Refreshing C

Hartmut Kaiser

https://teaching.hkaiser.org/spring2026/csc4103

1/20/2026, 1/22/2026

C History

- Developed in the 1970s — in conjunction with development of UNIX
operating system
* When writing an OS kernel, efficiency is crucial
+ This requires low-level access to the underlying hardware:

* e.g. programmer can leverage knowledge of how data is laid out in memory, to
enable faster data access

« UNIX originally written in low-level assembly language — but there were
problems:

- No structured programming (e.g. encapsulating routines as “functions”,
“methods”, etc.) — code hard to maintain

« Code worked only for particular hardware — not portable

Application

1 L°

Operating system
] [

Hardware

@)
an
=]

o=

<
[))
Qo

o

S
&

o

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

1/20/2026, 1/22/2026

C Characteristics

- C takes a middle path between low-level assembly language...
 Direct access to memory layout through pointer manipulation
* Concise syntax, small set of keywords

- ... and a high-level programming language like Java:
Block structure

Some encapsulation of code, via functions

Type checking (pretty weak)

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

C Dangers

- C 1s not object oriented!
« Can’t “hide” data as “private” or “protected” fields

* You can follow coding standards to write C code that looks object-oriented,
but you have to be disciplined — will the other people working on your code
also be disciplined?

- C has portability issues

« Low-level “tricks” may make your C code run well on one platform — but
the tricks might not work elsewhere

- The compiler and runtime system will rarely stop your C program
from doing stupid/bad things

+ Compile-time type checking is weak

@)
on
=]

=

<
D)
o

o

S
)

g

‘:Q’

AN

e}

A
on
=]

=
~
[

N

5]

&)

—

QO

N0

(@)

* No run-time checks for array bounds errors, etc. like in Java

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Compiling your C program

* gcc intro.c -o intro R

« and run the program using
- ./intro argl!

argc, *argv[]) A

printf(“%s\n", "Hello world!")

- If we just run ./intro
- We may get a segfault!

printf("%s\n", argv[1])

Output:
Hello world!
argl!

©)
an
=
o
s
1971
]
&
()
o=t
3]
N
o
N
o0
=
o
~
2,
»
s
=
—
<t
©)
P,
©)

Ot

Hardware

1/20/2026, 1/22/2026

Compiling your C program

- All C programs begin with a main function
* The first argument argc denotes the number of elements in argv

* The second argument argv is a list of string arguments passed from the
command line to the program

* The return value of a function indicates the exit code where 0 means
success

- At the top of the file we have an #include statement to include
stdio.h, a library that makes available functions such as printf.

- We can use printf to print formatted strings. In this case %s treats
the input as a string.
- printf 1s your friend for debugging!

o
an
o

o=

<
w0
®
o~
<
<

o

AN

(@)

(o]
a0
o

e
~
(o

N

o

(@)

—

(@)

R

(@)

- printf doesn't emit a newline, so you'll have to add a \n if you want a —
newline -

Operating system
] [

Hardware

C SyntaX <stdio.h>

. At the top of the file we have an include e e
statement to include stdio.h, a library
that contains functions such as printf.

nums|[NUMS_SIZE]

- Next 1s an array declaration using the nums[0]
int {name}[{size}] syntax. ::::EEH

- This array 1s declared on the stack. The e 5 = (R R [CERER S
distinction between declaration on the ' i '
StaCk and heap iS important to keep in printf("Num at index %d is %d\n", i, nums[1]);
mind! ’

- We can initialize the values by using the Fh _ "abed”;
. o o . - t I:.. ".""l"-,.-" E:-t ~ -;ET,. '5 ”_-5 .,llr-. 5 _t - I‘,
{eleml, elem2, ...} 1initializer syntax. printf("My string is %s\n", str

Hardware

1/20/2026, 1/22/2026

The printf() function

. printf("Original input: %s\n", input);
- printf() is a library function declared in <stdio.h>

- Syntax: printf(FormatString, Expr...)
* FormatString: String of text to print
* Expr...: Values to print

* FormatString has placeholders to specify type of the values (note:
#placeholders should match #Exprs)

- Placeholders: %s (print as string), %c (print as char),

i —.— %d (print as integer),
the right one! %f (print as floating-point)

* \n indicates a newline character -~

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

Operating system
] [

Hardware

©
A
S
[\
S~
N
[\
~
—
©
AN
(e}
N
N
S
N
SN
—

Separate compilation

- A C program consists of source code in one or more files

- Each source file is run through the preprocessor and compiler,
resulting in a file containing object code

- Object files are tied together by the linker to form a single executable

Libraries

Application

program .
Source code Preprocessor/ kS

filel.c Compiler 2

Source code Preprocessor/ S

file2.c Compiler £

ﬁ

©)

-~ -

Operating system
T} -

Hardware

Executable code
a.out

The Preprocessor

- The preprocessor takes your source code and — following certain
directives that you give it — tweaks 1t in various ways before
compilation.

- A directive 1s given as a line of source code starting with the # symbol

- The preprocessor works in a very crude, “word-processor” way,
simply cutting and pasting —
* 1t doesn’t really know anything about C!

Your
source
code

Application

-~ -

Operating system
-

Hardware

Preprocessor

1/20/2026, 1/22/2026

O
on
=]

o=

<=
[))
D

o

S
S,

=

N

o

N
o0
=]

-
~
oF

—

<t

O

N0

o

1/20/2026, 1/22/2026

Preprocessor Directives

#define MAX _COLS 20
#define MAX_INPUT 1000

- The #define directives perform
 “global replacements”:

- every instance of MAX_COLS 1is replaced with 20, and every instance of
MAX_INPUT is replaced with 1000.

- Other directives:
#include <> / #include ""
#ifdef / #telse / #tendif

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Preprocessor directives

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

- The #include directives “paste” the contents of the files stdio.h,
stdlib.h and string.h into your source code, at the very place
where the directives appear.

- These files contain information about some library functions used in
the program:

+ stdio stands for “standard I/0”, stdlib stands for “standard library”, and
string.h includes useful string manipulation functions.

