: server socket
- Has file descriptor
« Can’t read or write

- Two operations:
- listen(): Start allowing clients to connect oteaton
- accept(): Create a new socket for a particular client -

n
+
)
)
o
o
[0p)}
o)
(=)
<
wn
)
(o
=
[a ¥
AN
(@)
(]
a0
o
=
5
(o
wn
o
(@)
—
<t
(@)
P!
(@)

Operating system
- -

Hardware

2/19/2026, Lecture 5

Connection Setur

I accept

new
socket

Client Server
- 5-Tuple identifies each connection: - Often, Client Port “randomly” assigned
+ Source IP Address * Done by OS during client socket setup

+ Destination IP Address

+ Source Port Number

* Destination Port Number

« Protocol (always TCP here)

- Server Port often “well known”
- 80 (web), 443 (secure web), 25 (sendmail), etc.
+ Well-known ports from 0...1023 E—
-~ -

Operating system

n
+
)
)
o
o
[0p)}
o)
(=)
<
wn
)
(o
=
[a ¥
AN
(@)
(]
a0
o
=
5
(o
wn
o
(@)
—
<t
(@)
P!
(@)

T T -

Hardware

Sockets 1n Schematic Server

Client Create Server Socket

Create Client Socket Bind it to an Address

i (host:port)
Connect it to server (host:port) ... __ > Listen for Connection
\\\\\\ l L,/’\\\\
“~ Accept syscall() \
Connection Socket €= Connection Socket / T
A\
7 uwrite request ------m-oomeoomiiooooooos > read request ¥,
! \
! \
.. -read response <----------oooooooooooooooo write response ..
l \L Applicatior;
. . .
Close Client Socket Close Connection Socket Op:mg .
Y -~ -

Hardware

Close Server Socket

2/19/2026, Lecture 5

0
+
o)
4
3]
Qo
n
o
(=
(av]
0
b}
¥
o=
oW
=
N
(@)
(o]
o0
o
i
~
oF
n
&)
—
<t
Q
N
(@)

2/19/2026, Lecture 5

Client Protocol

char* host_name = "www.lsu.edu";
char* port = "80";

// Create a socket

struct addrinfo *server = lookup_host(host name, port);

int sock _fd = socket(server->ai_family, server->ai_socktype,
server->ai_protocol);

// Connect to specified host and port
connect(sock _fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client(sock fd);

Application
// Clean up on termination -~

C].O se (SOC k_'Fd) ; Operating system
] [

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

Hardware

Server Protocol (v1)

// Create socket to listen for client connections
char *port = "80";
struct addrinfo *server = setup_address(port);

int server_socket = socket(server->ai_family, server->ai_socktype, server->ai_protocol);

// Bind socket to specific port
bind(server_socket, server->ai_addr, server->ai_addrlen);

// Start listening for new client connections
listen(server_socket, MAX QUEUE);

while (1) { // Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);
close(conn_socket);

}

close(server_socket);

Application

1 L°

Operating system
] [

Hardware

2/19/2026, Lecture 5

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

L0
o
=
o

o
(5]
Q

—

©

AN

(e}

N

o

(op)

—

~

A

How Does the Server Protect Itself?

- Handle each connection in a separate process

and Sockets

g 2026, Pipes

CSC4103, Sprin

Sockets with Protection Server

Client

Create Client Socket

l

Connect it to server (host:port)

Ty write request <o

4
1
1

l‘~__/ read response <«------------

l

Close Client Socket

Create Server Socket

Bind 1t to an Address
(host:port)

-------------- > Listen for Connection

~
~
~
~
~
S
-~
\\\ \L / b
~ L/ N

>~ Accept syscall()

Close Connection
Socket l

Wait for child

Application

-~ -

Operating system
T -

Hardware

Close Server Socket

2/19/2026, Lecture 5

=
|5}
4
3}
o
N
o)
(=)
©
wn
o}
o,
.-
ol
Ne)
N
>
N
o0
o
o=
o
)
N
o
0
)
—
<t
Q
(@)

2/19/2026, Lecture 5

Server Protocol (v2)

// Socket setup code elided..
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server socket, NULL, NULL);
pid t pid = fork();
if (pid == 0) { // child
close(server_socket);
serve _client(conn_socket);
close(conn_socket);

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o)
3,
o=
o
Ne)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

exit(9);
} else { // parent
close(conn_socket);
wait (NULL);
} —_—
} =
close(server_socket); Operating system

1.