- Want to see the files? Look in /usr/include (or similar)

)
on
=]

o=
<
)
QL
o=
St
Q
o'
N
()
(o]
o0
=]
=
~
o8
wn
o
)
—
<t

w— QO

Application wn

©)

1/20/2026, 1/22/2026

Pointers, Arrays, Strings

- The notions of string, array, and pointer are somewhat
interchangeable:

- An array of characters could be declared, for purposes of holding the input
string:

char input[MAX INPUT];

* Yet when i1t’s passed in as an argument to a function, input morphes into a
(constant) pointer to a character (char const*):

void some_function(char const* input, ...)

&)
an
=]

o=

<
[))
Qo

o

S|
&

o'

N

(@)

(o]
on
=]

=
~
=3

N

o

&)

—

<t

&)

n

©)

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Pointers, Arrays, Strings

- In C, the three concepts are indeed closely related:

- A pointer is simply a memory address. The type char* (i.e. “pointer to
character”) signifies that the data at the address the pointer is holding is
to be interpreted as a character.

« An array 1s simply a pointer — of a special kind:

- The array ‘name’ refers to the first of a sequence of data items stored sequentially
In memory

- How do you get to the other array elements? By incrementing the pointer value

« A string is simply an array of characters — unlike Java, which has a
predefined String class.

Application

1 L°

Operating system
] [

Hardware

O
an
&

o=

<
wn
g‘J

o

S
O

o'

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

1/20/2026, 1/22/2026

String Layout and Access

p 0 1 n t e r NUL
(char) (char) (char) (char) (char) (char) (char) (char)

\

---——---

NUL ('\0") is a special value
indicating end-of-string

How do we get to the “n”?

input Follow the input pointer,

What is input? / then hop 3 to the right
It’s a string! *(input + 3)

It’s a pointer to char! o or-
It’s an array of char! input[3]

o

an

=

<

n

<

N

5}

~

s

N

(@)

N

o0

=)

e

~

=3

N

&)

—

, . <
— &)
Application wn
©)

] L

Operating system
] [

Hardware

930¢/36/T 9306/03/T 0 surysaiyey ‘9g0g SuLl

O
5
/)
D
2
!
3=
e
-

1/20/2026, 1/22/2026

Four basic Data Types

- Integers: char, short int, int, long int, enum
- Floating-point types: float, double, long double
- Pointers

- Aggregates: struct, union

- Integer and floating-point types stand for themselves, but pointers
and aggregate types combine with other types, to form a virtually
limitless variety of types

Application

@)
on
=]

=

<
D)
o

o

S
)

g

‘:Q’

AN

e}

A
on
=]

=
~
[

N

5]

&)

—

QO

N0

(@)

1/20/2026, 1/22/2026

Characters are of Integer Type

- From a C perspective, a character is indistinguishable from its
numeric ASCII value —

* the only difference 1s in how 1t’s displayed

- Ex! converting a character digit to its numeric value
« The value of '2" is not 2 —it’s 50 (hexadecimal 9x32)
- To convert, subtract the ASCII value of '9' (which is 48, or 9x30)

Behaviorally,
char digit, digit num_value; this is identical to
digit - 48
digit num_value = digit - '@'; Why is o

o
an
o

o=

<
)
o
o~
<
5

o'

AN

(@)

(o]
a0
o

e
~
(o

N

o

(@)

—

(@)

R

(@)

d_l g_l t - ' O ' Application

~ -
preferable? .
-

Hardware

Integer Values play the Role of
“Booleans”

- There 1s no “Boolean” type
- Relational operators (==, <, etc.) return either 0 or 1

1/20/2026, 1/22/2026

- Boolean operators (&&, | |, etc.) return either 0 or 1,
- and take any int values as operands

- How to interpret an arbitrary int as a Boolean value:
* @ — false
* Any other value — true

an
o
o=
<
%)
QL
o~
)
o
[
N
(@)
(o]
on
o
s
~
N
N
o
&)
—
<t
&)
n
©)

Application

-~ -

Operating system
"=

Hardware

1/20/2026, 1/22/2026

The infamous =° Blunder

- Easy to confuse equality (==) with assignment (=)

« In C, the test expression of an if statement can be any int expression —
including an assignment expression

Assignment performed;
y set to O (oops)

if (y = 0)

printf("Sorry, can zero.\n");

Expression returns
result of assignment:

0, or "false"

else
result = x / vy;

- The compiler will not catch this bug! else clause executed:
* Some compilers will issue a warning divide by O! -

Application

o
an
=

o=

<
wn
o
o~
<
5

o'

AN

(@)

(o]
a0
o

e
~
(o

N

o

(@)

—

~

(@)

R

(@)

-~ -

Operating system
] [

Hardware

The less infamous “relational chain”
Blunder

- Using relational operators in a “chain” doesn't work

1/20/2026, 1/22/2026

- Ex: “age 1s between 5 and 13”

BRI

Next, evaluate either

0 <= 13

evaluate 5 <= age

result is either O or 1

or
1 <= 13

result is always 1

O
an
o

=

<
)
®
o~
<
5

o'

AN

(@)

(o]
6p
o

e
~
(o

N

o

(@)

—

(@)

R

(@)

- A correct solution: 5 <= age && age <= 13

©
N
©)
N
S~
N
N
~
—
=
N
(@)
N
o
S
N
~
—

Ranges of Integer Types
_

char UCHAR_MAX (> 127) 8 bits
signed char SCHAR_MIN (< -127) SCHAR_MAX (> 127) 8 bits
unsigned char 0 UCHAR_MAX (> 255) 8 bits
short int SHRT_MIN (< -32767) SHRT_MAX (> 32767) >= sizeof(char)
(usually 16) <
unsigned short int O USHRT_MAX (> 65535) >= sizeof(char) £
(Cusually 16) &
o'
int INT_MIN (= -32767) INT_MAX (> 32767) >= sizeof(short) <
(usually >= 16) %D
unsigned 1int 0 INT_MAX (> 65535) >= sizeof(short) -
(usually >= 16) -
long int LONG_MIN (< -2147483647) LONG_MAX >= sizeof(int) §
(> 2147483647) (usually >= 320) B2
unsigned lon int 0 ULONG_MAX >= sizeof(int)
J 9 (= 4294967295) (usually >= 32) '

DO
DO

Hardware

1/20/2026, 1/22/2026

Ranges of Integer Types

- Ranges for a given platform can be found in /usr/include/limits.h
- char can be used for very small integer values

- Plain char may be implemented as signed or unsigned on a given
platform — safest to “assume nothing” and just use the range 0...127

- short int “supposed” to be smaller than int —
* but it depends on the underlying platform

Application

@)
on
c

o=

<
0
5

L=

o
<)

o'

AN

e}

A
on
=i

=
=
[

N

5]

&)

—

QO

N0

(@)

Ranges of Floating-Point Types

float FLT_MIN (< -10%7) FLT_MAX (< -1037) 32 bits
double DBL_MIN (< -FLT_MIN) DBL_MAX (> FLT_MAX) 64 bits
long double LDBL_MIN (< -DBL_MIN) LDBL_MAX (> DBL_MAX) >= 64 bits

Floating-point literals must contain a decimal point, an exponent, or both.

3.14159 -25. 6.023e-23

Application

] L

Operating system

] [

Hardware

1/20/2026, 1/22/2026

O
an
c

o=

=
wn
<

o
5]

~

<

N

(@)

(o]
o0
<

-
~
2,

47

&)

—

O

)

O

Danger: Precision of Floating-Point
Values

- Testing for equality between two floating-point values: almost always

a bad 1dea

* One 1dea: instead of simply using ==, call an “equality routine” to check
whether the two values are within some margin of error.

1/20/2026, 1/22/2026

on
b
o
<=
D))
o
o~
S
)
g
AN
e}
A
on
=]
=
~
[
N
5]
&)
—
QO
N0
(@)

Casting: Converting one Type to
Another

- The compiler will do a certain amount of type conversion for you
(silently):

1/20/2026, 1/22/2026

int a = 'A'; /* char literal converted to int */

- In some circumstances, you need to explicitly cast an expression as a
different type — by putting the desired type name in parentheses
before the expression

* e.g. (int)3.14159 will return the int value 3

Application

O
an
&

o=

<
wn
g‘J

o

S
o

o'

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

930¢/36/T 9306/03/T 0 surysaiyey ‘9g0g SuLl

)
=
D
<+
-
o =i
o
a¥

1/20/2026, 1/22/2026

Review of Pointers

. A pointer is just a variable that holds a memory location (an address).

- A memory location is simply an integer value, that we interpret as an
address 1n memory.

- The contents at a particular memory location is just a collection of bits -
there’s nothing special about them that makes them ints, chars, etc.

- How you want to interpret the bits is up to you (that’s what types are for).

Is this... an int value?
. ... a pointer to a memory address? Oxfe4allc5

. ... a series of char values?

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Review of pointer variables

- A pointer variable is just a variable, that contains a value that we
Iinterpret as a memory address.

- Just like an uninitialized int variable holds some arbitrary
“garbage” value,

- an uninitialized pointer variable points to some arbitrary “garbage
address”

char* m; T e

O
an
&

o=

o
n
Qo

o

S
)

2

N

(@)

(o]
o0
o

e
~
oF

N

o

&)

—

~

&)

N0

©)

Application

-~ -

Operating system

T -

Hardware

Following a “garbage” pointer

- What will happen? Depends on what the arbitrary memory address is:

If it’s an address to memory that the OS has not allocated to our program, we
get a segmentation fault

If it’s a nonexistent address, we get a bus error

Some systems require multibyte data items, like ints, to be aligned: for
instance, an int may have to start at an even-numbered address, or an
address that’s a multiple of 4. If our access violates a restriction like this, we
get a bus error

If we’re really unlucky, we’ll access memory that is allocated for our program

* We can then proceed to destroy our own data!

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

O
on
=

o=

<
=
g‘J

o

S
&

o'

N

o

N
oD
=]

=
~
oF

N

o

o

—

<t

O

N0

o

How can you Test whether a Pointer
points to Something Meaningful?

- There 1s a special pointer value NULL, that signifies “pointing to
nothing”. You can also use the value 0.

1/20/2026, 1/22/2026

char* m = NULL;
if (m) { ... safe to follow the pointer ... }
- Here, m1s used as a boolean value

- If m1s “false”, aka @, aka NULL, it is not pointing to anything
- Otherwise, it is (presumably) pointing to something good

O
an
=)

o=

<
n
Qo

o

S
)

2

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

« Note: It is up to the programmer to assign NULL values when necessary

1/20/2026, 1/22/2026

Indirection operator *

(0] g NUL
(char) (char) (char)
[\
\\

- “Moves” from address to contents

char* m = "dog";

char result = *m;

\\
m result

- m1s an address of a char

* *m instructs us to take the contents of that address

* result gets the value 'd’ —

Application

O
on
=]

o=

<=
n
D

o

S
&

o'

N

o

N
oD
=]

=
~
oF

N

o

o

—

<t

O

N0

o

1 L

Operating system
{1 -

Hardware

Address operator &

- Instead of contents, returns the address

char* m = "dog";

char** pm = &m;

(0] g NUL
(char) (char) (char)
[\
\\

S

- pm needs a value of type char ** m R
« Can we assign to it *m? No — type 1s char
« Can we assign to it m? No — type 1s char *
- &m gives 1t the right value — the address of a char * value

Application

] L

Operating system
] [

Hardware

1/20/2026, 1/22/2026

o
an
o

o=

<
w0
®
o~
<
<

o

AN

(@)

(o]
a0
o

e
~
(o

N

o

(@)

—

(@)

R

(@)

1/20/2026, 1/22/2026

Pointer Arithmetic

- C allows pointer values to be incremented by integer values

NUL
(char) (char)

\
~~—_—’

char* m = "dog";

char result = *(m + 1);

- m1s an address of a char
* (m + 1) is the address of the next char
* *(m + 1) instructs us to take the contents of that address

m result

* result gets the value 'o’

@)
on
=]

=

<
D)
o

o

S
)

g

‘:Q’

AN

e}

A
on
=]

=
~
[

N

5]

&)

—

QO

N0

(@)

Application

1 L°

Operating system
] [

Hardware

©
N
S
X
~
o
N
~
—
©
N
S
X
~~
S
X
~
—

Pointer Arithmetic

- A slightly more complex example:

char* m = "dog";

g NUL

(char) (char)
\\\ ,,
N /

char result = *++m;

v i

. mis an address of a char -
g

- ++m changes m, to the address one byte higher, m result =
- and returns the new address 2

- *++m instructs us to take the contents of that location o3
__ 3

! ! ication =

- result gets the value 'o i Z

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Pointer Arithmetic

- How about multibyte values?