Hardware

2/19/2026, Lecture 5

Concurrent Server

- So far, 1in the server:
- Listen will queue requests
- Buffering present elsewhere
* But server waits for each connection to terminate before servicing the next

- A concurrent server can handle and service a new connection before
the previous client disconnects

[[;1
-~
|5}
4
3}
Qo
N
o)
o
fay]
[0))
o}
(o}
.-
o
Ne)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
<
O
@0
(@)

Application

-~ -

Operating system
{1 -

Hardware

Sockets with Protection and Concurrency

Server
Create Server Socket

Client

Bind it to an Address

Create Client Socket
(host:port)

v

Connect it to server (host:port) - ____ > Listen for Connection

Accepji syscall() g \\\

<~y write request -

/!
I

~__ .- read response «-------------

l

Close Client Socket

2/19/2026, Lecture 5

=
|5}
4
3}
o
N
o)
(=)
©
wn
o}
o,
.-
ol
Ne)
N
>
N
o0
o
o=
o
)
N
o
0
)
—
<t
Q
(@)

2/19/2026, Lecture 5

Server Protocol (v3)

// Socket setup code elided..
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) { // child
close(server_socket);
serve _client(conn_socket);
close(conn_socket);

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

exit(9);
} else { // parent
close(conn_socket);
//wait(NULL);
} =
Application
} =
close(server_socket); Operating system

1.

Hardware

Concurrent Server without
Protection

- Spawn a new thread to handle each connection

2/19/2026, Lecture 5

- Main thread initiates new client connections without waiting for
previously spawned threads

- Why give up the protection of separate processes?
« More efficient to create new threads
« More efficient to switch between threads

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
—
O
@0
(@)

Sockets with Concurrency, without
PrOteCtiOIl Server

Client Create Server Socket

l

Bind it to an Address
(host:port)

/19/2026, Lecture

2

Create Client Socket

Vv

Connect 1t to server (hostiport) -------------- > Listen\ /for Connection

4

\
~~ Accept syscall(

Vv \l/

Connection Socket — Gm— Connection Socket
Spawned Thread

pthtead_create Main Thread

Vv

7 “ywrite request - ____________

1
1
1

.. read response = «-------—————-

-

Close Client Socket

Application

-~ -

Operating system

"=

CSC4103, Spring 2026, Pipes and Sockets

Close Server Socket

Hardware

2/19/2026, Lecture 5

Server Address: Itself

struct addrinfo *setup_address(char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, @, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai socktype = SOCK_STREAM;
hints.ai flags = AI_PASSIVE;
getaddrinfo(NULL, port, &hints, &server);
return server;

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wm
o}
(o}
o=
o
Ne)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
<t
Q
@0
(@)

- Accepts any connections on the specified port e aepicaton
-

Operating system
] [

Hardware

2/19/2026, Lecture 5

Client: Getting the Server Address

struct addrinfo *lookup host(char *host name, char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, @, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai socktype = SOCK_ STREAM;
// hints.ai_flags = AI PASSIVE;

int rv = getaddrinfo(host name, port, &hints, &server);
if (rv 1= 0) {
printf("getaddrinfo failed: %s\n", gai strerror(rv));
return NULL;

}

return server; p—
pplication
} T

&
+
|5}
4
3}
Qo
N
o)
<
fay]
wn
o}
(o}
.-
o
o)
N
(@)
(o]
o0
=)
o=
o
)
N
o
(@)
—
Q
@0
(@)

Operating system
] [

Hardware

2/19/2026, Lecture 5

Conclusion

- Pipes are an abstraction of a single queue
* One end write-only, another end read-only
+ Used for communication between multiple processes on one machine
- File descriptors obtained via inheritance

- Sockets are an abstraction of two queues, one in each direction
* Can read or write to either end
+ Used for communication between multiple processes on different machines
* File descriptors obtained via socket/bind/connect/listen/accept

- Inheritance of file descriptors on fork() facilitates handling each connection
in a separate process

- Both support read/write system calls, just like File I/O

)
-
15
4
3}
o
[0p)}
o)
(=)
fav]
wn
O
(o
=
[a ¥
AN
(@)
(o]
a0
o
e
~
(o
N
o
(@)
—
(@)
R
(@)

Application

-~ -

Operating system
] [

Hardware

CENTER FOR COMPUTATION
& TECHNOLOGY

2/19/2026, Lecture 5

CSC4103, Spring 2026, Pipes and Sockets

o
Co