* Q' Each char value occupies exactly one byte, so obviously incrementing
the pointer by one takes you to a new char value...

- But what about types like int that span more than one byte?

« A’ C “does the right thing”: increments the pointer by the size of one int
value

int a[2] = {17, 42};
int* m = a;
int result = *++m;

Application

1 L°

O
an
&

o=

<
wn
g‘J

o

S
o

o'

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

m result

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Example: Initializing an Array

#define N_VALUES 5
float values[N _VALUES];

&values[0] &values[N_VALUES-1]
values O G

float* vp;
for (vp = &values[@]; vp < &values[N_VALUES]; /**/)
*Vp++ = 0;

@)
on
=i

o=

<
[))
o

L=

o
3

@'

AN

e}

A
on
=i

=
=
[

N

5]

&)

—

QO

N0

(@)

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Example: strcpy “string copy”

char* strcpy(char* dest, const char* src)

- (assume that) src points to a sequence of char values that we wish
to copy, terminated by '\0"

- (assume that) dest points to an accessible portion of memory large
enough to hold the copied chars (including the NUL character)

- strcpy copies the char values of src to the memory pointed to by
dest

- strcpy also gives dest as a return value

Application

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

1/20/2026, 1/22/2026

Example: strepy “string copy”
char* strcpy(char* dest, char const* src) {

char const* p;

char* q;

for(p = src, q = dest}

*q = '\@’;

return dest;

an
o
.-
<
%)
QL
o
)
o
[
N
(@)
(o]
on
o
s
~
N
N
o
&)
—
<t
&)
n
©)

Application

-~ -

Operating system
{1 -

Hardware

Pointer Subtraction and relational
Operations

« Only meaningful in special context: where you have two pointers
referencing different elements of the same array

- q - p gives the difference (in number of array elements, not number of
bytes between p and g (in this example, 2)

1/20/2026, 1/22/2026

* p < greturns 1if p has a lower address than g; else 0

- (in this example, it returns 1)

(float *) (float *)
‘\ p I’ q
\~\ /,/
\ i
;—Tpplication
(float) (float) (float) 1 <

Operating system

on
b
.-
<
)
o
L=
o
<)
CI:
‘:Q’
AN
e}
A
on
=i
=
=
[
N
5]
&)
—
QO
N0
(@)

T -

Hardware

930¢/36/T 9306/03/T D 3uryseajay ‘9g0g Sult

0
>
Ay
-

<

<stdio.h>
ra S NUM_ELEMS = 3;

- C arrays can be tricky since we can
represent them using the [] syntax or as
pointers using the * syntax. (int i = 0 i < NUM_ELEMS; i+t) {

1/20/2026, 1/22/2026

arrl[NUM_ELEMS];

- In the case of the [] syntax

- We can access elements by using the familiar
arrl[lndex]syntax *arr2 = malloc(() * NUM ELEMS);

- In the case of the pointer * syntax printf("arr2: %x\n", arr2);

- malloc returns a pointer to the start of a buffer
that 1s the same size as the argument that 1s
passed 1n

i =0; i < NUM _ELEMS; i++) {

*(arr2

» The value of int* arr2 in this case 1s a pointer
to the start of a buffer of size 12

- Each int is 4 bytes and there are 3 of them

CSC4103, Spring 2026, Refreshing C

printf("(arr2 + %d): 7

DN
N

Review of arrays

- There are no array variables in C — only array names
- Each name refers to a constant pointer (address of first element of array)
* Space for array elements 1s allocated at declaration time

- Can’t change where the array name refers to...
* but you can change the array elements,

* via pointer arithmetic

Gint [D 27?7 ?7?7?
int m[4]; v ¢int) (int)

Application

-~ -

Operating system
{1 -

Hardware

1/20/2026, 1/22/2026

O
an
&

o=

o
n
Qo

o

S
)

2

N

(@)

(o]
o0
o

e
~
oF

N

o

&)

—

~

&)

N0

©)

Subscripts and pointer arithmetic

- array[subscript] equivalent to *(array + (subscript))

- Strange but true: Given earlier declaration of m, the expression 2[m]
1s legal!
+ Not only that: it’s equivalent to:

2[m]
*(2 + m)
*(m + 2)
m[2]

Application

-~ -

- That also explains why array indices start at zero (not one)!

Operating system
"=

Hardware

1/20/2026, 1/22/2026

an
=]
o=
<=
[))
Qo
o
S
&
o
AN
(@)
A
on
=]
=
~
oF
N
o
&)
—
O
N0
O

Array names and Pointer Variables,
playing together

int m[3];

1/20/2026, 1/22/2026

subscript OK

with pointer
variable

int* mid = m + 1;
int* right = &mid[1]; // &(mid[1])
int* left = &mid[-1];

int* beyond = &mid[2];

Application

beyond 2

Operating system

1.

@)
on
=i

o=

<
[))
o

L=

o
3

@'

‘:Q’

AN

e}

A
on
=i

=
=
[

N

5]

&)
—

QO

N0

(@)

compiler may not catch this —

runtime environment certainly won’t

Hardware

1/22/2026

1/20/2026,

Array names as function arguments

- In C, arguments are passed “by value”

- A temporary copy of each argument is created, solely for use within the
function call:

void f(int x, int* y) { .. }

void g(...) {
int a = 17, b = 42;
f(a, &b);

}

- Pass-by-value 1s “safe” in that the function plays only 1n its
“sandbox” of temporary variables — —

Application

- can’t alter the values of variables in the callee (except via the return value) >

(@)
o0
o

o=

<
%)
D

R

S
g

ae

o

N

(@)

N
on
o

o=
~
2,

o3

[a»)

O

—

<t

o

(@)

Operating system
1 -

Hardware

1/20/2026, 1/22/2026

Array Names as Function Arguments

- But, functions that take arrays as arguments can exhibit what looks
like “pass-by-reference” behavior, where the array passed in by the
callee does get changed

- Remember the special status of arrays in C
« They are basically just pointers.
* So arrays are indeed passed by value
* but only the pointer is copied, not the array elements!
- Note the advantage in efficiency (avoids a lot of copying)
- But - the pointer copy points to the same elements as the callee’s array
* These elements can easily be modified via pointer manipulation

Application

-~ -

)
on
a

o=

<
[
g‘J
o~

S
)

0

AN

e}

A
on
=}

o
~
oF

N

o

&)

—

<t

O

N

O

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Array names as function arguments

- The strcpy “string copy” function puts this “pseudo” call-by-reference
behavior to good use:
void strcpy(char* buffer, char const* string);
void f(...) {
char original[4] = "dog";
char copy[4];
strcpy(copy, original);

(char const*)

(char [1)

—\

|

|

on
=
o=
=
[0}
o
o=
i
<
=
AN
=
A
on
=
-
o
=3
wn
o
e
)
—
- ~
Application N
O

(char [1)

=\

|

-~ -

Operating system
1 -

Hardware

1/20/2026, 1/22/2026

When can array size be omitted?

- There are a couple of contexts in which an array declaration need not have a
size specified:
- Parameter declaration:
int strlen(char string[]); // same as: int strlen(char* string);

- As we've seen, the elements of the array argument are not copied, so the function doesn’t need
to know how many elements there are.

+ Array initialization:
int vector[] = {1, 2, 3, 4, 5};

- In this case, just enough space is allocated to fit all (five) elements of the initializer list

Application

1 L°

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

Operating system
] [

Hardware

Multidimensional arrays

- How to interpret a declaration like:
int d[2][4];

- This 1s an array with two elements:
- Each element is an array of four int values

- The elements are laid out sequentially in memory, just like a one-
dimensional array

- Row-major order: the elements of the rightmost subscript are stored
contiguously

(int) (int) (int)

Application

1 b

Operating system
1 -

Hardware

1/22/2026

1/20/2026,

(@)
o0
o

o=

<
%)
D

R

S
g

ae

o

N

(@)

N
on
o

o=
~
2,

o3

[a»)

O

—

<t

o

0

(@)

Subscripting in a multidimensional

array
S -

Then increment by the
dl1][2] size of 2 1nts

Increment by the size of
1 array of 4 1nts

O
o0
&

o=

<
%)
O

R

S
Q

o'

&

N

(@)

N
on
=)

o=
~
o,

o3

[a»)

=

—

<t

o

O

Why do we care about Storage Order?

- If you stay within the “paradigm” of the multidimensional array, the
order doesn’t matter...

- But if you use tricks with pointer arithmetic,
- 1t matters a lot

- It also matters for initialization n
4 5 §) 7

 To 1nitialize d like this:
* use this:
int d[2][4] = {@, 1, 2, 3, 4, 5, 6, 7};
* rather than this
int d[2][4] = {e, 4, 1, 5, 2, 6, 3, 7};

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

&)
on
o

o=

<
%)
g‘J

o

O
&

@'

AN

e}

A
on
=i

=
~
[

n

5]

&)

—

<t

QO

N0

(@)

Multidimensional Arrays as
Parameters

« Only the first subscript may be left unspecified:

1/20/2026, 1/22/2026

void f(int matrix[][10]); /* 0K */
void g(int (*matrix)[10]); /* OK */
void h(int matrix[][]); /* not OK */

- Why?
- Because the other sizes are needed for scaling when evaluating subscript
expressions (see previous slides)

+ This points out an important drawback to C:
« Arrays do not carry information about their own sizes!
- If array size i1s needed, you must supply it somehow

- (e.g., when passing an array argument, you often have to pass an additional
“array size” argument) — bummer Appilcation

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

1 L°

Operating system
] [

Hardware

930¢/36/T 9306/03/T D 3uryseajay ‘9g0g Sult

Q
O
—
>
=

Using malloc

* Ma

lloc returns a pointer to the start of a region of

memory on the heap. It takes in the number of
bytes to allocate.

- Knowing the differences between malloc-ing data

on the heap and declaring data on the stack 1s
1mportant for CSC4103.

« Consider the commented out code

ch

ar copied[length + 1]

If we were to use this line of code instead of the line
with malloc, what would happen?

« It's possible we get a segfault or the returned string is

garbage!

- This happens because we declared our string on the

stack inside the str_copier function frame and |
¥eturned a pointer to the string located in the function
rame

- But when we return from str_copier, the stack frame

1s deallocated so now we have'a dangling Pointer to a
location in the deallocated function frame!

* So never declare things on the stack and then return

them!

<stdio.h>
<string.h>
dargc,

*str = "Help";

printf(“Copied str: %s\n",

(*str) {

length = strlen(str);

*copied = malloc(

str_copler(str));

(length + 1));

L3

Hardware

1/120/2026, 1/22/2026

©
N
S
X
~
o
N
~
—
©
N
S
X
~~
S
X
~
—

Overview of Memory Management

- Stack-allocated memory

* When a function is called, memory is allocated for all of its parameters and
local variables.

- Each active function call has memory on the stack (with the current
function call on top)

* When a function call terminates, . . .

- the memory is deallocated (“freed up”) a0 e
- | |
Ex: main() calls (), g
g0
D [
g () recursively calls g() £O - %
TTI=1

main() L

Hardware

1/20/2026, 1/22/2026

Overview of Memory Management

- Heap-allocated memory

« This 1s used for persistent data, that must survive beyond the lifetime of a
function call

- global variables

- dynamically allocated memory — C statements can create new heap data (similar
to new in Java/C++)

- Heap memory is allocated in a more complex way than stack memory

- Like stack-allocated memory, the underlying system determines where to
get more memory — the programmer doesn’t have to search for free
memory space!

@)
on
=]

o

<
D))
o

o~

S
)

g

AN

e}

A
on
=]

=
~
[

N

5]

&)

—

QO

N0

(@)

Application

1 L°

Operating system
] [

Hardware

Allocating new Heap Memory

void* malloc(size t size);

- Allocate a block of size bytes, Note: vo1d * denotes a generic pointer type
* return a pointer to the block

- (NULL if unable to allocate block)

void* calloc(size t num_elements, size t element size);

- Allocate a block of num_elements * element_size bytes,
- 1nitialize every byte to zero,

* return pointer to the block
« (NULL if unable to allocate block)

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

O
an
&

o=

<
=
g‘J

o

S
)

2

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

Allocating new Heap Memory

void* realloc(void* ptr, size t new_size);

- Given a previously allocated block starting at ptr,
« change the block size to new_size,

* return pointer to resized block

- If block size is increased, contents of old block may be copied to a completely
different region

 In this case, the pointer returned will be different from the ptr argument, and ptr
will no longer point to a valid memory region

- If ptr 1s NULL, realloc is identical to malloc

- Note: may need to cast return value of malloc/calloc/realloc:
char* p = (char*) malloc(BUFFER_SIZE);

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

@)
on
=i

o=

<
[))
o

L=

o
<)

o'

AN

e}

A
on
=i

=
=
[

N

5]

&)

—

QO

N0

(@)

Deallocating Heap Memory

void free(void* pointer);

- Given a pointer to previously allocated memory,
* put the region back in the heap of unallocated memory

- Note: easy to forget to free memory when no longer needed...
- especially if you're used to a language with “garbage collection” like Java
 This 1s the source of the notorious “memory leak” problem

+ Difficult to trace — the program will run fine for some time, until suddenly
there 1s no more memory!

Application
-~ -
Operating system
] [

Hardware

1/20/2026, 1/22/2026

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

1/20/2026, 1/22/2026

Checking for successftul Allocation

- Call to malloc might fail to allocate memory, if there’s not enough
available

- Easy to forget this check, annoying to have to do it every time malloc
1s called...

o0
=)
o=
o
[
Qo
o~
Q|
&
o'
N
o
N
on

CSC4103, Sprin

Memory errors

Using memory that you have not initialized

Using memory that you do not own

Using more memory than you have allocated

Using faulty heap memory management

Application

-~ -

Operating system
{1 -

Hardware

1/20/2026, 1/22/2026

on
=i
o=
<
[))
o
L=
o
3
@'
AN
e}
A
on
=i
=
=
[
N
5]
&)
—
QO
N0
(@)

930¢/36/T 9306/03/T 0 surysaiyey ‘9g0g SuLl

),
<+
Q
-
et
<+
).

coord {

Structs

- Structs organize and group variables in a
container so that they're easily accessible by coord c1;
a single pointer.

argc,

- As in other languages, creating objects is
extremely helpful in keeping your
abstractions clean!

coord *c2 = malloc(sizeof(struct coord));

- Let's analyze the code

- We can declare a struct type by using the
struct name {fields}; syntax.

. T((:) access fields of a struct value, we can use the
. (dot) syntax.

* To access fields of a struct pointer, we have two

choices
- We can dereference the pointer to get a struct odifyl(*c2);
value and then use the . (dot) notation SR
* Or we can use the arrow notation -> to quickly do printf ("
the first option printf("

- The arrow notation is probably the cleaner and
quicker method

Operating system

L3

Hardware

©
N
S
N
~
N
N
~
—
e}
N
S
X
~
<3

Structs

- When we pass struct values into functions
(such as modify1), they are copied

- This means any changes we make to that
struct are not reflected in the original
struct

- When we pass struct pointers into
functions (such as modify2), the original
struct may be modified

+ Since we have a pointer, we can go to the
location of the struct and modify that struct

Operating system

] [

Hardware

1/20/2026, 1/22/2026

C structures: aggregate, yet scalar

- aggregate in that they hold multiple data items at one time
- named members hold data items of various types
* like the notion of class/field in C++
+ but without the data hiding features

- scalar in that C treats each structure as a unit

- as opposed to the “array” approach: a pointer to a collection of members in
memory

- entire structures (not just pointers to structures) may be passed as
function arguments, assigned to variables, etc.

* Interestingly, they cannot be compared using ==

- (rationale: too inefficient)

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

Application

1 L°

Operating system
] [

Hardware

Structure Declarations

- Combined variable and type declaration
struct tag {member-list} variable-1list;

- Any one of the three portions can be omitted

struct { int a, b; char* p; } x, y; /* omit tag
 variables x, y declared with members as described:
- Int members a, b and char pointer p.
- x and y have same type, but differ from all others —

« even 1if there 1s another declaration:
* struct { int a, b; char *p; } z;

 /* z has different type from x, y */

(type name) */

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

1/20/2026, 1/22/2026

Structure Declarations

struct S { int a, b; char* p; }; /* omit variables */

- No variables are declared, but there is now a type struct S that can be referred to
later

struct S z; /* omit members */
* Given an earlier declaration of struct S, this declares a variable of that type

typedef struct { int a, b; char* p; } S;
/* omit both tag and variables */
* This creates a simple type name S
- (more convenient than struct S) —

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

1 L°

Operating system
] [

Hardware

Recursively defined Structures

- Obviously, you can’t have a structure that contains an instance of
itself as a member — such a data item would be infinitely large

- But within a structure you can refer to structures of the same type,
via pointers

struct TREENODE {
char *label;
struct TREENODE *leftchild, *rightchild;

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

O
an
&

o=

<
wn
g‘J

o

S
o

o'

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

1/20/2026, 1/22/2026

Recursively defined Structures

- When two structures refer to each other, one must be declared i1n
incomplete (prototype) fashion

struct HUMAN;

struct PET {
char name[NAME_LIMIT];
char species[NAME_ LIMIT];
struct HUMAN* owner;

} fido = {"Fido", "Canis lupus familiaris", NULL};

struct HUMAN {
char name[NAME_LIMIT]; We can’t initialize the owner

struct PET pets[PET_LIMIT]; | el o G pets s
N \ i since 1t hasn’t been declared yet e
} sam = {"Sam", {fido}};

-~ -

Operating system
] [

Hardware

O
an
o

=

<
)
®
o~
<
g

o

AN

(@)

(o]
a0
o

e
~
(o

N

o

(@)

—

(@)

R

(@)

1/20/2026, 1/22/2026

Member Access

- Direct access operator s.m

+ subscript and dot operators have same precedence and associate left-to-
right, so we don’t need parentheses for sam.pets[0].species

. Indirect access ps—>m: equivalent to (*ps).m

+ Dereference a pointer to a structure, then return a member of that
structure

* Dot operator has higher precedence than indirection operator , so
parentheses are needed in (*s).m

fido.owner->name

@)
an
=]

o=

<
[))
Qo

o

S
&

o

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

. evaluated first: access oOwher member . and -> have equal precedence and or

associate left-to-right =

ng system
] [

Hardware

* evaluated next: dereference pointer to HUMAN

Memory Layout

struct COST { int amount;
char currency_type[2]; };
struct PART { char id[2];
struct COST cost;
int num_avail; };
- layout of struct PART: _— currency_type

Application

- Here, the system uses 4-byte alignment of integers,
- Four bytes wasted for each structure! S

cost

+ so amount and num_avail must be aligned

Operating system
T -

Hardware

1/20/2026, 1/22/2026

an
=)
.-
e
0
QL
o
S|
2
o
N
(@)
(o]
on
=)
ol
~
oF
N
—
<t
&)
©)

1/20/2026, 1/22/2026

Memory layout

- A better alternative (from a space perspective):
struct COST { int amount;
char currency_type[2]; };
struct PART { struct COST cost;
char id[2];
int num_avail; };

__—— currency_type

cost S—

Application

-~ -

an
=)
.-
e
0
QL
o
S|
2
o
N
(@)
(o]
on
=)
ol
~
oF
N
—
<t
&)
©)

Operating system
T -

Hardware

Structures as Function Arguments

- Structures are scalars, so they can be returned and passed as
arguments — just like ints, chars

struct BIG changestruct(struct BIG s);
« Call by value: temporary copy of structure is created

« Caution: passing large structures is 1nefficient

- —1nvolves a lot of copying

- avold by passing a pointer to the structure instead:
void changestruct(struct BIG* s);

- What if the struct argument i1s read-only?
+ Safe approach: use const

void changestruct(struct BIG const* s); —
T T -

Operating system
] [

Hardware

1/20/2026, 1/22/2026

@)
on
=]

o

<
D))
o

o~

S
)

g

‘:Q’

AN

e}

A
on
=]

=
~
[

N

5]

&)

—

QO

N0

(@)

OOP with C

struct cost { int amount; char currency type; };

1/20/2026, 1/22/2026

struct cost* cost init() { return malloc(sizeof(cost)); }
void cost free(struct cost* c) { free(c); }

void cost _set(struct cost* c, int amount, char type)
{ c->»amount = amount; c->currency_type = type; }

struct cost* ¢ = cost _init();
if (c == NULL) { .. error ..}
cost_set(c, 42, '$');

cost _free(c); A
-

&)
an
=]

o=

<
[))
Qo

o

S|
&

o'

N

(@)

(o]
on
=]

=
~
=3

N

o

&)

—

<t

&)

n

©)

Operating system
] [

Hardware

1/20/2026, 1/22/2026

Unions

- Like structures, but every member occupies the same region of
memory!

« Structures: members are placed consecutively in memory
* Unions: members are place in the same spot in memory

union VALUE {
float f;
int 1i;
char *s;

¥

/* either a float or an int or a char* */

O
an
&

o=

o
n
Qo

o

S
o

o'

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

Application

-~ -

Operating system
{1 -

Hardware

Unions

- Up to programmer to determine how to interpret a union (i.e. which
member to access)

- Often used in conjunction with a “type” variable that indicates how
to interpret the union value

« Called ‘discriminated union’

enum TYPE { INT, FLOAT, STRING };

struct VARIABLE ({ e \ccess type to determine
enum TYPE type; how to interpret value

union VALUE value;

s

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

&)
an
o

o=

<
%)
g‘J
o~
|
<

o

AN

(@)

(o]
o0
=)

e
~
o8

wn

o

(@)

—

<t

Q

N0

(@)

930¢/36/T 9306/03/T 0 surysaiyey ‘9g0g SuLl

)
o0
-
o p=i
et
D)
),

1/20/2026, 1/22/2026

printf("C ed str: %s\n", str_copier(str));

- A string is an array of characters ending with
a null terminator \0.

- So, we can represent strings as a char * type :
(an array of chars). (i < length) {

- Let's analyze the code

* We can declare a string as an array using either
syntax, in this case we chose the pointer syntax.

* In print_chars, we can iterate through the
string by using the same array dereferencing
and pointer arithmetic method.

* In str_copier, notice that strlen returns the Jength = strlen(str);
length “of the string excluding the null |
terminator.

* If we didn't have the + 1 in our malloc call, then *copied = malloc((char) * (length + 1));

we wouldn't have enough space to fit both help
and the \0

printf("Char: %c\n"

CSC4103, Spring 2026, Refreshing C

Q0
b—d

maruwai e

1/20/2026, 1/22/2026

Review of strings

. Sequence of zero or more characters, terminated by NUL (literally, the
integer value '\0")

- NUL terminates a string, but isn’t part of it
- important for strlen() — length doesn’t include the NUL

- Strings are accessed through pointers/array names

- string.h contains prototypes of many useful functions

&)
an
=]

o=

<
[))
Qo

o

S|
)

0

N

(@)

(o]
on
=]

=
~
=3

N

o

&)

—

<t

&)

n

©)

Application

1 L°

Operating system
] [

Hardware

String literals

- Evaluating "dog” results in memory allocated for three characters
'd’,"0’," g', plus terminating NUL

char* m = "dog";

- Note: If m 1s an array name, subtle difference:

char m[10] = "dog";

This is not a string literal;

10 bytes are allocated for this , S)
It’s an array initializer in

array

disguise!
Equivalent to

{'d','O','g','\O'}

Application

-~ -

Operating system
] [

Hardware

1/20/2026, 1/22/2026

O
an
o

=

<
)
®
o~
<
g

o

AN

(@)

(o]
a0
o

e
~
(o

N

o

(@)

—

(@)

R

(@)

String manipulation functions

- Read some “source” string(s), possibly write to some “destination”
location
char* strcpy(char* dst, char const* src);

char* strcat(char* dst, char const* src);

- Programmer’s responsibility to ensure that:
- destination region large enough to hold result
* source, destination regions don’t overlap
* “undefined” behavior in this case
 according to C spec, anything could happen!

o Assuming that the implementation of
char m[16] = "dog"; Strcpy starts copying left-to-right
strcpy(m+1, m); without checking for the presence of a

terminating NUL first, what will happen?

Application

-~ -

Operating system
] [

Hardware

1/20/2026, 1/22/2026

o
an
o

o=

<
w0
®
o~
<
<

o

AN

(@)

(o]
a0
o

e
~
(o

N

o

(@)

—

(@)

R

(@)

strlen() and size t

size_t strlen(char const* string);
/* returns length of string */

- size_t i1s an unsigned integer type, used to define sizes of strings and
(other) memory blocks

- Reasonable to think of “size” as unsigned”...

- But beware! ?Xpressions involving strlen() may be unsigned (perhaps
unexpectedly

if (strlen(x) - strlen(y) »>= 0) ...

- avoid by casting: \

((int) (strlen(x) - strlen(y)) >= 0)

* Problem: what if x or y 1s a very large string?

- a better alternative: (strlen(x) »>= strlen(y)) —
- -

Operating system
] [

Hardware

1/20/2026, 1/22/2026

O
an
&

o=

<
=
g‘J

o

S
o

o'

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

1/20/2026, 1/22/2026

stremp() “string comparison”

int strcmp(char const* sl1, char const* s2);
« returns a value less than zero if s1 precedes s2 in lexicographical order:;
« returns zero if s1 and s2 are equal;
* returns a value greater than zero if s1 follows s2.

- Source of a common mistake:

- seems reasonable to assume that strcmp returns “true” (nonzero) if s1 and
s2 are equal; “false” (zero) otherwise

- In fact, exactly the opposite is the case!

Application

1 L°

Operating system
] [

Hardware

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

Restricted vs. unrestricted string
functions

- Restricted versions: require an extra integer argument that bounds
the operation
char* strncpy(char* dst, char const* src, size t len);

char* strncat(char* dst, char const* src, size t len);

int strncmp(char const* sl, char const* s2, size t len);
- “safer” in that they avoid problems with missing NUL terminators
- safety concern with strncpy:
. If bound isn’t large enough, terminating NUL won’t be written
. Safe alternative:
strncpy(buffer, name, BSIZE);
buffer[BSIZE-1] = "\0’;

Application
-~ -
Operating system
] [

Hardware

1/20/2026, 1/22/2026

@)
an
=]

o=

<
[))
Qo

o

S
&

o

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

String searching

char* strpbrk(char const* str, char const* group);
/* return a pointer to the first character in str
that matches *any* character in group;

return NULL if there is no match */

size t* strspn(char const* str, char const* group);
/* return number of characters at beginning of str

that match *any* character in group */

Application
-~ -
Operating system
] [

Hardware

1/20/2026, 1/22/2026

&)
an
=]

o=

<
[))
Qo

o

S|
)

0

N

(@)

(o]
on
=]

=
~
=3

N

o

&)

—

<t

&)

n

©)

strtok “string tokenizer”

char* strtok(char* s, char const* delim);
/* delim contains all possible ""tokens”:
characters that separate "tokens”.
if delim non-NULL:
return ptr to beginning of first token in s,
and terminate token with NUL.
if delim is NULL:
use remainder of untokenized string from the

last call to strtok */

Application

1/20/2026, 1/22/2026

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

1/20/2026, 1/22/2026

strtok 1n action

for (token = strtok(line, whitespace);
token != NULL;
token = strtok(NULL, whitespace))

printf("Next token is %s\n", token);

@)
an
=]

.-

<
[0}
Qo

o

S
&

o

‘:Q’

AN

(@)

A
on
=]

=
~
oF

N

o

&)

—

O

N0

O

Tine toEen

1/20/2026, 1/22/2026

An 1implementation of strtok

old contains the remains
of an earlier s value
(note use of static)

char* strtok(char* s, const char* delim) {
static char *old = NULL;
char *token;
if (! s) { s = old; if (! s) return NULL; } NULL has been passed in for s,
if (s) { so consult old
s += strspn(s, delim);
if (*s == 0) { old = NULDy_return NULL; }
}
token = s; strspn returns number of delimiters
at beginning of s — skip past these

s = strpbrk(s, delim); haract
cnaracters

if (s == NULL) old = NUDKy
else { *s = 0; old = s + 1;

return token; strpbrk gives the position of the next delimiter.

t s 1s updated to this position, but token still
points to the token to return.

CSC4103, Spring 2026, Refreshing C

T T -

Hardware

Memory operations

- Like string operations, work on sequences of bytes
* but do not terminate when NUL encountered
void* memcpy(void* dst, void const* src, size_ t length);
void* memcmp(void const* a, void const* b, size t length);

- Note: memmove works like memcpy, but allows overlapping source,
destination regions

- Remember, these operations work on bytes
 If you want to copy N items of type T, get the length right:
memcpy(to, from, N * sizeof(T))

Application

1 L°

Operating system
] [

Hardware

1/20/2026, 1/22/2026

O
an
=)

o=

<
n
Qo

o

S
)

2

N

(@)

(o]
o0
=)

e
~
oF

N

o

&)

—

&)

N0

©)

CENTER FOR COMPUTATION
& TECHNOLOGY

1/20/2026, 1/22/2026

CSC4103, Spring 2026, Refreshing C

Ne
Qo

